Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Sort descending Year Awarded
3U19TW009872-05S1
NOVEL THERAPEUTIC AGENTS FROM THE BACTERIAL SYMBIONTS OF BRAZILIAN INVERTEBRATES Preclinical and Translational Research in Pain Management FIC HARVARD MEDICAL SCHOOL CLARDY, JON; PUPO, MONICA T Boston, MA 2018
NOFO Title: Limited Competition: International Cooperative Biodiversity Groups (U19)
NOFO Number: RFA-TW-13-001
Summary:

An International Cooperative Biodiversity Group with an interdisciplinary leadership team of physicians, pharmacologists, evolutionary biologists, and chemists will discover and develop therapeutic agents produced by Brazilian symbiotic bacteria. The team will target three therapeutic areas: 1) infectious fungal pathogens, 2) Chagas disease and leishmaniasis, and 3) cancers of the blood. All three areas represent major threats to human health that need to be addressed with new therapeutic agents. Internationally, invasive fungal diseases kill more people than malaria or TB, while Chagas disease imposes a special burden on Brazil, killing as many Brazilians as TB. Leishmaniasis has now passed Chagas disease in the Brazilian population. Despite major improvements in cancer chemotherapy, cancer is projected to result in 8 million deaths internationally this year (13% of all deaths, WHO) and an estimated 13 million per year by 2030.

1R34DA050289-01
4/5 The Cumulative Risk of Substance Exposure and Early Life Adversity on Child Health Development and Outcomes Enhanced Outcomes for Infants and Children Exposed to Opioids HEALthy Brain and Child Development Study (HBCD) NIDA BOSTON CHILDREN'S HOSPITAL NELSON, CHARLES ALEXANDER Boston, MA 2019
NOFO Title: HEAL Initiative: HEALthy Brain and Child Development Study (HEALthy BCD) (Collaborative R34 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-19-029
Summary:

Despite increased efforts to understand the neurodevelopmental sequelae of in utero opioid and other substance exposure on long-term behavioral, cognitive, and societal outcomes, important questions remain, specifically, 1) How is brain growth disrupted by fetal substance and related pre- and post-natal exposures? and 2) How are these disrupted growth patterns causally related to later cognitive and behavioral outcomes? This project seeks to formulate an approach to addressing these key questions and decipher the individual and cumulative effect of these intertwined pre- and post-natal exposures on child neurodevelopment. First, researchers will address the legal, ethical, and mother-child care and support concerns implicit in this study. Next, they will integrate across our areas of neuroimaging expertise to develop, implement, and harmonize a multi-modal MRI and EEG protocol to assess maturing brain structure, function, and connectivity. Finally, researchers will develop and test advanced statistical approaches to model and analyze this multidimensional and longitudinal data.


Development of Vaccines for the Treatment of Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Development of Novel Immunotherapeutics for Opioid Addiction NIAID Boston Children's Hospital Ofer Levy Boston, MA 2020
NOFO Title: Development of Vaccines for the Treatment of Opioid Use Disorder
NOFO Number: BAA-DAIT-75N93019R00009
Summary:

High rates of relapse and overdose deaths pose significant challenges to the treatment of Opioid Use Disorder (OUD). Anti-opioid immunotherapies (i.e., vaccines and monoclonal antibodies) have great potential to reduce long-term opioid use and overdose, with minimal risk of side effects, when used in conjunction with pharmacological treatments and/or behavioral therapies. The ability of an anti-opioid vaccine to induce antibodies that render an opioid less effective, or less rewarding, and protect from accidental overdose could provide an important therapeutic option for patients undergoing treatment for OUD. The goal of this collaborative study is to design, develop, and evaluate vaccines for use in the treatment of opioid use disorder

1K24NS126570-01
Mentorship in Precision Pain Medicine via the Early Phase Pain Investigation Clinical Network Clinical Research in Pain Management NINDS Brigham and Women's Hospital Edwards, Robert R Boston, MA 2021
NOFO Title: Midcareer Investigator Award in Patient-Oriented Research (Parent K24 Independent Clinical Trial Required)
NOFO Number: PA-20-193
Summary:

Throughout clinical pain research, there is a need to increase the workforce of researchers familiar with individualized treatment strategies known as precision pain medicine. This mentoring award will leverage EPPIC-Net’s Clinical Coordinating Center resources to encourage interest in clinical pain management, in particular through multidisciplinary pain research projects. A selected clinician-researcher  will mentor early career investigators and provide them with hands-on training activities and other skill-building experiences in clinical pain research, with a focus on precision pain medicine, biomarker development, and pain assessment. Mentoring activities will include formal educational coursework, inclusion in EPPIC-Net working groups, and collaborative writing experiences.

1R34DA050286-01
The Cumulative Risk of Substance Exposure and Early Life Adversity on Child Health Development and Outcomes Enhanced Outcomes for Infants and Children Exposed to Opioids HEALthy Brain and Child Development Study (HBCD) NIDA FATHER FLANAGAN'S BOYS' HOME BLAIR, JAMES Boys Town, NE 2019
NOFO Title: HEAL Initiative: HEALthy Brain and Child Development Study (HEALthy BCD) (Collaborative R34 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-19-029
Summary:

Despite increased efforts to understand the neurodevelopmental sequelae of in utero opioid and other substance exposure on long-term behavioral, cognitive, and societal outcomes, important questions remain, specifically, 1) How is brain growth disrupted by fetal substance and related pre- and post-natal exposures? and 2) How are these disrupted growth patterns causally related to later cognitive and behavioral outcomes? This project seeks to formulate an approach to addressing these key questions and decipher the individual and cumulative effect of these intertwined pre- and post-natal exposures on child neurodevelopment. First, researchers will address the legal, ethical, and mother-child care and support concerns implicit in this study. Next, they will integrate across our areas of neuroimaging expertise to develop, implement, and harmonize a multi-modal MRI and EEG protocol to assess maturing brain structure, function, and connectivity. Finally, researchers will develop and test advanced statistical approaches to model and analyze this multidimensional and longitudinal data.

1R44DA050357-01
An optimized screening platform for identifying and quantifying biased agonists as drugs for the treatment of Opioid Use Disorder Cross-Cutting Research Small Business Programs NIDA MONTANA MOLECULAR, LLC QUINN, ANNE MARIE (contact); HUGHES, THOMAS E Bozeman, MT 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

As the opioid crisis claims more and more lives, there is a need to develop new, safer analgesics. Biased agonists could activate beneficial signaling pathways while avoiding those that cause adverse effects. This project aims to speed the discovery of non-addictive analgesics by providing drug discovery teams with simpler, more robust, more quantitative assays for agonist bias. The goal is to optimize and test new assays for agonist bias at NOP, D3 dopamine, CB1 cannabinoid, and OPRM1 opioid receptors, which couple to both the Gi and ?-arrestin signaling pathway, and create new tools to improve the analysis of structure/activity relationships that can be used in drug discovery and distribute to researchers who are developing new drugs for OUD.

1U44NS111779-01
DISCOVERY OF NAV1.7 INHIBITORS FOR THE TREATMENT OF PAIN Preclinical and Translational Research in Pain Management NINDS SITEONE THERAPEUTICS, INC. MULCAHY, JOHN VINCENT; ODINK, DEBRA BOZEMAN, MT 2019
NOFO Title: Blueprint Neurotherapeutics Network (BPN): Small Molecule Drug Discovery and Development for Disorders of the Nervous System (U44 Clinical Trial Optional)
NOFO Number: PAR-18-541
Summary:

We propose to develop a safe and effective nonopioid analgesic to treat neuropathic pain that targets an isoform of the voltage-gated sodium ion channel, NaV1.7. Voltage-gated sodium channels are involved in the transmission of nociceptive signals from their site of origin in the peripheral terminals of DRG neurons to the synaptic terminals in the dorsal horn. NaV1.7 is the most abundant tetrodotoxin-sensitive sodium channel in small diameter myelinated and unmyelinated afferents, where it has been shown to modulate excitability and set the threshold for action potentials. Development of systemic NaV1.7 inhibitors has been complicated by the challenge of achieving selectivity over other NaV isoforms expressed throughout the body. We have discovered a series of potent, state-independent NaV1.7 inhibitors that exhibit >1000-fold selectivity over other human isoforms. Work conducted under this program will support advancement of a lead candidate into clinical development as a therapeutic for neuropathic pain.

1R44DA046151-01
RAE (REALIZE, ANALYZE, ENGAGE)- A DIGITAL BIOMARKER BASED DETECTION AND INTERVENTION SYSTEM FOR STRESS AND CRAVING DURING RECOVERY FROM SUBSTANCE ABUSE DISORDERS Cross-Cutting Research Small Business Programs NIDA ContinueYou, LLC Reinhardt, Megan Rois Bristol, ME 2019
NOFO Title: Wearable to Track Recovery and Relapse Factors for People w/ Addiction (R43/R44)
NOFO Number: RFA-DA-18-010
Summary:

For many individuals in recovery from a substance use disorder, certain cues—including stress and drug-related cues—can trigger a physiological state in which they are more likely to relapse. In this SBIR project, the investigators intend to deploy a system—consisting of a wearable sensor, a smartphone app, and a clinical portal—to provide individuals in recovery and their treatment providers with an opportunity to identify moments of high risk for relapse and to access real-time intervention opportunities. The sensors will identify signals of stress or drug use, interface with a smartphone app, and provide options for annotations, stress-reduction techniques, or contact with an individual’s support system and treatment providers, as well as log and encourage healthy behaviors. This study will deploy and optimize the system, as well as test its effects on addiction-related outcomes, such as rate of relapse.

1RM1DA055437-01
Integrated Care for Chronic Pain and Opioid Use Disorder: The IMPOWR Research Center at Montefiore/Einstein (IMPOWR-ME) Clinical Research in Pain Management Reducing Opioid-Related Harms to Treat Chronic Pain (IMPOWR and MIRHIQL) NIDA ALBERT EINSTEIN COLLEGE OF MEDICINE STARRELS, JOANNA L (contact); ARNSTEN, JULIA H; GABBAY, VILMA Bronx, NY 2021
NOFO Title: HEAL Initiative: Integrative Management of Chronic Pain and OUD for Whole Recovery (IMPOWR): Research Centers (RM1 Clinical Trial Required)
NOFO Number: RFA-DA-21-030
Summary:

Chronic pain and opioid use disorder often occur together, but there are a striking lack of integrated treatments accessible to people in need, particularly Black and Hispanic individuals living and seeking care in under resourced settings. This research will examine multi-modal, evidence-based practices in diverse health care settings and among diverse populations with both chronic pain and opioid misuse/disorder. The first project will examine the effects of yoga and physical therapy onsite at methadone opioid treatment clinics. The second project will test Acceptance and Commitment Therapy and a care-management smartphone app for individuals in primary-care based buprenorphine treatment. The third project will compare microdosing versus standard doses/timing of buprenorphine for hospitalized patients. All three projects will improve access to care for Black and Hispanic individuals in under resourced settings by bringing integrated treatments to them. The interventions have high potential to be used broadly.

3R42HD088325-02A1S1
Mobile Augmented Screening Tool to Increase Adolescent HIV Testing and Linkage to Care Cross-Cutting Research Small Business Programs NIDA DIGITAL HEALTH EMPOWERMENT, INC. ARONSON, IAN DAVID BROOKLYN, NY 2019
NOFO Title: PHS 2016-02 Omnibus Solicitation of the NIH, CDC, FDA, and ACF for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-16-302
Summary:

Adolescents face increased HIV risk, infrequent testing, inconsistent linkage to care, and a lack of prevention-related knowledge. We propose to complete and evaluate the Mobile Augmented Screening (MAS) tool to privately and discretely offer routine HIV testing and counseling, including prevention education, to high-need, diverse adolescent and young adult populations at a low cost. The MAS will consist of a tablet-based intervention including a brief video designed to increase adolescent HIV testing, automated text messages to facilitate linkage to care for those who test positive, and text-based education for those who test negative or decline testing. Phase I was conducted with young emergency department (ED) patients. Preliminary evaluations indicate the video led to significant knowledge increases and encouraged testing. In phase II, we seek to complete intervention development and evaluate through a randomized controlled trial with ED patients, with qualitative interviews for a subset of young patients and ED staff.

1RF1NS113991-01
Disrupting ion channel scaffolding to treat neuropathic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS STATE UNIVERSITY OF NEW YORK AT BUFFALO BHATTACHARJEE, ARINDAM Buffalo, NY 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Dorsal root ganglion (DRG) neuronal hyperexcitability is central to the pathology of neuropathic pain and is a target for local anesthetics, even though the efficacy of local anesthetic patches has been mixed. The coordinated movement of ion channels, especially voltage-dependent sodium channels, from intracellular pools to the sites of nerve injury has been suggested to be an underlying cause of electrogenesis and ectopic firing in neuropathic pain conditions. Recent studies identified Magi1 as a scaffold protein responsible for sodium channel targeting and membrane stabilization in DRG neurons. This project will determine whether reducing the expression Magi1 could disrupt intracellular trafficking of sodium channels in DRG neurons under neuropathic injury conditions, and could therefore serve as a potential therapeutic target for neuropathic pain.

1R34DA050283-01
3/4 Investigation of opioid exposure and neurodevelopment (iOPEN) Enhanced Outcomes for Infants and Children Exposed to Opioids HEALthy Brain and Child Development Study (HBCD) NIDA UNIVERSITY OF VERMONT & ST AGRIC COLLEGE POTTER, ALEXANDRA S (contact); GARAVAN, HUGH P; HEIL, SARAH H Burlington, VT 2019
NOFO Title: HEAL Initiative: HEALthy Brain and Child Development Study (HEALthy BCD) (Collaborative R34 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-19-029
Summary:

Rates of neonatal abstinence syndrome have reached a staggering 6.5 per 1,000 births nationwide, creating an urgent need to identify how in-utero exposure to opioids and associated risk factors influence the developing brain. A multidisciplinary team will address these challenges in Oregon, a state particularly hard hit by the opioid epidemic. Through linking sites, the impact of the Phase I project is enhanced and will provide critical information to support a national-level effort for Phase II of the HEALthy Brain and Child Development Study. Aim 1 will develop, implement, and evaluate innovative recruitment and retention strategies for high-risk populations. Aim 2 will address anticipated challenges of the planned Phase II study by implementing and evaluating a multi-site, standardized research protocol including multimodal MRI of placenta, fetus, neonate, and 24-month-old brain; biospecimen collection; and assessment of substance use and other key domains. Aim 3 will evaluate data acquisition, processing, and statistical considerations to maximize data quality, usability, and integration across sites.

3U01DA055354-03S1
HBCD Study Biospecimens Administrative Supplement: Resource Generation for Delivery Specimens Enhanced Outcomes for Infants and Children Exposed to Opioids HEALthy Brain and Child Development Study (HBCD) NIDA UNIVERSITY OF VERMONT & ST AGRIC COLLEGE POTTER, ALEXANDRA S (contact); GARAVAN, HUGH P Burlington, VT 2023
NOFO Title: Notice of Special Interest (NOSI): HEAL Initiative: Biospecimen Collection in Pregnancy
NOFO Number: NOT-DA-23-005
Summary:

Opioid use during pregnancy is associated with adverse outcomes for pregnant individuals and offspring. The mechanisms through which these outcomes arise and the consequences of prenatal opioid exposure on child health and development remain largely unexplored. The HEALthy Brain and Child Development (HBCD) Study is a nationwide longitudinal prospective study of early child development that will assess a broad spectrum of biological, behavioral, social, and health factors among 7,500 pregnant women and their children from pregnancy to mid-childhood. This supplement will expand the biospecimen collection of the HBCD protocol at the University of North Carolina at Chapel Hill to include delivery specimens (placenta, cord tissue, and cord blood). This will provide an unprecedented resource-generating opportunity for the larger scientific community to comprehensively evaluate mechanisms that mediate the connection between substance use during pregnancy and adverse neonatal, infant, and/or maternal health outcomes and inform innovative preventive strategies. 

1U01DA055354-01
20/24 The Healthy Brain and Child Development National Consortium Enhanced Outcomes for Infants and Children Exposed to Opioids HEALthy Brain and Child Development Study (HBCD) NIDA UNIVERSITY OF VERMONT & ST AGRIC COLLEGE POTTER, ALEXANDRA S (contact); GARAVAN, HUGH P Burlington, VT 2021
NOFO Title: HEAL Initiative: HEALthy Brain and Child Development Study (Collaborative U01- Clinical Trial Not Allowed)
NOFO Number: RFA-DA-21-020
Summary:

The HEALthy Brain and Child Development National Consortium (HBCD-NC) will establish a normative template of developmental trajectories over the first 10 years of life. All sites in the HBCD-NC will carry out a common research protocol and will assemble and distribute a comprehensive and well curated research dataset to the scientific community at large. The HBCD-NC will collect neural, behavioral, physiological, and psychological measures, as well as biospecimens, to characterize neurodevelopmental trajectories. The majority of participants will be recruited in the second trimester of pregnancy, with a smaller subset recruited at birth, and followed for the first decade of life. The University of Vermont study site will recruit mother-infant dyads from a rural area in Vermont, a state in which nearly one-third of neonatal hospitalizations are for neonatal abstinence syndrome (NAS).

1UG3DA048743-01
Advancing KNX100 for the treatment of opioid withdrawal: preclinical efficacy and toxicology, and a phase 1 clinical program. Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Kinoxis Therapeutics, PTY LTD MacGregor, Iain Camberwell, Vic, Australia 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Kinoxis has developed a novel small-molecule lead, KNX100, that reduces the severity of opioid withdrawal symptoms in preclinical animal models of opioid use disorder (OUD). KNX100 was discovered from a phenotypic screen of compounds derived from a fragment-based drug discovery program targeting the brain oxytocin system. KNX100 has a favorable pharmacokinetic and safety profile and has undergone testing for efficacy signals in two rodents and two non-human primate species. The proposed activity is to progress the development of KNX100 to treat opioid withdrawal in OUD. The overall objective of the project is to establish the safety and tolerability of KNX100 to enable human efficacy testing to commence in patients requiring treatment for opioid withdrawal. The long-term objective for this development program is to generate human efficacy data to support KNX100 as a potential treatment for opioid withdrawal symptoms and ultimately enable a New Drug Application to the FDA.

1R21AT010125-01
EFFECT OF MINDFULNESS TRAINING ON OPIOID USE AND ANXIETY DURING PRIMARY CARE BUPRENORPHINE TREATMENT Translation of Research to Practice for the Treatment of Opioid Addiction Behavioral Research to Improve Medication-Based Treatment NCCIH Cambridge Health Alliance SCHUMAN OLIVIER, ZEV DAVID CAMBRIDGE, MA 2018
NOFO Title: Clinical Trials or Observational Studies of Behavioral Interventions for Prevention of Opioid Use Disorder or Adjunct to Medication Assisted Treatment-SAMHSA Opioid STR Grants (R21/R33)
NOFO Number: RFA-AT-18-002
Summary:

Office-based opioid treatment (OBOT) with buprenorphine/naloxone prevents overdose deaths. Nonpharmacologic approaches to anxiety, stress, and emotion dysregulation are needed during primary care OBOT, which is the primary access point for opioid use disorder (OUD) treatment in most U.S. counties. Mindfulness-based interventions (MBI) safely and reliably reduce the impact of stress, anxiety, depression, and chronic pain, which could increase OBOT retention while reducing rates of relapse and overdose deaths. Current 8-week standard MBIs do not appear to have strong, sustained impact on substance use outcomes, suggesting longer or enhanced MBIs are needed in the OUD treatment setting. This project proposes to adapt, refine, and compare the effectiveness of the 6-month Mindful Recovery OUD Care Continuum delivered within group-based opioid treatment (GBOT) versus standard GBOT alone.

2R44DA041912-03
COMPLETION OF IND-PACKAGE FOR A NOVEL, NON-NARCOTIC PAINKILLER Cross-Cutting Research Small Business Programs NIDA Blue Therapeutics, Inc. Yekkirala, Ajay S CAMBRIDGE, MA 2019
NOFO Title: PHS 2017-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-17-302
Summary:

Opioids like morphine and hydrocodone are generally the most effective therapeutics for treatment of moderate to severe pain. However, their use is limited by serious side effects: tolerance, constipation, respiratory depression, physical dependence, and high addictive potential. Alternative pain relievers with the analgesic potency of conventional opioids, but devoid of narcotic side effects, are an immediate need. The goal of this project is to develop and commercialize an alternative to conventional opioid analgesics with reduced side effects and without the addictive properties common to mu-opioid agonists, targeting a new molecule in the central nervous system. This project will perform the necessary preliminary studies to prepare this new molecule for an investigational new drug application with the FDA.

1R44DA049685-01
Noninvasive Brain Stimulation for Treating Addiction Cross-Cutting Research Small Business Programs NIDA HIGHLAND INSTRUMENTS, INC DIPIETRO, LAURA; WAGNER, TIMOTHY ANDREW Cambridge, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Required)
NOFO Number: PA-18-573
Summary:

Noninvasive brain stimulation (NIBS) may be effective in treating some forms of addiction, but the most common NIBS methods, Transcranial Magnetic Stimulation (TMS) and Transcranial Direct Current Stimulation (tDCS), have not been found to be effective in treating opioid use disorder (OUD). This project seeks to test the efficacy in OUD patients of Electrosonic Stimulation (ESStim™), an improved NIBS modality that combines independently controlled electromagnetic and ultrasonic fields to focus and boost stimulation currents via tuned electromechanical coupling in neural tissue.

1UG3DA052166-01A1
CVL-354, a kappa opioid receptor antagonist for treatment of opioid use disorder, withdrawal and relapse Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA CEREVEL THERAPEUTICS, LLC IREDALE, PHILIP Cambridge, MA 2021
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: PAR-20-092
Summary:

Kappa opioid receptors (KOR) are expressed in brain areas that control reward, motivation, and anxiety. Upon opioid drug withdrawal and abstinence, dysregulated KOR signaling can result in aversive physical and affective states that are a major driver of relapse. Preclinical data have demonstrated that antagonism of KOR can reduce the physical symptoms of opioid withdrawal. Currently, the alpha 2-adrenergic agonist lofexidine is the only approved therapy for the mitigation of the physical symptoms of opioid withdrawal but it is only modestly effective and can have significant unwanted side effects. Cerevel Therapeutics has identified a novel selective KOR antagonist, CVL-354, with unique properties and good preclinical safety margins. This project will assess this drug in early human safety/pharmacokinetics and occupancy studies. Future studies will then be able to assess efficacy of this drug in acute opioid withdrawal.

1R41AR080620-01A1
Injectable Ice Slurry Cooling Technology for Treatment of Postoperative Pain Cross-Cutting Research Small Business Programs NIAMS BRIXTON BIOSCIENCES, INC. SIDOTI, CHARLES Cambridge, MA 2022
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R41/R42 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-009
Summary:

More than 700,000 total knee replacement surgeries are performed each year in the United States to relieve joint pain in patients with end-stage osteoarthritis or rheumatic arthritis. However, many patients still experience significant pain after this procedure, calling for additional long-lasting, drug-free pain management strategies. This project will develop and test a commercial prototype device for persistent knee pain after total knee replacement. The injection-based method freezes peripheral nerves to reduce pain sensation.

1R44AR076885-01
Enhancing Physical Therapy: Noninvasive Brain Stimulation System for Treating Carpal Tunnel Syndrome Cross-Cutting Research Small Business Programs NIAMS HIGHLAND INSTRUMENTS, INC. WAGNER, TIMOTHY ANDREW; DIPIETRO, LAURA Cambridge, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Required)
NOFO Number: PA-18-573
Summary:

 Non-Invasive Brain Stimulation (NIBS) has been successfully applied for the treatment of chronic pain (CP) in some disease states, where treatment induced changes in brain activity revert maladaptive plasticity associated with the perception/sensation of CP [25-28]. However, the most common NIBS methods, e.g., transcranial direct current stimulation, have shown limited, if any, efficacy in treating neuropathic pain. It has been postulated that limitations in conventional NIBS techniques’ focality, penetration, and targeting control limit their therapeutic efficacy . Electrosonic Stimulation (ESStim™) is an improved NIBS modality that overcomes the limitations of other technologies by combining independently controlled electromagnetic and ultrasonic fields to focus and boost stimulation currents via tuned electromechanical coupling in neural tissue . This proposal is focused on evaluating whether our noninvasive ESStim system can effectively treat CP in carpal tunnel syndrome (CTS), both as a lone treatment and in conjunction with physical therapy (PT). Investigators hypothesize ESStim can be provided synergistically with PT, as both can encourage plasticity-dependent changes which could maximally improve a CTS patient’s pain free mobility. In parallel with the CTS treatments, the team will build multivariate linear and generalized linear regression models to predict the CTS patient outcomes related to pain, physical function, and psychosocial assessments as a function of baseline disease characteristics. The computational work will be used to develop an optimized CTS ESStim dosing model. 

U01DA058548-01
Clinical Development of a Therapeutic Agent for Rapid Reversal of Methamphetamine Intoxication Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA CLEAR SCIENTIFIC, LLC LI, XINHUA Cambridge, MA 2023
NOFO Title: Grand Opportunity in Medications Development for Substance-Use Disorders (U01 - Clinical Trial Optional)
NOFO Number: PAR-19-327
Summary:

Currently there are no safe, rapidly acting treatments for methamphetamine use disorder and overdose. This project will evaluate a potential treatment: the small molecule CS-1103, which selectively attaches to methamphetamine in the blood. This molecule quickly removes methamphetamine blood and into urine for elimination from the body. The research will evaluate the safety and compatibility of CS-1103 with the human body, toward future clinical testing in humans. 

1UH2AR076731-01
Development, Evaluation and Translation of Robotic Apparel for Alleviating Low Back Pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS HARVARD UNIVERSITY WALSH, CONOR Cambridge, MA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

A primary factor contributing to acute or recurrent back injury is overexertion via excessive peak and cumulative forces on the back and the primary factors involved in the progression of acute low back injury to chronic low back pain (cLBP) include maladaptive motor control strategies, muscle hyperactivity, reduced movement variability, and the development of fear cognitions. This project will focus on the development of robotic apparel with integrated biofeedback components that can reduce exertion; encourage safe, varied movement strategies; and promote recovery. Robotic apparel will be capable of providing supportive forces to the back and hip joints through adaptive control algorithms that respond to dynamic movements and becoming fully transparent when assistance is no longer needed. This technology can be used to prevent cLBP caused by overexertion and provide a new tool to physical therapists and the clinical community to enhance rehabilitation programs.

1UG3DA052173-01A1
Combating opioid addiction using CVL-936, a novel D3/D2 receptor antagonist Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA CEREVEL THERAPEUTICS, LLC CHAKILAM, ANANTHSRINIVAS RAO Cambridge, MA 2021
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: PAR-20-092
Summary:

Opioid use and addiction affects more than 2 million Americans and contribute to a large proportion of all drug overdose deaths. Current treatments for opioid use disorder (e.g., methadone and buprenorphine) are not always effective, may be misused, and can have side effects that discourage treatment continuation. Therefore, Cerevel Therapeutics is evaluating a novel compound, CVL-936, which targets brain molecules called dopamine D3 receptors. These receptors are involved in the brain’s reward and relapse pathways and are present in higher levels in people with addictions. In animal studies, the molecule reduced self-administration of nicotine and fentanyl, including in relapse situations. The project will test the safety and tolerability of CVL-936 in animals and healthy humans and will examine its effectiveness in reducing craving in people with opioid use disorder.

1R44AR074820-01A1
A phenotypic screen for osteoarthritic pain therapeutics using all-optical electrophysiology Cross-Cutting Research Small Business Programs NIAMS QUELL TX, INC. LIU, PIN; MCMANUS, OWEN B Cambridge, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

 Quell Therapeutics uses the Optopatch platform for making all-optical electrophysiology measurements in neurons at a throughput sufficient for phenotypic screening. Using engineered optogenetic proteins, blue and red light can be used to stimulate and record neuronal activity, respectively. Custom microscopes enable electrophysiology recordings from 100’s of individual neurons in parallel with high sensitivity and temporal resolution, a capability currently not available with any other platform screening technology. Here, researchers combine the Optopatch platform with an in vitro model of chronic pain, where dorsal root ganglion (DRG) sensory neurons are bathed in a mixture of inflammatory mediators found in the joints of osteoarthritis patients. The neurons treated with the inflammatory mixture become hyperexcitable, mimicking the anticipated cellular pain response. Investigators calculate the functional phenotype of arthritis pain, which captures the difference in action potential shape and firing rate in response to diverse stimuli. The team will screen for small molecule compounds that reverse the pain phenotype while minimizing perturbation of neuronal behavior orthogonal to the pain phenotype, the in vitro “side effects.” The highest ranking compounds will be chemically optimized and their pharmacokinetic, drug metabolism, and in vivo efficacy will be characterized. The goal is to advance therapeutic discovery for pain, which may ultimately help relieve the US opioid crisis.