Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded
3UG3TR002151-01S1
INTEGRATED MICROPHYSIOLOGICAL SYSTEM OF CEREBRAL ORGANOID AND BLOOD VESSEL FOR DISEASE MODELING AND NEUROPSYCHIATRIC DRUG SCREENING Preclinical and Translational Research in Pain Management NCATS COLUMBIA UNIVERSITY HEALTH SCIENCES LEONG, KAM W NEW YORK, NY 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

The clinical utility of opioids for pain treatment is limited by its risk for developing opioid usage disorders (OUD). These untoward effects impose a severe burden on society and present difficult therapeutic challenges for clinicians. We propose to extend our cerebral organoid MPS to facilitate the investigation of neuronal response to opioids and identify cellular and molecular signatures in patients vulnerable to OUD. We have assembled a team with complementary expertise in clinical characterization of OUD, cerebral organoid MPS modeling, single cell RNA-seq technology, and functional characterization of neurons in a mesolimbic reward system to test the hypothesis that midbrain MPS is a clinically relevant pre-clinical model for study of opioid usage disorder.

5R01NS102432-02
AIBP and regulation of neuropathic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS Univ. of Calif., U.C. San Diego Miller, Yury La Jolla, CA 2018
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Persistent pain states arising from inflammatory conditions, such as in arthritis, diabetes, HIV, and chemotherapy, exhibit a common feature in the release of damage-associated molecular pattern molecules, which can activate toll-like receptor-4 (TLR4). Previous studies suggest that TLR4 is critical in mediating the transition from acute to persistent pain. TLR4 as well as other inflammatory receptors localize to lipid raft microdomains on the plasma membrane. We have found that the secreted apoA-I binding protein (AIBP) accelerates cholesterol removal, disrupts lipid rafts, prevents TLR4 dimerization, and inhibits microglia inflammatory responses. We propose that AIBP targets cholesterol removal to lipid rafts harboring activated TLR4. The aims of this proposal are to: 1) determine whether AIBP targets lipid rafts harboring activated TLR4; 2) test whether AIBP reduces glial activation and neuroinflammation in mouse models of neuropathic pain; and 3) identify the origin and function of endogenous AIBP in the spinal cord.

1UG3NS116218-01
Novel mGlu5 negative allosteric modulators as first-in-class non-addictive analgesic therapeutics Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS VANDERBILT UNIVERSITY ROOK, JERRI MICHELLE; CONN, P JEFFREY; GEREAU, ROBERT W; LINDSLEY, CRAIG Nashville, TN 2019
NOFO Title: Optimization of Non-addictive Therapies [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-010
Summary:

An extensive literature provides compelling evidence that selective antagonists or negative allosteric modulators (NAMs) of the metabotropic glutamate (mGlu) receptor, mGlu5, have exciting potential as a novel approach for treatment of multiple pain conditions that could provide sustained antinociceptive activity without the serious adverse effects and abuse liability associated with opioids. Researchers have developed a novel series of highly selective mGlu5 NAMs that are structurally unrelated to previous compounds, have properties for further development, and avoid the formation of toxic metabolites that were associated with previous mGlu5 NAMs. Based on existing preclinical models, as well as clinical trial data showing efficacy of an mGlu5 NAM in migraine patients, researchers anticipate that their compounds will have broad-spectrum analgesic activity in patients with a variety of chronic pain conditions.

1U44NS115732-01
Selective Kv7.2/3 activators for the treatment of neuropathic pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS KNOPP BIOSCIENCES, LLC SIGNORE, ARMANDO (contact); RESNICK, LYNN Pittsburgh, PA 2019
NOFO Title: HEAL Initiative: Optimization of Non-addictive Therapies [Small Molecules and Biologics] to Treat Pain
NOFO Number: RFA-NS-19-020
Summary:

The development of non-addictive pain therapeutics can help counter opioid addiction and benefit patients, including those who suffer from neuropathic pain, in particular diabetic neuropathic pain (DNP). This project’s goal is to develop a safe, efficacious, and non-addictive small-molecule drug that activates Kv7 voltage-gated potassium channels to address overactive neuronal activity in DNP. Researchers will discover Kv7 activators that favor Kv7 isoforms altered in DNP and found in dorsal root ganglia, decrease off-target side effects observed with the use of earlier non-biased Kv7 activators, and optimize the absorption, distribution, metabolism, excretion, and toxicity profiles of these activators. This screening paradigm is intended to establish a clinic-ready, well-tolerated, and widely effective product to treat neuropathic pain.

1UG3NS114956-01
Optimization of non-addictive biologics to target sodium channels involved in pain signaling Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS UNIVERSITY OF CALIFORNIA AT DAVIS YAROV-YAROVOY, VLADIMIR M Davis, CA 2019
NOFO Title: Optimization of Non-addictive Therapies [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-010
Summary:

Pain signals originate predominantly in a subset of peripheral sensory neurons that harbor a distinct subset of voltage-gated sodium (NaV) channels; however, current NaV channel blockers, such as local anesthetics, are non-selective and also block NaV channels vital for function of the heart, muscle, and central nervous system. Genetic studies have identified human NaV1.7, NaV1.8, and NaV1.9 channel subtypes as key players in pain signaling and as major contributors to action potential generation in peripheral neurons. ProTx-II is a highly potent and moderately selective peptide toxin that inhibits human NaV1.7 activation. This study will optimize ProTx-II selectivity, potency, and stability by exploiting the new structures of ProTx-II—human NaV1.7 channel complexes, advances in rational peptide optimization, and rigorous potency and efficacy screens to generate high-affinity, selective inhibitors of human NaV1.7, NaV1.8, and NaV1.9 channels that can define a new class of biologics to treat pain.

1RF1NS113991-01
Disrupting ion channel scaffolding to treat neuropathic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS STATE UNIVERSITY OF NEW YORK AT BUFFALO BHATTACHARJEE, ARINDAM Buffalo, NY 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Dorsal root ganglion (DRG) neuronal hyperexcitability is central to the pathology of neuropathic pain and is a target for local anesthetics, even though the efficacy of local anesthetic patches has been mixed. The coordinated movement of ion channels, especially voltage-dependent sodium channels, from intracellular pools to the sites of nerve injury has been suggested to be an underlying cause of electrogenesis and ectopic firing in neuropathic pain conditions. Recent studies identified Magi1 as a scaffold protein responsible for sodium channel targeting and membrane stabilization in DRG neurons. This project will determine whether reducing the expression Magi1 could disrupt intracellular trafficking of sodium channels in DRG neurons under neuropathic injury conditions, and could therefore serve as a potential therapeutic target for neuropathic pain.

3U19TW009872-05S1
NOVEL THERAPEUTIC AGENTS FROM THE BACTERIAL SYMBIONTS OF BRAZILIAN INVERTEBRATES Preclinical and Translational Research in Pain Management FIC HARVARD MEDICAL SCHOOL CLARDY, JON; PUPO, MONICA T Boston, MA 2018
NOFO Title: Limited Competition: International Cooperative Biodiversity Groups (U19)
NOFO Number: RFA-TW-13-001
Summary:

An International Cooperative Biodiversity Group with an interdisciplinary leadership team of physicians, pharmacologists, evolutionary biologists, and chemists will discover and develop therapeutic agents produced by Brazilian symbiotic bacteria. The team will target three therapeutic areas: 1) infectious fungal pathogens, 2) Chagas disease and leishmaniasis, and 3) cancers of the blood. All three areas represent major threats to human health that need to be addressed with new therapeutic agents. Internationally, invasive fungal diseases kill more people than malaria or TB, while Chagas disease imposes a special burden on Brazil, killing as many Brazilians as TB. Leishmaniasis has now passed Chagas disease in the Brazilian population. Despite major improvements in cancer chemotherapy, cancer is projected to result in 8 million deaths internationally this year (13% of all deaths, WHO) and an estimated 13 million per year by 2030.

1UG3TR003090-01
Joint Pain on a Chip: Mechanistic Analysis, Therapeutic Targets, and an Empirical Strategy for Personalized Pain Management Preclinical and Translational Research in Pain Management Translational Research to Advance Testing of Novel Drugs and Human Cell-Based Screening Platforms to Treat Pain and Opioid Use Disorder NCATS UNIVERSITY OF PITTSBURGH AT PITTSBURGH GOLD, MICHAEL S (contact); LIN, HANG Pittsburgh, PA 2019
NOFO Title: HEAL Initiative: Tissue Chips to Model Nociception, Addiction, and Overdose (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-TR-19-003
Summary:

The research team developed an in vitro multi-component joint on a chip (microJoint), in which engineered osteochondral complexes, synovium, and adipose tissues were integrated. This study will introduce sensory innervation into the microJoint and a neuron-containing microfluidic ally will be developed to innervate the microJoint. The osteoarthritis (OA) model will be created in the Neu-microJoint system. The research team will assess activation and/or sensitization of nociceptive afferents with electrophysiology, as well as neurite outgrowth. They will mechanically insult the Neu-microJoint and assess the emergence of “pain” in response to prolonged mechanical stress. Researchers will assess the impact of drugs used clinically for management of OA on OA models and will then use “omic” approaches to identify new biomarkers and therapeutic targets. Researchers will assess the impact of opioids—which they hypothesize will increase the rate of joint degeneration and potentiate the release of pain-producing mediators—on neural activity in the presence and absence of joint injury, as well as the integrity of all joint elements.

1R61NS113329-01
Discovery of Biomarker Signatures Prognostic for Neuropathic Pain after Acute Spinal Cord Injury Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS UNIVERSITY OF TEXAS HLTH SCI CTR HOUSTON HERGENROEDER, GEORGENE W Houston, TX 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Debilitating neuropathic pain occurs in 40 percent to 70 percent of people who suffer from spinal cord injury (SCI). There are no distinguishing characteristics to identify who will develop neuropathic pain. The objective of this research is to develop a biomarker signature prognostic of SCI-induced neuropathic pain (NP). The aims of the project are to (1) identify autoantibodies in plasma samples from acute SCI patients to CNS autoantigens and determine the relationship between autoantibodies levels to the development of NP, (2) identify the autoantibody combination with maximal prognostic accuracy for the development of NP at six months after SCI, and (3) develop and optimize an assay to simultaneously measure several autoantibodies and independently validate the prognostic efficacy for NP using plasma samples collected prospectively. Establishing a panel will refine the prognostic value of these autoantibodies as biomarkers to detect who are vulnerable to NP and may be used to for development of nonaddictive pain therapeutics.

1UG3TR003148-01
Multi-organ-on-chip device for modeling opioid reinforcement and withdrawal, and the negative affective component of pain: a therapeutic screening tool. Preclinical and Translational Research in Pain Management Translational Research to Advance Testing of Novel Drugs and Human Cell-Based Screening Platforms to Treat Pain and Opioid Use Disorder NCATS UNIVERSITY OF CALIFORNIA LOS ANGELES MAIDMENT, NIGEL T (contact); ASHAMMAKHI, NUREDDIN ; SEIDLITS, STEPHANIE KRISTIN; SVENDSEN, CLIVE NIELS Los Angeles, CA 2019
NOFO Title: HEAL Initiative: Tissue Chips to Model Nociception, Addiction, and Overdose (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-TR-19-003
Summary:

Researchers will develop multi-organ, microphysiological systems (MPSs) based on human induced pluripotent stem cell-derived midbrain-fated dopamine (DA)/gamma-aminobutyric acid neurons on a three-dimensional platform that incorporates microglia, blood–brain barrier (BBB), and liver metabolism. RNA sequencing and metabolomics analyses will complement the primary DA release measure to identify novel mechanisms contributing to chronic opioid-induced plasticity in DA responsiveness. The chronic pain-relevant aspect of the model will be realized by examination of aversive kappa-mediated opioid effects on DA transmission in addition to commonly abused mu opioid receptor agonists, and by incorporation of inflammatory-mediating microglia. Incorporation of BBB and liver metabolism modules into the microphysiologic system platform will permit screening of drugs. Throughput will be increased by integration of online sensors for online detection of DA and other analytes. Researchers will use a curated set of 100 chemical genomics probes.

1U44NS111779-01
DISCOVERY OF NAV1.7 INHIBITORS FOR THE TREATMENT OF PAIN Preclinical and Translational Research in Pain Management NINDS SITEONE THERAPEUTICS, INC. MULCAHY, JOHN VINCENT; ODINK, DEBRA BOZEMAN, MT 2019
NOFO Title: Blueprint Neurotherapeutics Network (BPN): Small Molecule Drug Discovery and Development for Disorders of the Nervous System (U44 Clinical Trial Optional)
NOFO Number: PAR-18-541
Summary:

We propose to develop a safe and effective nonopioid analgesic to treat neuropathic pain that targets an isoform of the voltage-gated sodium ion channel, NaV1.7. Voltage-gated sodium channels are involved in the transmission of nociceptive signals from their site of origin in the peripheral terminals of DRG neurons to the synaptic terminals in the dorsal horn. NaV1.7 is the most abundant tetrodotoxin-sensitive sodium channel in small diameter myelinated and unmyelinated afferents, where it has been shown to modulate excitability and set the threshold for action potentials. Development of systemic NaV1.7 inhibitors has been complicated by the challenge of achieving selectivity over other NaV isoforms expressed throughout the body. We have discovered a series of potent, state-independent NaV1.7 inhibitors that exhibit >1000-fold selectivity over other human isoforms. Work conducted under this program will support advancement of a lead candidate into clinical development as a therapeutic for neuropathic pain.

1R01NS113257-01
Discovery and validation of a novel orphan GPCR as a target for therapeutic intervention in neuropathic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS St. Louis University SALVEMINI, DANIELA St. Louis, MO 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Neuropathic pain conditions are exceedingly difficult to treat, and novel non-opioid analgesics are desperately needed. Receptomic and unbiased transcriptomic approaches recently identified the orphan G-protein coupled receptor (oGPCR), GPR160, as a major oGPCR whose transcript is significantly increased in the dorsal horn of the spinal cord (DH-SC) ipsilateral to nerve injury, in a model of traumatic nerve-injury induced neuropathic pain caused by constriction of the sciatic nerve in rats (CCI). De-orphanization of GPR160 led to the identification of cocaine- and amphetamine-regulated transcript peptide (CARTp) as a ligand which activates pathways crucial to persistent pain sensitization. This project will test the hypothesis that CARTp/GPR160 signaling in the spinal cord is essential for the development and maintenance of neuropathic pain states. It will also validate GPR160 as a non-opioid receptor target for therapeutic intervention in neuropathic pain, and characterize GPR160 coupling and downstream molecular signaling pathways underlying chronic neuropathic pain.

1RF1NS113881-01
Discovery and validation of a new long noncoding RNA as a novel target for neuropathic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS RBHS-NEW JERSEY MEDICAL SCHOOL TAO, YUAN-XIANG Newark, NJ 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Identification of new targets and mechanisms underlying chronic neuropathic pain is essential for the discovery of novel treatments and preventative tactics for better neuropathic pain management. A recent exploration of next-generation RNA sequencing identified a large, native, full-length long noncoding RNA (lncRNA) in mouse and human dorsal root ganglion (DRG). It was named as nerve injury-specific lncRNA (NIS-lncRNA), since its expression was found increased in injured DRGs, in response to peripheral nerve injury, but not in response to inflammation. Preliminary findings revealed that blocking the nerve injury-induced increases in DRG NIS-lncRNA levels ameliorated neuropathic pain. This project will validate NIS-lncRNA as a therapeutic target in animal models of neuropathic pain and in cell-based functional assays utilizing human DRG neurons. Completion of this proposal will advance neuropathic pain management and might provide a novel, non-opioid pain therapeutic target.

1R01NS103350-01A1
Regulation of Trigeminal Nociception by TRESK Channels Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS WASHINGTON UNIVERSITY CAO, YUQI St. Louis, MO 2018
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

TWIK-related spinal cord K+ (TRESK) channel is abundantly expressed in all primary afferent neurons (PANs) in trigeminal ganglion (TG) and dorsal root ganglion (DRG), mediating background K+ currents and controlling the excitability of PANs. TRESK mutations cause migraine headache but not body pain in humans, suggesting that TG neurons are more vulnerable to TRESK dysfunctions. TRESK knock out (KO) mice exhibit more robust behavioral responses than wild-type controls in mouse models of trigeminal pain, especially headache. We will investigate the mechanisms through which TRESK dysfunction differentially affects TG and DRG neurons. Based on our preliminary finding that changes of endogenous TRESK activity correlate with changes of the excitability of TG neurons during estrous cycles in female mice, we will examine whether estrogen increases migraine susceptibility in women through inhibition of TRESK activity in TG neurons. We will test the hypothesis that frequent migraine attacks reduce TG TRESK currents.

3R01LM010685-09S1
BEYOND PHEWAS: RECOGNITION OF PHENOTYPE PATTERNS FOR DISCOVERY AND TRANSLATION - ADMINISTRATIVE SUPPLEMENT Preclinical and Translational Research in Pain Management NLM VANDERBILT UNIVERSITY MEDICAL CENTER Denny, Joshua C. NASHVILLE, TN 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Genomic medicine offers hope for improved diagnostic methods and for more effective, patient-specific therapies. Genome-wide associated studies (GWAS) elucidate genetic markers that improve clinical understanding of risks and mechanisms for many diseases and conditions and that may ultimately guide diagnosis and therapy on a patient-specific basis. Previous phenome-wide association studies (PheWAS) established a systematic and efficient approach to identifying novel disease-variant associations and discovering pleiotropy using electronic health records (EHRs). This proposal will develop novel methods to identify associations based on patterns of phenotypes using a phenotype risk score (PheRS) methodology to systematically search for the influence of Mendelian disease variants on common disease. By doing so, it also creates a way to assess pathogenicity for rare variants and will identify patients at highest risk of having undiagnosed Mendelian disease. The project is enabled by large DNA biobanks coupled to de-identified copies of EHR.

1U18EB029257-01
Temporal Patterns of Spinal Cord Stimulation Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB DUKE UNIVERSITY GRILL, WARREN M Durham, NC 2019
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

This project will design and test optimized temporal patterns of stimulation to improve the efficacy of commercially available spinal cord stimulation (SCS) systems to treat chronic neuropathic pain. Researchers will build upon a validated biophysical model of the effects of SCS on sensory signal processing in neurons within the dorsal horn of the spinal cord to better understand how to improve the electrical stimulus patterns applied to the spinal cord. They will use sensitivity analyses to determine the robustness of stimulation patterns to variations in electrode positioning, selectivity of stimulation, and biophysical properties of the dorsal horn neural network. Researchers will demonstrate improvements from these new stimulus patterns by 1) measuring their effects on pain-related behavioral outcomes in a rat model of chronic neuropathic pain and by 2) quantifying the effects of optimized temporal patterns on spinal cord neuron activity. The outcome will be mechanistically derived and validated stimulus patterns that are significantly more efficacious than the phenomenologically derived standard of care patterns; these patterns could be implemented with either a software update or minor hardware modifications to existing SCS products.

3R01NS045594-14S1
Study of Activity Dependent Sympathetic Sprouting Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF CINCINNATI JUN-MING, Zhang Cincinnati, OH 2019
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Many chronic pain conditions are dependent upon activity of the sympathetic nervous system. Sympathetic blockade is used clinically in chronic pain conditions, but the clinical and preclinical evidence for this practice is incomplete. We propose that certain pathological pain conditions require intact sympathetic innervation of the sensory nervous system at the level of the dorsal root ganglion (DRG) and that release of sympathetic transmitters enhances local inflammation and leads to pain. Our preliminary data show large, rapid, and long-lasting reduction of pain behaviors and inflammatory responses following a"microsympathectomy" (mSYMPX) in both neuropathic and inflammatory pain models. Our aims are to: 1) characterize the effects of mSYMPX on pain and on local inflammation in the DRG; 2) explore the molecular mechanisms for sympathetic regulation of inflammatory responses in the DRG; and 3) assess the functional role of sympathetic transmitters in the sympathetically mediated inflammatory responses in the DRG.

3U24DK116214-02S1
ILLUMINATING DRUGGABLE DARK MATTER Preclinical and Translational Research in Pain Management NIDDK UNIVERSITY OF CALIFORNIA, SAN FRANCISCO MCMANUS, MICHAEL T; JAN, LILY Y San Francisco, CA 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

The goal of this project is to generate data and reagents that help uncover critical functions of the poorly characterized members of ion channels. It focuses on co-perturbation of ion channel genes and their interacting genetic components as opposed to singly altering ion channel genes in mouse models. This approach will validate our proteomics approaches in the most definitive manner: in vivo. We see in vivo exploration as an essential step to evaluate ion channel function. Our major aims include mapping ion channel interactions and complexes using a high-throughput proteomics platform at UCSF. These data will be interrogated using integrative approaches established by the Monarch Initiative, where biochemical interactions will be validated and prioritized for further study. Another major aim is function-centric: We use mouse models for elucidation of human disease mechanisms, where we embrace a genetic interaction scheme to uncover ion channel redundancy and polygenic effects.

3R01NS098826-02S1
PROTEASE ACTIVATED RECEPTOR TYPE 2 TARGETING FOR MIGRAINE PAIN Preclinical and Translational Research in Pain Management NINDS UNIVERSITY OF TEXAS DALLAS PRICE, THEODORE J; BOITANO, SCOTT; DUSSOR, GREGORY O; VAGNER, JOSEF RICHARDSON, TX 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Migraine is the most common neurological disorder. Currently available treatments fail to effectively manage migraine in most patients. Development of new therapeutics has been slow due in large part to a poor understanding of the underlying pathology of migraine. Endogenous proteases, released in the meninges by resident mast cells, have been proposed as a potential driver of migraine pain via an action on protease activated receptor type 2 (PAR2). The central hypothesis is that PAR2 expression in nociceptors that project to the meninges plays a key role in the pathogenesis of migraine pain. The aims are to: 1) use the established PAR2 development pipeline to design new PAR2 antagonists with improved drug-like properties; 2) use pharmacological tools in a novel mouse migraine model to further understand the potential role of PAR2 in migraine; and 3) use mouse genetics to study the cell type–specific role of PAR2 in migraine pain.

3R01NS094461-04S2
TARGETING SPECIFIC INTERACTIONS BETWEEN A-KINASE ANCHORING PROTEINS (AKAPS) AND ION CHANNELS WITH CELL-PERMEANT PEPTIDES AS A NOVEL MODE OF THERAPEUTIC INTERVENTION AGAINST PAIN DISORDERS Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TEXAS HLTH SCIENCE CENTER SHAPIRO, MARK S SAN ANTONIO, TX 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Multi-protein complexes have emerged as a mechanism for spatiotemporal specificity and efficiency in the function and regulation of myriad cellular signals. In particular, many ion channels are clustered either with the receptors that modulate them, or with other ion channels whose activities are linked. Often the clustering is mediated by scaffolding proteins, such as the AKAP79/150 protein that is a focus of this research. This research will focus on three different channels critical to nervous function. One is the"M-type" (KCNQ, Kv7) K+ channel that plays fundamental roles in the regulation of excitability in nerve and muscle. It is thought to associate with Gq/11- coupled receptors, protein kinases, calcineurin (CaN), calmodulin (CaM) and phosphoinositides via AKAP79/150. Another channel of focus is TRPV1, a nociceptive channel in sensory neurons that is also thought to be regulated by signaling proteins recruited by AKAP79/150. The third are L-type Ca2+ (CaV1.2) channels that are critical to synaptic plasticity, gene regulation and neuronal firing. This research will probe complexes containing AKAP79/150 and these three channels using"super-resolution" STORM imaging of primary sensory neurons and heterologously-expressed tissue-culture cells, in which individual complexes can be visualized at 10-20 nm resolution with visible light, breaking the diffraction barrier of physics. The researchers hypothesize that AKAP79/150 brings several of these channels together to enable functional coupling, which the researchers will examine by patch-clamp electrophysiology of the neurons. Förster resonance energy transfer (FRET) will also be performed under total internal reflection fluorescence (TIRF) or confocal microscopy, further testing for complexes containing KCNQ, TRPV1 and CaV1.2 channels. Since all three of these channels bind to AKAP79/150, the researchers hypothesize that they co-assemble into complexes in neurons, together with certain G protein-coupled receptors. Furthermore, the researchers hypothesize these complexes to not be static, but rather to be dynamically regulated by other cellular signals, which the researchers will examine using rapid activation of kinases or phosphatases. Several types of mouse colonies of genetically altered AKAP150 knock-out or knock-in mice will be utilized.

1R21NS113335-01
Targeting the Vgf signaling system for new chronic pain treatments Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS University of Minnesota VULCHANOVA, LYUDMILA H Minneapolis, MN 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R21 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-042
Summary:

Chronic pain is maintained, in part, by persistent changes in sensory neurons, including a pathological increase in peptides derived from the neurosecretory protein VGF (non-acronymic). Preliminary findings show that the C-terminal VGF peptide, TLQP-62, contributes to spinal cord neuroplasticity and that TLQP-62 immunoneutralization attenuates established mechanical hypersensitivity in a traumatic nerve injury model of neuropathic pain. This project will test the hypothesis that spinal cord TLQP-62 signaling can be targeted for the development of new chronic pain treatments through immunoneutralization and/or receptor inhibition. It will pursue discovery and validation of TLQP-62-based therapeutic interventions along two parallel lines: identification of TLQP-62 receptor(s) and validation of anti-TLQP-62 antibodies as a potential biological therapeutic option for chronic neuropathic pain conditions.

1UH3NS113661-01
Deep Brain Stimulation of the Subgenual Cingulate Cortex for the Treatment of Medically Refractory Chronic Low Back Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS UNIVERSITY OF CALIFORNIA LOS ANGELES BARI, AUSAF (contact); POURATIAN, NADER Los Angeles, CA 2019
NOFO Title: HEAL Initiative: Clinical Devices to Treat Pain (UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-19-018
Summary:

This study aims to address critical gaps and unmet therapeutic needs of chronic low back pain (CLBP) patients using a next-generation deep brain stimulation (DBS) device with directional steering capability to engage networks known to mediate the affective component of CLBP. Researchers will utilize patient-specific probabilistic tractography to target the subgenual cingulate cortex (SCC) to engage the major fiber pathways mediating the affective component of chronic pain. The objective is to conduct an exploratory first-in-human clinical trial of SCC DBS for treatment of medically refractory CLBP. The research team aims to: (1) assess the preliminary efficacy of DBS of SCC in treatment of medically refractory CLBP; (2) demonstrate the safety and feasibility of SCC DBS for CLBP; and (3) develop diffusion tensor imaging–based blueprints of response to SCC DBS for CLBP.

5R01DE027454-02
Modeling temporomandibular joint disorders pain: role of transient receptor potential ion channels Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDCR Duke University Chen, Yong Durham, NC 2019
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Masticatory and spontaneous pain associated with temporomandibular joint disorders (TMJD) is a significant contributor to orofacial pain, and current treatments for TMJD pain are unsatisfactory. Pain-related transient receptor potential (TRP) channels, expressed by trigeminal ganglion (TG) sensory neurons, have been implicated in both acute and chronic pain and represent possible targets for anti-pain strategies. Using bite force metrics, we found TMJ inflammation-induced masticatory pain to be significantly, but not fully, reversed in Trpv4 knockout mice, suggesting the residual pain might be mediated by other pain-TRPs. Our gene expression studies demonstrated that TRPV1 and TRPA1 were up-regulated in the TG in response to TMJ inflammation in a Trpv4-dependent manner. We hypothesize that TRPV1 and TRPA1, like TRPV4, contribute to TMJ pain. Our specific aims will examine the contribution of TRPV1, TRPV4, and TRPA1 to pathogenesis of TMJD pathologic pain including assessment of the role of neurogenic inflammation.

1RF1NS113883-01
Sympathetic-mediated sensory neuron cluster firing as a novel therapeutic target for neuropathic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS JOHNS HOPKINS UNIVERSITY DONG, XINZHONG Baltimore, MD 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

An important component of neuropathic pain is spontaneous or ongoing pain, such as burning pain or intermittent paroxysms of sharp and shooting pain, which may result from abnormal spontaneous activity in sensory nerves. However, due to technical limitations, spontaneous activity in sensory neurons in vivo has not been well studied. Using in vivo imaging in genetically-modified mice, preliminary findings identified spontaneously-firing clusters of neurons formed within the dorsal root ganglia (DRG) after traumatic nerve injury that exhibits increased spontaneous pain behaviors. Furthermore, preliminary evidence has been collected that cluster firing may be related to abnormal sympathetic sprouting in the sensory ganglia. This project will test the hypothesis that cluster firing is triggered by abnormal sympathetic inputs to sensory neurons, and that it underpins spontaneous paroxysmal pain in neuropathic pain models. Findings from this project will identify potential novel therapeutic targets for the treatment of neuropathic pain.

3U19TW008163-10S1
DIVERSE DRUG LEAD COMPOUNDS FROM BACTERIAL SYMBIONTS IN PHILIPPINE MOLLUSKS Preclinical and Translational Research in Pain Management FIC UNIVERSITY OF UTAH HAYGOOD, MARGO GENEVIEVE Salt Lake City, UT 2018
NOFO Title: Limited Competition: International Cooperative Biodiversity Groups (U19)
NOFO Number: RFA-TW-13-001
Summary:

The Philippine Mollusk Symbiont International Cooperative Biodiversity Group harnesses the vast biodiversity of the Philippines to discover new drugs to treat bacterial infections, parasitic infections, pain, and other neurological conditions and cancer, all of which are serious health problems in both the Philippines and the United States. The Republic of the Philippines represents a unique nexus of exceptional biodiversity, dense human population with pressing societal needs, consequent urgent need for conservation, and government commitment to education and technology to harness national human and natural resources for a sustainable future. Mollusks are one of the most diverse groups of marine animals, and their associated bacteria represent an unexplored trove of chemical diversity. Researchers will use an increasing understanding of the interactions between mollusk symbionts and their hosts to discover the most novel and useful molecules. The project will document and describe Philippine mollusk biodiversity and support training and infrastructure that provide the foundation for conservation of Philippine biodiversity.