Funded Projects

Project # Project Title Research Focus Area Research Program Administering IC(s) Institution(s) Investigator(s) Location(s) Year Awarded
1R61AT012187-01
Total-Body PET for Assessing Myofascial Pain Clinical Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NCCIH UNIVERSITY OF CALIFORNIA AT DAVIS CHAUDHARI, ABHIJIT J Davis, CA 2022
FOA Title: HEAL Initiative: Developing Quantitative Imaging and Other Relevant Biomarkers of Myofascial Tissues for Clinical Pain Management
FOA Number: RFA-AT-22-003
Summary:

Myofascial pain syndrome is a prevalent and debilitating condition and can aggravate other conditions such as sickle cell disease. This project will use total body imaging using positron emission tomography/computed tomography (TB-PET/CT) to identify and monitor this pain syndrome and potential treatments over time. The research will use TB-PET/CT to assess myofascial tissue effects of chronic low back pain and sickle cell disease pain. The first phase of the project will assess health changes observed by TB-PET/CT imaging in painful and non-painful myofascial tissues compared to healthy myofascial tissue. The second phase of the research will be a randomized, controlled longitudinal interventional study to evaluate the effectiveness of acupuncture on myofascial pain syndrome, using TB-PET/CT imaging to assess changes.

1R61AT012284-01
Electrophysiological and Ultrasound Quantitative Biomarkers for Myofascial Pain Clinical Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NCCIH BETH ISRAEL DEACONESS MEDICAL CENTER RUTKOVE, SEWARD B; WAINGER, BRIAN JASON Boston, MA 2022
FOA Title: HEAL Initiative: Developing Quantitative Imaging and Other Relevant Biomarkers of Myofascial Tissues for Clinical Pain Management
FOA Number: RFA-AT-22-003
Summary:

Pain in the muscles and surrounding connective tissue (myofascial pain) is a significant and poorly understood health concern affecting hundreds of millions of Americans. There is a great need for tools to assess changes to myofascial tissues in individuals with chronic pain as well as to measure the effect of commonly used therapies. This project will use three imaging tools to look at differences between shoulder tissue in people with myofascial pain compared to those without pain. Using a machine learning approach, this research aims to develop a biomarker signature for myofascial pain, which will be evaluated in a randomized controlled clinical trial based on its ability to predict patient responses to myofascial pain treatments.

1R61AT012283-01
Development and Identification of Magnetic Resonance, Electrophysiological, and Fiber-Optic Imaging Biomarkers of Myofascial Pain Clinical Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NCCIH WASHINGTON UNIVERSITY HU, SONG; WANG, YONG St. Louis, MO 2022
FOA Title: HEAL Initiative: Developing Quantitative Imaging and Other Relevant Biomarkers of Myofascial Tissues for Clinical Pain Management
FOA Number: RFA-AT-22-003
Summary:

Pain in muscles and surrounding connective tissue (myofascial pain) is a significant health concern affecting hundreds of millions of Americans. There is no objective way to identify and measure myofascial pain. This project will address this unmet challenge by developing a robust approach to identify imaging biomarker(s) that can distinguish different states of myofascial pain. The research will then examine the ability of identified biomarker(s) to predict patient responses to a myofascial pain treatment in a randomized controlled clinical trial.

1R61AT012279-01
Quantifying and Treating Myofascial Dysfunction in Post Stroke Shoulder Pain Clinical Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NCCIH JOHNS HOPKINS UNIVERSITY RAGHAVAN, PREETI Baltimore, MD 2022
FOA Title: HEAL Initiative: Developing Quantitative Imaging and Other Relevant Biomarkers of Myofascial Tissues for Clinical Pain Management
FOA Number: RFA-AT-22-003
Summary:

Shoulder pain occurs in many patients who are recovering from a stroke. In addition to impairments in the ability to move, persistent shoulder pain contributes to depression, and often reduces quality of life. Although the cause of post-stroke shoulder pain is complex and not completely understood, it is thought to arise in part to damage of muscles and surrounding connective tissues (myofascial tissues) in the shoulder. This project will use advanced medical imaging techniques to create biomarkers of that can reliably identify myofascial tissues. The research will then test the ability of these biomarkers to monitor, and ultimately predict treatment responses in patients with post-stroke shoulder pain in the context of a randomized controlled clinical trial.

1R61AT012282-01
Development and Validation of a Multimodal Ultrasound-Based Biomarker for Myofascial Pain Clinical Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NCCIH UNIVERSITY OF PITTSBURGH AT PITTSBURGH WASAN, AJAY D; KIM, KANG; PU, JIANTAO Pittsburgh, PA 2022
FOA Title: HEAL Initiative: Developing Quantitative Imaging and Other Relevant Biomarkers of Myofascial Tissues for Clinical Pain Management
FOA Number: RFA-AT-22-003
Summary:

Pain in the muscles and surrounding connective tissues (myofascial pain) can affect many regions of the body and is a key component of chronic low back pain. Patients with chronic low back pain have a range of musculoskeletal problems perpetuating their pain. There is a significant clinical need to identify the components of myofascial pain in people with chronic low back pain. Advances in ultrasound technology have allowed researchers to identify several differences in muscle and connective tissues related to myofascial pain. This project will develop and validate an ultrasound-based biomarker signature for myofascial pain in the low back. This research will also refine the biomarker signature using advanced machine learning approaches, toward future testing in in a randomized controlled clinical trial.

1R61AT012286-01
Multimodal Imaging Biomarkers for Investigating Fascia, Muscle, and Vasculature in Myofascial Pain Clinical Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NCCIH GEORGE MASON UNIVERSITY SIKDAR, SIDDHARTHA Fairfax, VA 2022
FOA Title: HEAL Initiative: Developing Quantitative Imaging and Other Relevant Biomarkers of Myofascial Tissues for Clinical Pain Management
FOA Number: RFA-AT-22-003
Summary:

Pain in the muscles and surrounding connective tissue (myofascial pain) is a significant health concern affecting hundreds of millions of Americans.  Myofascial pain is primarily diagnosed by asking people about their amount of pain as well as through a physical examination. Both approaches are imprecise ways to diagnose the specific type of pain a patient is experiencing and what is causing it. This project aims to improve myofascial pain management and treatment by developing ways to measure changes to soft tissues (e.g., muscle, connective tissues, nerves, blood vessels) in people with myofascial pain compared with soft tissues in people who are not in pain. The project will develop an imaging biomarker that can distinguish healthy and diseased soft tissues that may contribute to myofascial pain syndrome. The project will then test the ability of these biomarkers to predict patient outcomes in a randomized controlled clinical trial.

1R61AT012185-01
MRI-Based Quantitative Characterization of Impaired Myofascial Interface Properties in Myofascial Pain Syndrome Clinical Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NCCIH MAYO CLINIC ROCHESTER YIN, ZIYING; BAUER, BRENT A Rochester, MN 2022
FOA Title: HEAL Initiative: Developing Quantitative Imaging and Other Relevant Biomarkers of Myofascial Tissues for Clinical Pain Management
FOA Number: RFA-AT-22-003
Summary:

Pain in the muscles and surrounding connective tissue (myofascial pain) is a significant health concern affecting hundreds of millions of Americans. Understanding and managing myofascial pain has been limited due to a lack of tools to help clinicians diagnose and treat this disorder. While past efforts to understand myofascial pain have focused on impairments in how connective tissues connect to other tissues in the body, this project will use a new imaging technique to study myofascial tissue physical properties, including how they move in the body and their structural stiffness. This research will identify an imaging biomarker to be used in a randomized controlled clinical trial to predict patient responses to a myofascial pain treatment.