Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded
1UG3DA048775-01
Novel nanovaccines against opioid use disorders Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA VIRGINIA POLYTECHNIC INST AND ST UNIV ZHANG, CHENMING M; PRAVETONI, MARCO Blacksburg, VA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Opioid use disorders (OUD) are a national public health emergency with more than 115 fatal overdoses occurring each day in the U.S. and an economic burden of more than $78 billion a year. Several medications are available for treating OUD, but their access is limited and efficacy is often sub-optimal. It is thus urgent to develop new, affordable strategies for the effective treatment of OUD. Immunopharmacotherapy has emerged as a promising treatment approach against OUD that relies on the induction of drug-specific antibodies to neutralize circulating drug molecules and reduce or cancel their effects. Several groups have attempted to apply this strategy with mixed results, suggesting that novel immunization platforms must be tested to further improve vaccine efficacy against OUD. This project will fabricate novel nanoparticle-based vaccines against OUD that are likely to boost their immunogenicity and lead to a more robust and effective immune response against the target opioid. The broad impact of this project resides in the rational design of nanoparticle-based vaccines that are safe and effective against opioids. This novel nanoparticle-based immunization strategy can be applied to the development of next-generation vaccines against a range of OUD and other substance use disorders.

3UG3DA047793-01S1
tDCS to decrease opioid relapse Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA BUTLER HOSPITAL (PROVIDENCE, RI) Abrantes, Ana M Providence, RI 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Neurostimulation techniques, such as transcranial direct current stimulation (tDCS), have been used as interventions for substance use disorders. This is a supplement to the currently NIDA-funded UG3 DA047793, “tDCS to Decrease Opioid Relapse,” which will measure behavioral and brain responses following tDCS stimulation delivered during tasks that use a particular brain network involved in cognitive control, and utilizing FMRI to assess the effects. This supplement allows the researchers to add an EEG measurement to the study, to get a complete picture of how tDCS might affect the function of key brain networks in ways that could be helpful for SUDs.

1UG3DA048338-01A1
A Long-Acting Bioabsorbable Naltrexone Subcutaneous Implant for Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA DRUG DELIVERY COMPANY, LLC, THE COHEN, STEVEN M; BENNER, JEFFREY Salisbury, MD 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Naltrexone (NTX) has proven to be an important, safe, and effective therapy for helping patients overcome opioid use disorders (OUD) and for preventing overdose. Unfortunately, the therapeutic potential of NTX has been blunted by poor adherence. To combat this issue, a system must be developed to deliver NTX for longer durations than currently available and with a more patient-friendly format. To address this problem, we will develop a long-acting and bioabsorbable NTX subcutaneous implant for the treatment of OUD. The proposed research will (a) determine the optimal chemical preparation of NTX inside the implant, (b) optimize the composition and porosity of the drug delivery substrate, and (c) refine the surgical procedure and instrumentation to be used during implantation. Once the safety and efficacy of this novel NTX implant is established, we will conduct the necessary clinical trials. The proposed study is highly relevant to and complementary of other efforts, either in consideration or already deployed to stem the tide of the lingering opioid crisis. If successful, this solution has the potential to enhance health, lengthen life, and reduce illness and disability for those suffering from OUD.

1R34DA046730-01
Web-Based Treatment for Perinatal Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA MEDICAL UNIVERSITY OF SOUTH CAROLINA Guille, Constance Charleston, SC 2019
NOFO Title: Behavioral & Integrative Treatment Development Program (R34)
NOFO Number: PA-16-073
Summary:

The increased risk of maternal, obstetric, and newborn morbidity and mortality associated with perinatal prescription opioid (PO) misuse and opioid use disorder (OUD) is well established. Despite clear advances in maternal, fetal, and newborn health with treatment of perinatal opioid misuse and OUD, much work remains. Preliminary data has demonstrated significant reductions in opioid misuse as a result of our Cognitive Behavioral Therapy (CBT) program for pain combined with shared decision making for medication management for pregnant women misusing POs or with OUD (including heroin). However, access to the program is still limited and several obstacles to its expansion remain. This proposal will fill this critical gap by converting their CBT intervention from in-person sessions to a web-based interface. The proposed research will result in a critical advance in the management of opioid use and abuse during pregnancy and prevent both the acute and long-term risks associated with pre- and perinatal PO misuse and OUD, including overdose and death.

5UG3DA048385-02
Development of novel therapeutics for opioid dependence Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI Kenny, Paul J. New York, NY 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: DA19-002
1UG3DA048508-01
Combined tDCS and Cognitive Training for the Treatment of Opioid Addiction Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA University of Minnesota Lim, Kelvin Minneapolis, MN 2019
NOFO Title: Device-Based Treatments for Substance Use Disorders (UG3/UH3, Clinical Trial Optional)
NOFO Number: PAR-18-494
1UG3DA048353-01
Opioid use disorders: UF Pharmacy medications discovery and development Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA UNIVERSITY OF FLORIDA MCMAHON, LANCE R; MCCURDY, CHRISTOPHER R Gainesville, FL 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Opioids have been significantly over-prescribed and are associated with numerous deaths, resulting in the nation’s current opioid crisis. The FDA recently approved the ?2 adrenergic agonist lofexidine as a non-addictive, non-opioid treatment for opioid use disorder (OUD), but there is a continued, urgent need to develop additional pharmacological alternatives to address both pain and OUD. The psychoactive, natural product, Mitragyna speciosa (kratom), has triggered significant interest in this space because Mitragynine, its main alkaloid, can interact with both mu opioid and ?2 receptors, offering a totally new approach for treating OUD. This project involves the synthesis and research of a series of Mitragynine analogs to better understand the pharmacological mechanisms that underlie Mitragynine’s opioid and adrenergic activities. If successful, this project will result in templates for the design of novel opioid receptor ligands. This advance would greatly improve the knowledge of interactions of these structurally novel compounds with opioid receptors and facilitate the development of these ligands as treatments for OUD.

5UG3DA047714-02
Feasibility of Deep Brain Stimulation as a Novel Treatment for Refractory Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA WEST VIRGINIA UNIVERSITY Rezai, Ali R Morgantown, WV 2019
NOFO Title: Device-Based Treatments for Substance Use Disorders (UG3/UH3, Clinical Trial Optional)
NOFO Number: PAR-18-494
1U01DA047713-01
PTPRD ligands for stimulant and opiate use disorders Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA BIOMEDICAL RESEARCH INSTITUTE OF NEW MEX Uhl, George Richard Albuquerque, NM 2019
NOFO Title: Grand Opportunity in Medications Development for Substance-Use Disorders (U01 Clinical Trial Optional)
NOFO Number: PAR-18-219
Summary:

There are no FDA-approved medications for stimulant use disorders, and therapies for opioid use disorders remain suboptimal in ways that are now a focus of national attention. Thus, there is a clear need to identify new targets and explore new approaches for addiction medication development. Several lines of evidence suggest that PTPRD (receptor type protein tyrosine phosphatase D) may be a promising target for development of pharmacotherapeutics to treat not only stimulant use disorders but opioid use disorders as well. This research will focus on improving existing PTPRD ligands, identifying their effects on the dopamine and opioid systems, and moving the best novel, patentable PTPRD ligands toward human studies. If successful, this project will generate novel, well-tolerated, and bioavailable PTPRD ligands that display in vitro potency, selectivity and stability, and in vivo modulation of both cocaine and opioid-mediated reward at doses that present no significant toxicity.

1UG3DA047709-01
An ultra-long-acting oral treatment for opioid use disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA LYNDRA THERAPEUTICS, INC. BELLINGER, ANDREW MARTIN Boston, MA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Buprenorphine (BUP) is an FDA-approved medication-assisted therapy (MAT) that improves outcomes and saves lives in patients with opioid use disorder (OUD). It is available in multiple dosage forms and routes of administration, including daily sublingual (SL) and buccal tablets and films, a monthly subcutaneous (SC) injectable, and a 6-month SC implant; however, these forms leave many patients untreated or undertreated. This product, in a partnership with Lyndra Therapeutics, aims to develop a once-weekly oral BUP dosage form for maintenance therapy for OUD, using a new oral dosage formulation developed by Lyndra. A long-acting oral BUP may address important limitations of current MATs by providing improved PK with less euphoria than SL, a patient- and provider-preferred route of administration, and an optimal dosing interval for improved patient adherence with the potential for cost-effective direct observed therapy.

1UG3DA050317-01
Targeting the Ghrelin System for Novel Opioid Use Disorder Therapeutics Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA The University of Texas Medical Branch at Galveston Cunningham, Kathryn Galveston, TX 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

To address the need for novel therapeutics for opioid use disorder (OUD), this research group identified ghrelin as an endogenous regulator of the mesocorticostriatal circuit, which contributes to the enhanced motivational attributes of addictive drugs and drug-associated cues. Ghrelin binds to the growth hormone secretagogue receptor 1? (GHS1?R) to transduce several physiological and behavioral processes, including the reward-related effects of opioid agonists. Systemic administration of a GHS1?R antagonist/inverse agonist dose-dependently attenuated self-administration of the addictive opioid analgesic oxycodone as well as oxycodone-seeking. This project proposes to employ a suite of validated rodent OUD models to define the preclinical profile for PF5190457, a selective GHS1?R antagonist/inverse agonist. PF5190457’s abuse liability, ability to suppress withdrawal and relapse-like behaviors, drug metabolism and pharmacokinetics, and brain penetrability in rats will be assessed. Phase 1 clinical studies in non–treatment seeking OUD participants will follow to assess the safety and tolerability of PF5190457.

1UG3DA050308-01
Clinical Evaluation of C4X3256, a Non-Opioid, Highly-Selective Orexin-1 Receptor Antagonist for the Treatment of Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Indivior Heidbreder, Christian North Chesterfield, VA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

There is a need for pharmacologic treatment options for opioid use disorder (OUD) that do not pose addiction liability and do not require complete withdrawal from opioids prior to treatment. Nonclinical studies support a role for the orexin system in drug seeking; compounds that selectively block signaling at the orexin-1 receptor (OX1R) reduce drug use. C4X3256, a non-opioid, highly selective OX1R antagonist, has a long residence time at the OX1R along with reduced intravenous self-administration and cue-induced reinstatement in animal models of nicotine addiction, suggesting it could be an addiction treatment. Proposed studies will move C4X3256 from preclinical development through Phase I testing in subjects with OUD. The clinical, preclinical, and supporting pharmaceutical development studies proposed will allow C4X3256 to move to Phase II studies.

1UG3DA050271-01
R-methadone-TAAP/MPAR: an abuse deterrent methadone prodrug with overdose protection: Pre-Clinical Development and Phase 1 Clinical Trial Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Ensysce Biosciences, Inc. Kirkpatrick, Lynn San Diego, CA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Methadone is useful in the treatment of opioid dependence; however, methadone misuse and methadone-related fatalities have increased. Ensysce has created two complementary, novel technologies that can be applied to methadone. Their Trypsin Activated Abuse Protection (TAAP™) prodrugs are “enzyme-activated” to release clinically effective opioid drugs only when taken orally and exposed to the correct physiologic conditions, such as exposure to trypsin in the small bowel. Their multi-pill abuse resistance (MPAR™) feature involves in situ bioregulation of opioid delivery from the TAAP™ systems, enabling control over oral multi-dose pharmacokinetic profiles. It is envisaged that an R-methadone-TAAP™ prodrug would demonstrate similar reduced addiction liability as with other opioid-TAAP products. The objective of this proposal is to develop an R-methadone-TAAP™/MPAR™ drug through Phase 1 clinical studies and to translate R-methadone-TAAP™/MPAR™ results into humans, to ultimately reduce the misuse and oral overdose potential of methadone.

1R01DA046532-01A1
Evaluation of drug mixtures for treating pain: behavioral and pharmacological interactions between opioids and serotonin agonists Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA UNIVERSITY OF TEXAS HLTH SCIENCE CENTER Maguire, David Richard San Antonio, TX 2019
NOFO Title: NIH Research Project Grant (Parent R01 Clinical Trial Not Allowed)
NOFO Number: PA-18-484
Summary:

Opioids remain the gold standard for treating moderate to severe pain, but their use is limited by numerous adverse effects, including tolerance, dependence, abuse, and overdose. Adverse effects could be avoided by combining an opioid with another drug, such that smaller doses of the opioid (in combination with another drug) produce the desired therapeutic effect. Direct-acting serotonin type 2 (5-HT2) receptor agonists interact in a synergistic manner with the opioid morphine to produce antinociceptive effects, suggesting a 5-HT2 receptor agonist could be combined with small amounts of an opioid to treat pain, thereby lowering the risk associated with larger doses. Unfortunately, very little is known about interactions between 5-HT2 receptor agonists and other opioids. The proposed studies will evaluate the therapeutic potential of mixtures of opioids and 5-HT2 receptor agonists using highly translatable and well-established procedures to characterize the antinociceptive, respiratory-depressant (overdose), positive-reinforcing (leading to misuse), and discriminative-stimulus (subjective) effects of drug mixtures as well as the impact of chronic treatment on the development of tolerance to and physical dependence on opioids. If successful, these studies will provide proof-of-concept for this innovative approach to pain treatment and evaluate the utility of targeting 5-HT receptors for analgesic drug development.

1UG3DA048379-01
Arylepoxamides: A new class of potent, safer analgesics Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA SLOAN-KETTERING INST CAN RESEARCH PAN, YING-XIAN New York, NY 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

The expansion of opioid prescribing in recent years to better treat pain has markedly increased their usage and availability and fueled an epidemic of abuse. Up to 80 percent of addicts reported initiating their habit through prescriptions drugs. Decreasing opioid prescriptions would lower opioid exposure, with fewer people receiving the drugs and less drug available for diversion. Study investigators have identified a novel target in the brain, distinct from any of the traditional opioid receptors capable of mediating potent analgesia without the reward behavior and side effects seen with traditional opioids. They targeted this site with a series of arylepoxamides and have identified a clinical candidate (MP1000) and backup compound. MP1000 is a potent analgesic in a range of thermal, inflammatory, and neuropathic analgesic assays. It fails to show reward behavior and does not produce respiratory depression at doses 5-fold greater than its analgesic ED50. Chronic administration does not produce physical dependence or withdrawal when challenged with an antagonist. It shows no cross tolerance to morphine and can be co-administered to subjects already on opioids for pain to lower their opioid usage (i.e., opioid sparing), facilitating the eventual discontinuation of the opioid. If successful, this project could lead to the development of a viable alternative to current opioid-based analgesics with reduced side effects (such as reward and respiratory depression) compared to opioids.

1R01DA047094-01A1
Guanfacine Target Engagement and Validation to Improve Substance Use Outcomes in Women Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA YALE UNIVERSITY Sinha, Rajita New Haven, CT 2019
NOFO Title: NIH Research Project Grant (Parent R01 Clinical Trial Required)
NOFO Number: PA-18-345
Summary:

There are currently no FDA-approved treatments for cocaine use disorder (CUD) or co-occurring substance use disorder. High relapse rates pose a major obstacle to treatment, and this is due in part to the way that high drug cravings reduce individuals’ cognitive flexibility in situations where they are stressed or exposed to drug-related cues. These effects appear to be stronger in women with CUD than in men. Building on preliminary data that a drug called Guanfacine reverses these effects in women, but not in men, this 3-year pilot clinical study will test whether Guanfacine will reduce cocaine use and increase abstinence and will use laboratory challenges to determine whether it reduces cravings and enhances cognitive flexibility in stressful or drug-cue-related situations.

1UG3DA048768-01A1
Novel LAAM formulations to treat Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Virginia Commonwealth University Xu, Qingguo Richmond, VA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Levo-alpha-acetylmethadol (LAAM) offers numerous behavioral and clinical advantages for select opioid use disorder (OUD) patients who do not respond to standard treatment. While LAAM was withdrawn from the market despite being approved for OUD treatment, this project seeks to develop novel, patentable, convenient dosage forms of LAAM, including novel LAAM oral dosage formulations and novel buccal film formulations of LAAM. Morphology, mechanical property, drug release kinetics, and stability of the oral dosage and buccal film formulations will be characterized to determine the instant release or steady release of LAAM, respectively. The two lead LAAM formulations with adequate release and stability profiles will be chosen through optimization studies both in vitro and in vivo. A human pharmacokinetic/pharmacodynamic study will then be carried out on the two selected formulations.

1RF1DA050571-01A1
Reversing opioid-induced hypoxemia with novel thiol-based drugs without compromising analgesia in goats Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA MEDICAL COLLEGE OF WISCONSIN HODGES, MATTHEW ROBERT; FORSTER, HUBERT V Milwaukee, WI 2022
NOFO Number: PA-19-056
Summary:

Opioid overdoses result from reduced oxygen in the bloodstream. Although the opioid blocker naloxone can reverse the immediate harmful effects of opioids, it also has limitations. It does not last very long, blocks pain relief, and may induce withdrawal. This project will characterize and test the effectiveness of a novel, potent, and long-lasting respiratory stimulant. The study will use a freely behaving, large animal model with physiology similar to humans.