Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded
3UG3TR003149-02S1
Supplement to hiPSC-based DRG Tissue Mimics on Multi-well Microelectrode Arrays as a Tissue Chip Model of Acute and Chronic Nociception Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NCATS UNIVERSITY OF TEXAS DALLAS BLACK, BRYAN JAMES Dallas, TX 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

This study aims to determine whether a subset of understudied genes that are expressed in human and mouse dorsal root ganglia (DRG) tissues (critical for relaying the sensation of pain from the body to the central nervous system), are also expressed in human induced pluripotent stem cell DRG mimetics. The study will also determine if these genes are involved in neuronal excitability changes under inflammatory conditions and compare these responses to those of primary DRG neurons. Third and finally, the study will optimize genetic depletion of target genes enabling future fundamental and preclinical research studies.

3R01NS111929-01A1S1
Anatomic, Physiologic and Transcriptomic Mechanisms of Neuropathic Pain in Human DRG Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TX MD ANDERSON CAN CTR DOUGHERTY, PATRICK M Houston, TX 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

Using neural tissues from pain patients, this project will investigate mechanisms of neuronal and/or immune dysfunction driving chronic pain. The researchers will use spatial transcriptomics on human dorsal root ganglion (DRG) and spinal cord tissues to examine the cellular expression profile for these targets using the 10X Genomics Visium technology. The use of tissues from control surgical patients and organ donors as well as surgical patients with neuropathic pain will enable validation of expression of these targets in human tissue as well as indication of their potential involvement in neuropathic pain. This collaborative effort will use DRGs removed from pain-phenotyped patients during neurological surgery, as well as lumbar DRGs and spinal cord from organ donors. This study will map the spatial transcriptomes at approximately single cell resolution in the human DRG and spinal cord.

3U24NS113849-01S1
The Icahn School of Medicine at Mount Sinai (ISMMS) EPPIC-Net Specialized Clinical Center Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI ROBINSON-PAPP, JESSICA New York, NY 2020
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for Administrative Supplements to Promote Training in Clinical Research on Pain (Admin Supp ? Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-044
Summary:

Exacerbation of health disparities has emerged during the COVID 19 pandemic and highlighted the recognition that minority underrepresentation in clinical research may contribute to racial disparities in health outcomes. In clinical trials related to pain, disparities in trial patient inclusion are documented by white patients often being overrepresented. Mitigating these disparities is an area in which an early-career pain investigator training and contributions may have lasting benefits. The pandemic also drove rapid expansion of telehealth for pain management without knowledge of how social and demographic factors affect utilization patterns of this care delivery model. This supplement supports research to examine the extent to which disparities exist in access to and outcomes of telehealth in socially marginalized pain patients. Findings will be applied to enrich the diversity in clinical trial populations for phase 2 safety trials performed in the HEAL EPPIC Network.

3UH3AR076724-04S1
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC Cross-Cutting Research Training the Next Generation of Researchers in HEAL NIAMS UNIVERSITY OF CALIFORNIA, SAN FRANCISCO MAJUMDAR, SHARMILA San Francisco, CA 2022
NOFO Title: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: PA-20-222
Summary:

Despite the significance of spine disorders, there are few reliable methods to determine appropriate patient care and evaluate intervention effectiveness. The Back Pain Consortium Research Program
(BACPAC) is developing machine learning-based methods to obtain disease-related features from biological images. This project supports a scientist from a group underrepresented in biomedicine to expand ongoing research to improve ways to interpret medical data about spine disorders and associated pain.

1R43NR017575-01A1
Using Virtual Reality Psychological Therapy to Develop a Non-Opioid Chronic Pain Therapy Cross-Cutting Research Small Business Programs NINR COGNIFISENSE, INC. BAEUERLE, TASSILO; CEKO, MARTA ; WEBSTER, LYNN Sunnyvale, CA 2019
NOFO Title: PHS 2017-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-17-302
Summary:

Chronic pain affects over 100 million Americans, costing society about $600 billion annually. Despite numerous pharmacological and non-pharmacological therapies, over 50% of chronic pain sufferers feel little control over their pain. CognifiSense has developed a patent-pending Virtual Reality Psychological Therapy (VRPT), which is designed to create lasting reduction of chronic pain by addressing the maladaptive learning processes driving pain chronification. VRPT is an experiential learning system, which provides the brain a new set of signals that teaches it that the pain is not as bad as it perceived and that it has greater control over the pain than it perceived. VRPT combines the immersive power and the ability to individualize the therapy of Virtual Reality with well-researched principles of self-distancing, self-efficacy, and extinction to retrain the brain. The goal of this study is to determine the clinical feasibility of VRPT in achieving a lasting reduction of chronic pain, establish brain mechanisms associated with treatment response, and collect comprehensive user feedback to enable further refinement of the current product prototype. CognifiSense's VRPT has the potential to be a significant clinical and business opportunity in the treatment of chronic pain.

1UH2AR076723-01
Wearable nanocomposite sensor system for diagnosing mechanical sources of low back pain and guiding rehabilitation Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS BRIGHAM YOUNG UNIVERSITY BOWDEN, ANTON E Provo, UT 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

Chronic low back pain (cLBP) is recurrent and often nonresponsive to conservative treatments. Biomechanists, physical therapists, and surgeons each utilize a variety of tools and techniques to assess and interpret qualitative movement changes to understand potential mechanical and neurological sources of low back pain and as critical elements in their treatment paradigm. However, objectively characterizing and communicating this information is currently impossible, since clinically feasible (i.e., cost-effective, objective, and accurate) tools and quantitative benchmarks do not exist. This research addresses the challenge to improve cLBP outcomes through the use of unique, inexpensive, screen-printable, elastomer-based, nanocomposite, piezoresponsive sensors, which will be integrated into a SPInal Nanosensor Environment (SPINE) sense system to measure lumbar kinematics and provide an objective, quantitative platform for diagnosis, monitoring, and follow-up assessment of cLBP.

1U01DK123821-01
Vanderbilt-West Virginia (VWV) Collaborative: A HOPE Consortium Clinical Center Clinical Research in Pain Management Integrated Approach to Pain and Opioid Use in Hemodialysis Patients NIDDK VANDERBILT UNIVERSITY MEDICAL CENTER CAVANAUGH, KERRI (contact); EDWARDS, DAVID ALLAN Nashville, TN 2019
NOFO Title: HEAL Initiative: Integrated Approach to Pain and Opioid Use in Hemodialysis Patients: The Hemodialysis Opioid Prescription Effort (HOPE) Consortium - Clinical Centers (U01 Clinical Trial Required)
NOFO Number: RFA-DK-18-030
Summary:

This study will collaborate with diverse stakeholders to design and conduct a multisite trial evaluating innovative strategies to reduce opioid dosing and improve quality of life and experience with care specific to pain management among adults receiving in-center hemodialysis. A pragmatic parallel arm trial will test the impact of adding a 12-week interactive video cognitive behavioral therapy (IV-CBT) intervention program, compared with CDC guideline-concordant shared decision-making (SDM) for NCCP pharmacotherapy management. The specific aims are to (1) conduct a multisite randomized trial to receive IV-CBT and SDM versus SDM alone over 15 months; (2) investigate and describe barriers and facilitators of the implementation of IV-CBT and also SDM among patients, clinicians, and dialysis staff; and (3) create a collaborative network of investigators and dialysis facilities for efficient recruitment and for dissemination of successful strategies to optimize pain care in dialysis.

5R01DA038645-05
KOR AGONIST FUNCTIONAL SELECTIVITY IN PERIPHERAL SENSORY NEURONS Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDA UNIVERSITY OF TEXAS HLTH SCIENCE CENTER CLARKE, WILLIAM P; BERG, KELLY ANN SAN ANTONIO, TX 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Functional selectivity is a term used to describe the ability of drugs to differentially regulate the activity of multiple signaling cascades coupled to the receptor. The underlying mechanism for functional selectivity is based upon the formation of ligand-specific receptor conformations that are dependent upon ligand structure. Functional selectivity has the potential to revitalize the drug discovery/development process. Ligands with high efficacy for specific signaling pathways (or specific patterns of signaling) that mediate beneficial effects, and with minimal activity at pathways that lead to adverse effects, are expected to have improved therapeutic efficacy. We propose to demonstrate that ligand efficacy for specific signaling pathways associated with antinociception can be finely tuned by structural modifications to a ligand. We propose to use U50,488 and Salvinorin-A (Sal-A) as scaffolds to develop functionally selective analogs that maintain high efficacy for signaling pathways that lead to antinociception and minimize activity toward anti-antinociceptive signaling pathways.

1UG3AG067493-01
Tailored Non-Pharmacotherapy Services for Chronic Pain: Testing Scalable and Pragmatic Approaches Clinical Research in Pain Management Pain Management Effectiveness Research Network (ERN) NIA KAISER FOUNDATION RESEARCH INSTITUTE DEBAR, LYNN L Oakland, CA 2019
NOFO Title: HEAL Initiative: Pain Management Effectiveness Research Network: Clinical Trial Planning and Implementation Cooperative Agreement (UG3/UH3 Clinical Trial Required)
NOFO Number: RFA-NS-19-021
Summary:

To enhance availability of cognitive behavioral therapy for chronic pain (CBT-CP), this study will 1) refine strategies to identify and recruit patients, finalize intervention procedures, and ensure data infrastructure and quality; 2) determine the effectiveness of online and telephonic CBT-CP on patients and pain severity and secondary outcomes, including depression, sleep, quality of life, and pain-related health care utilization, from the electronic health record; and 3) assess the cost and incremental cost-effectiveness of online and telephonic CBT-CP compared with usual care. Eligible participants will be randomized to one of two painTRAINER interventions or usual care. Interventions will be eight weekly 45-minute sessions of the online program or telehealth-style phone coaching by trained behavioral health specialists. Self-reported pain severity and secondary outcomes will be assessed at baseline and at three, six, and 12 months.

1U24NS115691-01
UPENN HEAL - Pain Clinical Trial Network Specialized Clinical Center Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS UNIVERSITY OF PENNSYLVANIA FARRAR, JOHN T (contact); ASHBURN, MICHAEL ALAN Philadelphia, PA 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-036
Summary:

EPPIC-Net will provide a robust and readily accessible infrastructure for the rapid implementation and performance of high-quality comprehensive studies of patients with well-defined pain conditions, and the rapid design and performance of high-quality Phase 2 clinical trials to test promising novel therapeutics for pain. Using the Hospital of the University of Pennsylvania as a hub and five additional centers that are part of the UPenn Health System and the Children’s Hospital of Philadelphia (CHOP) as spokes, studies will be conducted as designed by the expertise of the EPPIC Network, which intends to bring intense focus to relatively small numbers of patients with clinically well-defined pain conditions and high unmet therapeutic needs. The UPenn Specialized Clinical Center (SCC) will test novel, efficient study designs including adaptive and platform designs, validation studies of biomarkers, and biomarker-informed proof of principle or target engagement studies in Phase 2 trials of interventions from academic and industry partners.

1RF1NS113840-01
Nrf2 Activation for Addiction-Free Treatment of Neuropathic Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TX MD ANDERSON CAN CTR GRACE, PETER MICHAEL Houston, TX 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Effective treatments are elusive for the majority of patients with neuropathic pain. Reactive oxygen and nitrogen species (ROS/RNS) are involved in neuropathic pain, because they drive mitochondrial dysfunction, cytokine production, and neuronal hyperexcitability; therefore, stimulation of endogenous antioxidants is predicted to simultaneously resolve multiple neuropathic pain mechanisms. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that is a potential therapeutic target because it regulates the expression of a large number of endogenous antioxidant-related genes and can be activated with a single drug. This project will test the hypothesis that Nrf2 activation increases multiple endogenous antioxidants, therefore reversing neuropathic pain behaviors and counteracting neuropathic pain mechanisms that are driven by ROS/RNS and could provide an effective pain therapy, with minimal abuse/addictive potential.

1U18EB029354-01
Treating pain in sickle cell disease by means of focused ultrasound neuromodulation Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB CARNEGIE-MELLON UNIVERSITY HE, BIN Pittsburgh, PA 2019
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

Researchers will develop a novel transcranial focused ultrasound (tFUS) device for pain treatment and establish its effectiveness for treating sickle cell disease (SCD) pain in humanized mice. The tFUS will target the specific cortical regions involved in SCD pain using a novel non-invasive electrophysiological source imaging technique. The project’s goals have several aims. Aim 1: Develop tFUS devices for pain treatment. The mouse-scale system will be designed to validate the therapeutic effect of stimulating the anticipated cortical targets. This will inform development of the simpler human-scale system, which will use models of the skull to select cost-effective transducers to reach the targets. Aim 2: Evaluate tFUS effectiveness and optimize stimulation parameters in an SCD mice model. Researchers will determine effective tFUS parameters to chronically reduce SCD pain in mice and validate this using behavioral measures. Aim 3: Use electrophysiological source imaging to target and trigger closed-loop tFUS in animal models. This aim also includes performing safety studies to prepare for human trials. The project will develop a transformative, noninvasive tFUS device to effectively and safely treat pain in SCD. 

1R43DE029369-01
A Novel Opioid-Free Targeted Pain Control Method for Acute Post-Operative Localized Pain Related to Oral Surgical Procedures Cross-Cutting Research Small Business Programs NIDCR LAUNCHPAD MEDICAL, LLC JADIA, RAHUL; KAY, GEORGE Boston, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

There is a compelling need to develop a front line, non-opioid-based acute pain management strategy for outpatient oral surgical procedures. LaunchPad Medical has developed Tetranite® (TN), a novel bone regenerative mineral-organic self-setting adhesive biomaterial. TN has been extensively studied in vivo in a canine jaw model and shown to be effective and well-tolerated. In this project, researchers will demonstrate that drug-loaded TN can be a novel route to providing localized and time release pain medication following wisdom tooth extraction by determining the release profile of various pain medications from TN at different concentrations. The ability to release pain therapeutics in a controlled fashion and directly at the site of injury offers improved pain control following oral surgical procedures without exposing the patient to opioids. This novel approach to pain management can be extended to more invasive orthopedic procedures such as joint replacement, spinal fusions or reconstructive trauma surgery. In Phase II the team will conduct an in vivo study to assess efficacy of medicated TN to address post-operative pain following wisdom tooth odontectomy, optimize incorporation and release of medications in TN formulations, develop cGMP manufacturing process for the compounded product, and ultimately conduct clinical trials for bone void filler using medicated TN.

3UG3TR002151-01S1
INTEGRATED MICROPHYSIOLOGICAL SYSTEM OF CEREBRAL ORGANOID AND BLOOD VESSEL FOR DISEASE MODELING AND NEUROPSYCHIATRIC DRUG SCREENING Preclinical and Translational Research in Pain Management NCATS COLUMBIA UNIVERSITY HEALTH SCIENCES LEONG, KAM W NEW YORK, NY 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

The clinical utility of opioids for pain treatment is limited by its risk for developing opioid usage disorders (OUD). These untoward effects impose a severe burden on society and present difficult therapeutic challenges for clinicians. We propose to extend our cerebral organoid MPS to facilitate the investigation of neuronal response to opioids and identify cellular and molecular signatures in patients vulnerable to OUD. We have assembled a team with complementary expertise in clinical characterization of OUD, cerebral organoid MPS modeling, single cell RNA-seq technology, and functional characterization of neurons in a mesolimbic reward system to test the hypothesis that midbrain MPS is a clinically relevant pre-clinical model for study of opioid usage disorder.

1UH2AR076724-01
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF CALIFORNIA, SAN FRANCISCO MAJUMDAR, SHARMILA San Francisco, CA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

Despite the significance of spine disorders, there are few reliable methods to determine appropriate patient care and evaluate intervention effectiveness. The research and tool development take the critical next step in the clinical translation of faster, quantitative magnetic resonance imaging (MR) of patients with lower back pain. The multidisciplinary Technology Research Site (Tech Site) of BACPAC will develop Phase IV (i.e., technology optimization) technologies and/or methods (TTMs) to leverage two key technical advancements: development of machine learning-based, faster MR acquisition methods and machine learning for image segmentation and extraction of objective disease related features from images. The team will develop, validate, and deploy end-to-end deep learning-based technologies (TTMs) for accelerated image reconstruction, tissue segmentation, and detection of spinal degeneration to facilitate automated, robust assessment of structure-function relationships between spine characteristics, neurocognitive pain response, and patient-reported outcomes.

3U24DK116214-02S1
ILLUMINATING DRUGGABLE DARK MATTER Preclinical and Translational Research in Pain Management NIDDK UNIVERSITY OF CALIFORNIA, SAN FRANCISCO MCMANUS, MICHAEL T; JAN, LILY Y San Francisco, CA 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

The goal of this project is to generate data and reagents that help uncover critical functions of the poorly characterized members of ion channels. It focuses on co-perturbation of ion channel genes and their interacting genetic components as opposed to singly altering ion channel genes in mouse models. This approach will validate our proteomics approaches in the most definitive manner: in vivo. We see in vivo exploration as an essential step to evaluate ion channel function. Our major aims include mapping ion channel interactions and complexes using a high-throughput proteomics platform at UCSF. These data will be interrogated using integrative approaches established by the Monarch Initiative, where biochemical interactions will be validated and prioritized for further study. Another major aim is function-centric: We use mouse models for elucidation of human disease mechanisms, where we embrace a genetic interaction scheme to uncover ion channel redundancy and polygenic effects.

1U44NS111779-01
DISCOVERY OF NAV1.7 INHIBITORS FOR THE TREATMENT OF PAIN Preclinical and Translational Research in Pain Management NINDS SITEONE THERAPEUTICS, INC. MULCAHY, JOHN VINCENT; ODINK, DEBRA BOZEMAN, MT 2019
NOFO Title: Blueprint Neurotherapeutics Network (BPN): Small Molecule Drug Discovery and Development for Disorders of the Nervous System (U44 Clinical Trial Optional)
NOFO Number: PAR-18-541
Summary:

We propose to develop a safe and effective nonopioid analgesic to treat neuropathic pain that targets an isoform of the voltage-gated sodium ion channel, NaV1.7. Voltage-gated sodium channels are involved in the transmission of nociceptive signals from their site of origin in the peripheral terminals of DRG neurons to the synaptic terminals in the dorsal horn. NaV1.7 is the most abundant tetrodotoxin-sensitive sodium channel in small diameter myelinated and unmyelinated afferents, where it has been shown to modulate excitability and set the threshold for action potentials. Development of systemic NaV1.7 inhibitors has been complicated by the challenge of achieving selectivity over other NaV isoforms expressed throughout the body. We have discovered a series of potent, state-independent NaV1.7 inhibitors that exhibit >1000-fold selectivity over other human isoforms. Work conducted under this program will support advancement of a lead candidate into clinical development as a therapeutic for neuropathic pain.

1UG3HD102038-01
Effectiveness of an mHealth psychosocial intervention to prevent transition from acute to chronic postsurgical pain in adolescents Clinical Research in Pain Management Pain Management Effectiveness Research Network (ERN) NICHD SEATTLE CHILDREN'S HOSPITAL RABBITTS, JENNIFER (contact); PALERMO, TONYA M Seattle, WA 2019
NOFO Title: HEAL Initiative: Pain Management Effectiveness Research Network: Clinical Trial Planning and Implementation Cooperative Agreement (UG3/UH3 Clinical Trial Required)
NOFO Number: RFA-NS-19-021
Summary:

The study team developed an mHealth pain self-management intervention for the perioperative period (SurgeryPal) to target psychosocial risk factors and teach pain self-management skills. The goal of this proposal is to establish the effectiveness of the SurgeryPal psychosocial intervention to improve clinically meaningful outcomes in adolescents undergoing major musculoskeletal surgery, and to identify the optimal timing of intervention delivery. The study team will plan for the efficient implementation of a multisite randomized clinical trial at 25 centers in 500 youth ages 12–18 years undergoing spinal fusion surgery and their parents. Participants will be randomized to receive SurgeryPal or attention control condition during the preoperative and postoperative phases. Self-reported pain severity and interference and secondary outcomes will be assessed at baseline, 3-, and 6-months. If effective, this scalable, low cost intervention will allow broad implementation to prevent chronic postsurgical pain in youth.

1U44NS115692-01
Development and Optimization of MNK Inhibitors for the Treatment of Neuropathic Pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS 4E THERAPEUTICS INC. SAHN, JAMES JEFFREY Austin, TX 2019
NOFO Title: HEAL Initiative: Optimization of Non-addictive Therapies [Small Molecules and Biologics] to Treat Pain - (U44 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-020
Summary:

MNK-eIF4E signaling is activated in nociceptors upon exposure to pain or peripheral nerve injury, promoting cytokines and growth factors and increasing nociceptor excitability, which leads to neuropathic pain. Genetic or pharmacological inhibition of MNK signaling blocks and reverses nociceptor hyperexcitability as well as behavioral signs of neuropathic pain. A clinical phase drug for cancer shows strong specificity as an MNK inhibitor but requires optimization because MNK inhibition in the central nervous system (CNS) may lead to depression, an unacceptable side effect for a neuropathic pain drug. The research team plans a targeted medicinal chemistry and screening campaign directed at generating a MNK-inhibitor-based neuropathic pain treatment with the goal of restricting its CNS penetration while retaining potency, specificity, and in vivo bioavailability and efficacy.

1U44NS115732-01
Selective Kv7.2/3 activators for the treatment of neuropathic pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS KNOPP BIOSCIENCES, LLC SIGNORE, ARMANDO (contact); RESNICK, LYNN Pittsburgh, PA 2019
NOFO Title: HEAL Initiative: Optimization of Non-addictive Therapies [Small Molecules and Biologics] to Treat Pain
NOFO Number: RFA-NS-19-020
Summary:

The development of non-addictive pain therapeutics can help counter opioid addiction and benefit patients, including those who suffer from neuropathic pain, in particular diabetic neuropathic pain (DNP). This project’s goal is to develop a safe, efficacious, and non-addictive small-molecule drug that activates Kv7 voltage-gated potassium channels to address overactive neuronal activity in DNP. Researchers will discover Kv7 activators that favor Kv7 isoforms altered in DNP and found in dorsal root ganglia, decrease off-target side effects observed with the use of earlier non-biased Kv7 activators, and optimize the absorption, distribution, metabolism, excretion, and toxicity profiles of these activators. This screening paradigm is intended to establish a clinic-ready, well-tolerated, and widely effective product to treat neuropathic pain.

1R41NS115460-01
Minimally Invasive Intercostal Nerve Block Device to Treat Severe Pain and Reduce Usage of Opiates Cross-Cutting Research Small Business Programs NINDS TAI, CHANGFENG; POPIELARSKI, STEVE THERMAQUIL, INC. Philadelphia, PA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Technology Transfer Grant Applications (Parent STTR [R41/R42] Clinical Trial Not Allowed)
NOFO Number: PA-18-575
Summary:

Most of the 200k Americans who undergo thoracotomy each year receive opiates to reduce postoperative pain because clinicians have few non-addictive, cost-effective choices to control the severe pain patients often experience in the first two weeks after surgery. Managing pain post-thoracotomy is critical to enable patients to take deep breaths and remove (via coughing) lung secretions that otherwise significantly increase risk of pneumonia and collapsed lung, hospital re-admission and morbidity. The most severe pain associated with thoracotomy is transmitted along the intercostal nerves, but no long-term analgesic or nerve block device exists that can provide safe and effective long-term reduction of pain. A reversible, patient-controlled, non- addictive, intercostal nerve block device would reduce suffering due to thoracotomy, broken ribs and herpes zoster. In this Phase I project, the team will develop a minimally invasive thermal nerve block device that can control nerve conduction by gently warming and cooling a short nerve segment between room temperature and warm water temperature. This novel approach is based on the discovery that warm and cool temperature mechanisms of nerve block are different and additive, enabling moderate-temperature nerve block by cycling neural tissues slightly above and below body temperature. Reversible thermal nerve blocks represent a completely new approach to managing pain.  

1UH2AR076731-01
Development, Evaluation and Translation of Robotic Apparel for Alleviating Low Back Pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS HARVARD UNIVERSITY WALSH, CONOR Cambridge, MA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

A primary factor contributing to acute or recurrent back injury is overexertion via excessive peak and cumulative forces on the back and the primary factors involved in the progression of acute low back injury to chronic low back pain (cLBP) include maladaptive motor control strategies, muscle hyperactivity, reduced movement variability, and the development of fear cognitions. This project will focus on the development of robotic apparel with integrated biofeedback components that can reduce exertion; encourage safe, varied movement strategies; and promote recovery. Robotic apparel will be capable of providing supportive forces to the back and hip joints through adaptive control algorithms that respond to dynamic movements and becoming fully transparent when assistance is no longer needed. This technology can be used to prevent cLBP caused by overexertion and provide a new tool to physical therapists and the clinical community to enhance rehabilitation programs.

3U24TR001608-04S1
TIN Supplement Clinical Research in Pain Management Pain Management Effectiveness Research Network (ERN) NCATS Duke University Benjamin, Daniel K. Durham, NC 2019
NOFO Title: CTSA Network - Trial Innovation Centers (TICs) (U24)
NOFO Number: RFA-TR-15-002
1R43CA233371-01A1
Inhibiting soluble epoxide hydrolase as a treatment for chemotherapy inducedperipheral neuropathic pain Cross-Cutting Research Small Business Programs NCI EICOSIS, LLC BUCKPITT, ALAN R Davis, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

 Investigating the broader efficacy of sEH inhibition and specifically our IND candidate, EC5026, has indicated that it is efficacious against chemotherapy induced peripheral neuropathy (CIPN). This painful neuropathy develops from chemotherapy treatment, is notoriously difficult to treat, and can lead to discontinuation of life-prolonging cancer treatments. Thus, new therapeutic approaches are urgently needed. The research team will investigate if EC5026 has potential drug-drug interaction with approved chemotherapeutics or alters immune cells function, and assess the effects of sEHI on the lipid metabolome and probe for changes in endoplasmic reticulum stress and axonal outgrowth in neurons. The team proposes to more fully characterize the analgesic potential of our compound and investigate on and off target actions in CIPN models and model systems relevant to cancer therapy.

1UG3AG067593-01
Non-pharmacological Options in postoperative Hospital-based And Rehabilitation pain Management (NOHARM) pragmatic clinical trial Clinical Research in Pain Management Pragmatic and Implementation Studies for the Management of Pain to Reduce Opioid Prescribing (PRISM) NIA MAYO CLINIC ROCHESTER CHEVILLE, ANDREA LYNNE (contact); TILBURT, JON C Rochester, MN 2019
NOFO Title: HEAL Initiative: Pragmatic and Implementation Studies for the Management of Pain to Reduce Opioid Prescribing (PRISM)(UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-AT-19-004
Summary:

Prescriptions for narcotic pain relief after surgery result in unintended prolonged opioid use for hundreds of thousands of Americans. Nonpharmacological pain care is effective and recommended by guidelines for perioperative pain while offering a more favorable risk-benefit ratio. However, nonpharmacological pain care is rarely used as first or second-line therapy after surgery. Patient and clinician decision support interventions are effective in encouraging patient-centered and guideline-concordant care, but these strategies have not been tested pragmatically as a bundle in everyday postoperative pain care. The NOHARM trial will first confirm the feasibility of patient-facing and clinician-facing decision support components of an EHR-embedded evidence-based bundle. The investigators will test the bundle in a stepped-wedge cluster randomized trial. They will test a sustainable system strategy that could change the paradigm of perioperative pain management toward nonpharmacological options in a manner that preserves patient function, honors patient values, and maintains availability of opioids as a last resort.