Funded Projects

Project # Project Title Research Focus Area Research Program Administering IC(s) Institution(s) Investigator(s) Location(s) Year Awarded
1U18EB030607-01
Non-invasive Nonpharmaceutical Treatment for Neck Pain: Development of Cervical Spine-specific MR-guided Focused Ultrasound System Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS UNIVERSITY OF UTAH RIEKE, VIOLA Salt Lake City, UT 2020
FOA Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
FOA Number: RFA-EB-18-003
Summary:

Neck pain is the fourth leading cause of disability and also a significant cause of cervicogenic headaches. Many of the currently available neck pain treatments are invasive with associated risks and complications, particularly because of the complex anatomy. Magnetic resonance guided focused ultrasound, a novel, completely noninvasive technique, can precisely target spinal facet joints to help ameliorate neck pain, potentially transforming the current practices. The goal of this study is to develop a cervical spine-specific device and demonstrate its safety and efficacy on targeting cervical sensory fibers and the third occipital nerve. The results of these studies will provide an understanding on how to best use this technology for chronic neck pain as well as a basis for translation into human use.

1UG3NS115637-01
Clinical Translation of Ultrasonic Ketamine Uncaging for Non-Opioid Therapy of Chronic Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS STANFORD UNIVERSITY AIRAN, RAAG D; WILLIAMS, NOLAN R Stanford, CA 2019
FOA Title: HEAL Initiative: Translational Devices to Treat Pain (UG3/UH3 Clinical Trial Optional)
FOA Number: RFA-NS-19-016
Summary:

The research team has developed ultrasonic drug uncaging for neuroscience, in which neuromodulatory agents are uncaged from ultrasound-sensitive biocompatible and biodegradable drug-loaded nanocarriers. This project will clinically translate ultrasonic ketamine uncaging for chronic pain therapy. In the UG3 phase, the research team will scale our nanoparticle production processes to human scales and adapt them to pharmaceutical standards. In the UH3 phase, they will complete a first-in-human evaluation of the safety and efficacy of ultrasonic ketamine uncaging by quantifying how much ketamine is released relative to the ultrasound dose and assessing whether the uncaged ketamine can modulate the sensitivity and affective response to pain, in patients suffering from chronic osteoarthritic pain. This project aims to yield a novel, noninvasive, non-opioid therapy for chronic pain that maximizes the therapeutic efficacy of ketamine over its side effects, by targeting its action to a critical hub of pain processing.

1U18EB029354-01
Treating pain in sickle cell disease by means of focused ultrasound neuromodulation Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB CARNEGIE-MELLON UNIVERSITY HE, BIN Pittsburgh, PA 2019
FOA Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
FOA Number: RFA-EB-18-003
Summary:

Researchers will develop a novel transcranial focused ultrasound (tFUS) device for pain treatment and establish its effectiveness for treating sickle cell disease (SCD) pain in humanized mice. The tFUS will target the specific cortical regions involved in SCD pain using a novel non-invasive electrophysiological source imaging technique. The project’s goals have several aims. Aim 1: Develop tFUS devices for pain treatment. The mouse-scale system will be designed to validate the therapeutic effect of stimulating the anticipated cortical targets. This will inform development of the simpler human-scale system, which will use models of the skull to select cost-effective transducers to reach the targets. Aim 2: Evaluate tFUS effectiveness and optimize stimulation parameters in an SCD mice model. Researchers will determine effective tFUS parameters to chronically reduce SCD pain in mice and validate this using behavioral measures. Aim 3: Use electrophysiological source imaging to target and trigger closed-loop tFUS in animal models. This aim also includes performing safety studies to prepare for human trials. The project will develop a transformative, noninvasive tFUS device to effectively and safely treat pain in SCD. 

1U18EB029351-01
Development of an MRgFUS system for precision-targeted neuromodulation of pain circuits with simultaneous functional MRI Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB VANDERBILT UNIVERSITY MEDICAL CENTER CASKEY, CHARLES F; CHEN, LI MIN; GRISSOM, WILLIAM A Nashville, Tennessee 2019
FOA Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
FOA Number: RFA-EB-18-003
Summary:

This project aims to develop a next-generation noninvasive neuromodulation system for non-addictive pain treatments. The research team will build an integrated system that uses magnetic resonance image-guided focused ultrasound (MRgFUS) stimulation to target pain regions and circuits in the brain with high precision. The system will use MR imaging to locate three pain targets commonly used in clinical pain treatments, to stimulate those targets with ultrasound, and to monitor responses of nociceptive pain circuits using a functional MRI readout. Three collaborating laboratories will tackle the goals of this project: (Aim 1) Develop focused ultrasound technology for neuromodulation in humans, compatible with the high magnetic fields in an MRI scanner. (Aim 2) Develop MRI technology to find neuromodulation targets, compatible with focused ultrasound transducers. (Aim 3) Validate the complete MRgFUS neuromodulation system in brain pain regions in nonhuman primates. By the end of the project, the research team will have a fully developed and validated MRgFUS system that is ready for pilot clinical trials in pain management.

1UH2AR076736-01
Focused Ultrasound Neuromodulation of Dorsal Root Ganglion for Noninvasive Mitigation of Low Back Pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF UTAH RIEKE, VIOLA Salt Lake City, UT 2019
FOA Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
FOA Number: RFA-AR-19-028
Summary:

This project’s goal is to develop a completely noninvasive, precise, and durable treatment option for low back pain (LBP). Focused ultrasound (FUS) is a lower-risk, completely noninvasive modality that enables the delivery of spatially confined acoustic energy to a small tissue region (dorsal root ganglion [DRG]) under magnetic resonance (MR) imaging guidance to treat axial low back pain by neuromodulation. The central goal of this study is to demonstrate neuromodulation of the DRG with FUS to decrease nerve conduction; this treatment can be used to attenuate pain sensation. This exploratory study will demonstrate FUS neuromodulation of the DRG in pigs as assessed by somatosensory evoked potential and perform unique behavioral assessments indicative of supraspinal pain sensation, with the ultimate goal of translating this technology to patients with LBP. FUS could potentially replace current invasive or systemically detrimental treatment modalities.

1UH3NS115118-01
Transcranial focused ultrasound for head and neck cancer pain. A pilot study Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS UNIVERSITY OF VIRGINIA ELIAS, WILLIAM JEFFREY Charlottesville, VA 2019
FOA Title: HEAL Initiative: Clinical Devices to Treat Pain (UH3 Clinical Trial Optional)
FOA Number: RFA-NS-19-018
Summary:

Head and neck cancer is particularly susceptible to nociceptive and neuropathic pains because it is dense with sensitive anatomic structures and richly innervated. Transcranial magnetic resonance imaging–guided focused ultrasound (FUS) is a new stereotactic modality capable of delivering high-intensity energy through the intact human skull with submillimeter precision. This clinical trial will target the spinothalamic and spinoreticular pain circuits by unilateral FUS mesencephalotomy, an effective procedure for cancer pain but limited by the accuracy of its era. The primary aim is to assess the safety and preliminary effectiveness in six head and neck cancer patients with opioid-resistant pain. Researchers will investigate the potential mechanism of pain relief as the mesencephalotomy target involves the confluence of the ascending and descending pain systems. Aims 2 and 3 will investigate these systems with electrophysiology specific for the spinothalamic tract and carfentenil positron emission tomography imaging that measures the brain’s endogenous opioids.