POTENTIAL NEW PHARMACOTHERAPEUTIC DEVELOPMENTS FOR OPIOID AND STIMULANT USE DISORDERS

APRIL 14TH, 2021

Christian Heidbreder, Ph.D.

POLYSUBSTANCE USE DISORDERS

Odds of drug use with No vs. Any past-year Opioid Use

Odds of drug use with No vs. Any past-year Cocaine Use

Odds of drug use with No vs. Any past-year Methamphetamine Use

Source: Substance Abuse and Mental Health Services Administration. (2019). Key substance use and mental health indicators in the United States: Results from the 2018 National Survey on Drug Use and Health (HHS Publication No. PEP19-5068, NSDUH Series H-54). Rockville, MD: Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration. Retrieved from https://www.samhsa.gov/data/

CONCOMITANT MISUSE OF STIMULANTS & OPIOIDS IS A NEW "TWIN" EPIDEMIC

Drug overdose deaths involving cocaine and amphetamine-type stimulants (1999-2018)

<u>Source</u>: Centers for Disease Control and Prevention, National Center for Health Statistics. Multiple Cause of Death 1999-2018 on CDC WONDER Online Database.

<u>Source</u>: Twillman RK et al. JAMA Network Open. 2020;3(1):e1918514. https://doi.org/10.1001/jamanetworkopen.2019.18514 **NEW & OLD CHALLENGES**

NEW CHALLENGE: NOVEL SYNTHETIC OPIOIDS (NSO)

	Potency Ratio to Morphine [14]	Administration Route Associated with Overdose	Blood Concentration (ng/mL)	Other Concentrations (Site, ng/mL)
Acetylfentanyl [53,58,80,88]	15.7	Nasal, intravenous	153–260 247.5–285 (heart)	Liver 100–2400 ng/g; urine 2.6–2720 ng/mL; stomach content 880 ng/mL; vitreous humor 131–240 ng/mL.
Alpha-Methylfentanyl [89]	56.9	Intravenous 3.1		liver 78 ng/g; bile 6.4 ng/mL.
Butyrylfentanyl [59,71]	1.5–7.0	Nasal, rectal, intravenous, sublingual	66–99 ng/mL; 39–220 ng/mL (heart)	liver 41–57 ng/g; kidney 160 ng/g, muscle 100 ng/g; vitreous humor 32 ng/mL; bile 260 ng/mL; urine 64 ng/mL; gastric contents 590 ng/mL; brain 93 ng/g.
Carfentanil [90]	10,000		0.11-0.88	
4-Fluorobutyrfentanyl [91]	Unknown	By smoking	91–112	urine, 200–414 ng/mL; liver, 411–902 ng/g; kidney 136–197 ng/g.
Furanylfentanyl [49,60]	Unknown	Nasal, intravenous	0.43-26	
3-Methylfentanyl [83,92]	48.5-7000	Intravenous	0.3–1.9	
Ocfentanil [62,93]	90	Nasal, by smoking	9.1–15.3; 23.3–27.9 (heart)	vitreous humor 12.5 ng/mL; urine 6.0 ng/mL; bile 13.7 ng/mL; liver 31.2 ng/g; kidney 51.2 ng/g; brain 37.9 ng/g; nasal swabs 2999 ng/swab.
AH-7921 [5,44,64,66]	Unknown	Oral, nasal, by smoking, intravenous	330–6600 480–3900 (heart)	urine 760–6000 ng/mL; bile 17,000 ng/mL; liver 530–26,000 ng/g; kidney 7200 ng/g; brain, 7700 ng/g; vitreous humor 190 ng/mL; stomach content, 40 μg/mL.
U-47700 [5,49,94,95]	7.5	Oral, nasal, intrarectal, smoking, intravenous	59–525 1347 (heart)	Urine 360–1393 ng/mL; liver 430–1700 ng/g; kidney 270 ng/g; lung 320 ng/g; brain 97 ng/g.
MT-45 [5,66,96]	Unknown	Oral, nasal, intrarectal, intravenous	520–660 1300 (heart)	Urine 370 ng/mL; vitreous humor 260 ng/mL; gastric content 49 µg/mL; liver 24 µg/g.
Fentanyl [70,82,86,87,97,98]	100	Oral, transdermal, nasal, intravenous	0.5–383	Urine 2.9–895 ng/mL; gastric content 31.6–745 μg/mL; liver 5.8–613 μg/g.

Lethal concentrations of novel synthetic opioids reported in the literature Source: Frisoni P et al. Brain Sci. 2018, 8: 170; https://doi.org/10.3390/brainsci8090170 NSO-related deaths are associated with drugs of abuse such as:

- \rightarrow other opiates (up to 64%)
- \rightarrow cocaine (up to 65%)
- \rightarrow cannabinoids (up to 50%)
- \rightarrow benzodiazepines (up to 52.2%)
- \rightarrow antidepressants (up to 48%)
- \rightarrow amphetamines (up to 40%)
- \rightarrow barbiturates (up to 27%)
- \rightarrow ethanol (up to 22.9%)

NEW CHALLENGE: COVID-19 PANDEMIC IS ENHANCING NON-PRESCRIBED FENTANYL POSITIVITY RATE IN SPECIMENS POSITIVE FOR OTHER DRUGS

Changes in drug use patterns
Shifts to more at-risk drug using behaviors and polysubstance use:
ightarrow Street benzodiazepines
ightarrow Synthetic cannabinoids
\rightarrow Quetiapine
\rightarrow Gabapentinoids
\rightarrow Z-drugs (e.g., zolpidem)
→ Over-The-Counter (OTC) medications, such as codeine, ephedrine and pseudoephedrine, and the antidiarrheat loperamide ("poor man's methadone").

Source: Niles JK et al. Population Health Management. 24: S1 Published Online: 5 Feb 2021. https://doi.org/10.1089/pop.2020.0230

 \rightarrow

 \rightarrow

 \rightarrow

OLD CHALLENGE: LIKELIHOOD OF APPROVAL (LOA) & DRUG DEVELOPMENT TIMELINES

Likelihood of Approval	Phase I to Approval		Phase II to Approval		Phase III to Approval		NDA/BLA to Approval	
	LOA	Phase	LOA	Phase	LOA	Phase	LOA	Phase
	n	LOA	n	LOA	n	LOA	n	LOA
Hematology	352	23.9%	260	34.4%	154	71.5%	72	93.1%
Metabolic	399	15.5%	263	25.0%	114	55.7%	48	87.5%
Infectious disease	1170	13.2%	767	22.8%	353	59.4%	156	92.9%
Others	541	13.0%	387	20.5%	159	53.0%	69	88.4%
Ophthalmology	415	11.9%	327	16.6%	127	46.7%	45	91.1%
Autoimmune	1305	10.7%	892	19.3%	421	61.4%	202	94.1%
Allergy	201	10.3%	146	18.3%	54	64.7%	20	100.0%
Gastroenterology*	186	8.3%	141	17.8%	68	51.9%	33	90.9%
All indications	12728	7.9%	8314	15.1%	3381	52.4%	1453	90.6%
Respiratory	501	7.5%	322	13.5%	107	61.6%	45	95.6%
Psychiatry	442	7.3%	292	13.8%	128	51.4%	57	91.2%
Endocrine	887	6.6%	568	15.2%	275	57.1%	124	86.3%
Neurology	1411	5.9%	895	12.3%	391	46.0%	165	86.7%
Oncology	4179	5.3%	2551	10.8%	819	43.9%	324	92.0%
Cardiovascular	651	4.8%	437	9.6%	185	45.6%	80	82.5%
Urology	88	3.6%	66	8.8%	26	58.6%	13	84.6%

- → The overall likelihood of approval (LOA) from Phase I for all developmental candidates over 2011-2020 was 7.9%.
- \rightarrow Phase II development remains the largest hurdle in drug development, with just 28.9% of candidates achieving this critical phase transition.

Source: BIO | QLS Advisors | Informa UK Ltd February 2021

 \rightarrow On average, it takes 10.5 years for a Phase I asset to progress to regulatory approval.

A FEW POSSIBLE OPTIONS

1 REPURPOSING OF KNOWN CHEMICAL ENTITIES (OUD/STUD)

AntidepressantsO \rightarrow Amineptine \rightarrow Mirtazapine \rightarrow Bupropion \rightarrow Sertraline	 pioid receptor agonis Buprenorphine Buprenorphine + Naltrexone 	ts/partial agonists/antagonists methadone		
$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \text{Imipramine} \end{array} \left(\begin{array}{c} C \\ \rightarrow \\ \rightarrow \end{array} \right)$	RF1 antagonist → Pexacerfont -	rtial cholinergic nicotinic receptor agonist Varenicline		
Antipsychotics → Aripiprazole → Aripiprazole + meth	nylphenidate	Glutamatergic agents→N-acetyl cysteine (NAC)→NAC + Naltrexone→Riluzole		
Benzodiazepine antagon histamine receptor → Flumazenil + gabap	ist/GABA agonist/H1 entin + hydroxyzine	Anticonvulsants → Topiramate		
CNS stimulants → Dextroamphetamir → Methylphenidate	ne/dexamphetamine	5-HT3 receptor antagonist → Ondansetron		
$\begin{array}{c c} \textbf{Other CNS agents} \\ \rightarrow & \textbf{Modafinil} \end{array} \xrightarrow{\textbf{GA}}$	BAergic agents Baclofen + Gabape	ntin		

Reduction in use:

→ Overall weak signals - few consistent positive findings – significant interindividual variability in treatment response.

Treatment of withdrawal symptoms:

 \rightarrow No robustly convincing results

Major limitations of all studies: Almost 80 % of studies excluded participants with co-morbid mental health diseases. HOWEVER:

- → 40% of methamphetamine users suffer from transient psychotic symptoms (Glasner-Edwards S, Mooney LJ. CNS Drugs 2014; 28(12):1115–26).
- → Most methamphetamine users suffer from lifetime prevalence of depression and anxiety (Darke S et al. Drug Alcohol Rev. 2008; 27(3):253–62).
- → Treatment compliance and retention still a major challenge

Opportunities for medication combinations & long-acting injectable formulations:

- \rightarrow CURB: XR-NTX + transmucosal buprenorphine (for cocaine) (Ling et al. Addiction. 2016;111(8):1416-27.
- → ADAPT-2: XR-NTX + bupropion (for methamphetamine) (Trivedi et al. N Engl J Med. 2021;384(2):140-153.
- \rightarrow BUP-XR: Future studies
- → XR-NTX + BUP-XR: Future studies

<u>Source</u>: Siefried KJ et al. CNS Drugs (2020) 34:337–365. <u>https://doi.org/10.1007/s40263-020-00711-x</u>

2 DEVELOPMENT OF NEW CHEMICAL ENTITIES (OUD/STUD)

Target receptors	Drug development	Reference		
Metabotropic glutamate (mGluR)	 → NAMs of postsynaptic mGluR5 → PAMs of presynaptic mGluR2 and possibly mGluR7 	Caprioli D et al. Biol Psychiatry. 2018; 84(3):180-192		
Nociceptin/orphanin FQ receptor (NOR) or nociceptin (NOP)	→ Nonpeptide small-molecule agonists	Lutfy K, Zaveri NT. Prog Mol Biol Transl Sci. 2016; 137:149-81		
Dopamine D3	→ Selective Dopamine D3 receptor antagonists	Heidbreder CA, Newman AH. Ann N Y Acad Sci. 2010; 1187:4-34		
GABAb	→ GABAb PAM	Evenseth LSM et al. Molecules. 2020; 25(13):3093		
Orexin 1	→ Selective Orexin 1 receptor antagonists	James MH et al. Neuropharmacology. 2021; 183:108359		
Atypical pan-opioid/complex receptor pharmacology	→ Mitragynine (Kratom)	Eastlack et al. Pain Ther. 2020; 9:55–69		
Epigenetic-related drugs	 → HDAC3-selective inhibitor (RGFP-966) → HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) → BET inhibitor (JQ1) → Development of PET ligands for multiple histone-modifying proteins (measure target engagement and brain biomarkers in SUD patients) 	Sartor GC. Biochem Pharmacol. 2019; 168: 269–274		

2 DEVELOPMENT OF NEW CHEMICAL ENTITIES (RESPIRATORY DEPRESSION)

Target receptors	Drug development	Reference	
Opioid	 → New formulations of nalmefene → Novel selective and potent μ-opioid receptor antagonists: NAQ; NAN 	Han et al. Translational Psychiatry 2019 ; 9:282	
Ampakines	 Positive allosteric modulators of the α-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid (AMPA) receptor that stimulate respiratory drive, particularly under hypoventilatory conditions: CX717; CX1739; LCX001 		
$\alpha 4\beta 2$ nicotinic acetylcholine receptor	→ Receptor agonist A85380	Imam MZ et al. F1000Research	
TWIK-related acid-sensitive K+-channels (TASK)	→ Doxapram (restricted to its positive enantiomer)	2020, 9:91	
Other	 → PKA inhibitors (e.g., H8936) → GIRK inhibitors (e.g., tertiapin-Q36) → Thyrotropin-Releasing Hormone (TRH) analogs (e.g., taltirelin) 		

3 MACHINE LEARNING (ML)

Hundreds of online publicly, curated databases that can be integrated modularly to drug development:

- → <u>Genomic data</u> (disease-gene associations; SNP reporting)
- → Interaction data (Protein-protein or pathway information; Biological models of gene and pathway interactions; Drug signatures (genewise expression changes due to treatment)
- \rightarrow <u>Drug-Disease associations</u>
- → <u>Repositories of clinical trial settings, status, and</u> <u>results</u> (e.g., ClinicalTrials.gov; RepoDB; etc...)
- → Chemical and drug data (Protein-related; Drugrelated; ADME drug properties)
- → <u>Healthcare datasets</u> (WHO; CDC; data.gov; Medicare; HCUP; etc...)

Select valid, discriminatory features for prediction or decision model inputs ML algorithm = any computational method where results from past actions or decisions, or past observations, are used to improve predictions or future decision-making.

- → <u>Supervised learning</u>: aims at predicting the label of new observations given a large database of labelled examples (e.g., Support Vector Machines or (Deep) Neural Networks).
- → <u>Unsupervised learning</u>: aims at detecting underlying relationships or patterns in unlabeled data (e.g., Principal Component Analysis (PCA), density estimation, clustering or collaborative filtering.
- → Sequential learning: algorithms rely on trial-anderror, and iteratively use external observations in order to find the best decision with respect to the environment they interact with.

Source: Reda C et al. (2020) Computational and Structural Biotechnology Journal. 18: 241-252. <u>https://doi.org/10.1016/j.csbj.2019.12.006</u>

IN SUMMARY

- → Polysubstance use is complex and depends on drug use patterns (concurrent/simultaneous, sequential, or a combination of both), which can vary across demographics, study periods, and study structure.
- → Given that nearly 80%* of fatal opioid overdoses also involved another substance, it appears that there is a greater risk of death when opioids are used in combination with other opioids and/or other drugs.
- → New synthetic opioids, the COVID-19 pandemic and its associated changes in drug market dynamics and polysubstance use patterns are new challenges to the development of valid treatment options.
- → Repurposing of known chemical entities in the CNS area has been broadly unsuccessful exclusion criteria, treatment compliance and retention are still challenging.
 - New opportunities for combination of medications and new LAI formulations.
- \rightarrow Several opportunities for the development of new chemical entities across a wide range of biological systems.
 - But remember the "old" challenge (LOA + timelines).
- → The availability of a fast-growing amount of biological and medical data, along with well-established machine learning algorithms, may promote data-driven decision making and has the potential to speed up the process and reduce failure rates in drug discovery and development.

^{*} Source: Jones CM et al. (2018). JAMA 319: 1819–1821. https://doi.org/10.1001/jama.2018.2844

THANK YOU !