Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Sort descending Institution(s) Investigator(s) Location(s) Year Awarded
1R61HL156248-01
Intranasal Leptin as A Novel Treatment of Opioid-Induced Respiratory Depression Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NHLBI JOHNS HOPKINS UNIVERSITY POLOTSKY, VSEVOLOD Y Baltimore, MD 2020
NOFO Title: HEAL Initiative: Pharmacotherapies to Reverse Opioid Overdose Induced Respiratory Depression without Central Opioid Withdrawal (Target Validation and Candidate Therapeutic Development (R61/R33 - Clinical Trial Not Allowed)
NOFO Number: RFA-HL-20-031
1R61HL156240-01
Treatment of Fentanyl Overdose-Induced Respiratory Failure by Low-Dose Dexmedetomidine Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NHLBI PENNSYLVANIA STATE UNIV HERSHEY MED CTR HAOUZI, PHILIPPE A Hershey, PA 2020
NOFO Title: HEAL Initiative: Pharmacotherapies to Reverse Opioid Overdose Induced Respiratory Depression without Central Opioid Withdrawal (Target Validation and Candidate Therapeutic Development (R61/R33 - Clinical Trial Not Allowed)
NOFO Number: RFA-HL-20-031
1UG3DA047708-01
Development of a safe and effective novel mechanism analgesic to treat moderate to severe pain with low or absent abuse liability. Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA ARTYS BIOTECH, LLC LARK, MICHAEL WILLIAM; ZADINA, JAMES E Plymouth Meeting, PA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Chronic pain affects an estimated 100 million Americans, or one third of the U.S. population, and it is the primary reason Americans are on disability. Although many treatments are available for pain, the most potent class of analgesics relies on opioid analogs, whose limitations and well-known adverse effects have contributed to the present opioid crisis. New pharmacotherapies for pain management are sorely needed. MTX1604, a synthetic endomorphin analog, has emerged as a highly effective analgesic that exhibits reduced reward potential and respiratory suppression, and a robust duration of efficacy in a variety of validated animal models of acute, neuropathic, inflammatory, post-operative, and visceral pain. This project will generate additional preclinical characterization data of MTX1604 and advance clinical development toward FDA approval. If successful, this medication development project could offer patients a novel non-addictive, potent, and safe analgesic and thus have a direct impact on the opioid crisis.

1U01DA057846-01
Transdermal Rotigotine as Adjunct to Behavioral Therapy for Cocaine Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA VIRGINIA COMMONWEALTH UNIVERSITY BJORK, JAMES M; ARIAS, ALBERT JOSEPH Richmond, VA 2022
NOFO Title: Grand Opportunity in Medications Development for Substance-Use Disorders (U01)
NOFO Number: PAR-19-327
Summary:

Currently no medications are approved by the U.S. Food and Drug Administration to treat cocaine use disorder, which compromises cognitive function associated with achieving goals such as working memory, the ability to update information, and mental flexibility. This project will test whether  stimulating dopamine activity in the brain with the drug rotigotine (approved to treat Parkinson’s disease) is effective for treating cocaine use disorder. Past research has also shown that rotigotine can improve nerve cell and cognitive function in Alzheimer’s disease. This project will conduct a clinical trial to test whether treatment with rotigotine combined with cognitive behavioral therapy can reduce cocaine use in people with cocaine use disorder.

5UG3DA047714-02
Feasibility of Deep Brain Stimulation as a Novel Treatment for Refractory Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA WEST VIRGINIA UNIVERSITY Rezai, Ali R Morgantown, WV 2019
NOFO Title: Device-Based Treatments for Substance Use Disorders (UG3/UH3, Clinical Trial Optional)
NOFO Number: PAR-18-494
1UG3DA052282-01
NOP Receptor Antagonist for OUD Pharmacotherapy Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA UNIVERSITY OF TEXAS MED BR GALVESTON Cunningham, Kathryn Galveston, TX 2020
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Medication-based treatment for opioid use disorder OUD aids in reducing mortality, opioid withdrawal, intake and opioid-seeking behaviors, however there is a clear need to increase the armamentarium of therapeutics for OUD. The ?non-classical? NOcicePtin receptor (NOPr) binds the endogenous neuropeptide nociceptin/orphanin FQ (N/OFQ) and is a promising target based on the evidence for its function in the regulation of the rewarding and motivational effects of opioids and alcohol. This study plans to assess the ability of the novel and selective NOPr antagonist BTRX-246040 to block oxycodone intake without abuse liability, and to suppress oxycodone withdrawal and relapse-like behaviors in rats. The study will also determine Drug Metabolism and Pharmacokinetics interactions (DMPK) between oxycodone and BTRX-246040 and brain penetrability in male and female rats. If successful, these preclinical studies will be followed by a Phase 1 clinical trial in non-treatment seeking OUD participants. These investigations will advance the prospects of validating a novel medication for OUD.

1UG3DA050325-01
Use of a GLP-1 Agonist to Treat Opioid Use Disorder in Rats and Man Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Pennsylvania State University Hershey Medical Center Grigson, Patricia Hershey, PA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

High relapse rates among people with opioid use disorder (OUD) indicate that addiction involves appetitive pathways. Peripheral stimulation of the glucagon-like peptide-1 receptor (GLP-1R) “satiety” pathway could reduce heroin seeking and taking. Pretreatment with a GLP-1R agonist reduces heroin taking, seeking, and drug-induced reinstatement in rats. This project tests whether GLP-1R agonists can reduce relapse in humans with OUD. A pilot study will be conducted to determine whether once-daily treatment with the shorter acting GLP-1R agonist, liraglutide, can safely and effectively reduce cravings among OUD patients. Animal models will be used to test the efficacy and safety of a longer-acting GLP-1R agonist, semaglutide, and then a clinical trial will be conducted to test whether semaglutide will reduce relapse and use in animal models. If successful, the study will show that treatment with GLP-1R agonists can safely and effectively reduce opioid craving, seeking, and relapse.

3UG3DA048502-01A1S2
Non-invasive vagal nerve stimulation in opioid use disorders Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA EMORY UNIVERSITY BREMNER, JAMES DOUGLAS Atlanta, GA 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

This research will expand the understanding of the effects of non-invasive vagal nerve stimulation on patients with opioid use disorder by examining the relationship between nerve stimulation and treatment, respiratory physiology, withdrawal symptoms, and relapse. Additionally, these relationships will be added to existing algorithms and equipment being developed by the Inan Research Lab at the Georgia Institute of Technology. Collecting and determining the quality of conventional respiration signals, as well as collecting high-resolution impedance based respiratory measurements, will help to determine the impact of non-invasive vagal nerve stimulation on breathing and lung function in people with opioid use disorder, toward development of a profile of physiological effects of non-invasive vagal nerve stimulation during opioid withdrawal.

1UG3DA048508-01
Combined tDCS and Cognitive Training for the Treatment of Opioid Addiction Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA University of Minnesota Lim, Kelvin Minneapolis, MN 2019
NOFO Title: Device-Based Treatments for Substance Use Disorders (UG3/UH3, Clinical Trial Optional)
NOFO Number: PAR-18-494
1UG3DA053094-01A1
The Development of Delta Opioid Receptor Agonists for the Treatment of Opioid Withdrawal Associated Behaviors Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA UNIVERSITY OF ILLINOIS AT CHICAGO PRADHAN, AMYNAH AMIR ALI Chicago, IL 2022
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: PAR-20-092
Summary:

This project aims to develop a new way to stimulate the delta opioid receptor to treat withdrawal and abstinence from chronic opioid use. Withdrawal can cause pain, depression, and anxiety, which contribute to relapse. The research will test promising drug candidates in animal models with the intention of bringing at least one effective and safe compound to the final stage of drug development before human clinical trials can begin.

1UG3DA050303-01
Development of an implantable closed-loop system for delivery of naloxone for the prevention of opioid-related overdose deaths Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Washington University Rogers, John St. Louis, MO 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Current opioid overdose treatment requires administration of naloxone by first responders, which requires timely identification of the overdose, the need for a rescue injection, and immediate availability of the medication. The development of a fail-safe treatment that would provide a life-saving dose of naloxone without the need for intervention by another party could significantly reduce mortality. The researchers aim to develop a new medical device comprising an implantable, closed-loop system that senses the presence of an opioid overdose, automatically administers a life-saving bolus injection of naloxone, and simultaneously alerts first responders.

3UG3DA047793-01S1
tDCS to decrease opioid relapse Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA BUTLER HOSPITAL (PROVIDENCE, RI) Abrantes, Ana M Providence, RI 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Neurostimulation techniques, such as transcranial direct current stimulation (tDCS), have been used as interventions for substance use disorders. This is a supplement to the currently NIDA-funded UG3 DA047793, “tDCS to Decrease Opioid Relapse,” which will measure behavioral and brain responses following tDCS stimulation delivered during tasks that use a particular brain network involved in cognitive control, and utilizing FMRI to assess the effects. This supplement allows the researchers to add an EEG measurement to the study, to get a complete picture of how tDCS might affect the function of key brain networks in ways that could be helpful for SUDs.

1UG3DA051383-01A1
Brexpiprazole as an Adjunctive Treatment to Buprenorhpine to Treat Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA OTSUKA PHARMACEUTICAL DEVELOPMENT & COMMERCIALIZATION, INC. Forbes, Andy Princeton, NJ 2020
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Over 2 million Americans have an Opioid Use Disorder (OUD) and the risks associated with misuse of opioids have prompted a public health crisis. There are three effective FDA-approved drugs for medication assisted treatment (MAT) of OUD. However, while MAT can reduce overall OUD related mortality by as much as fifty percent, relapse and treatment discontinuation are common within the first 5 to 12 weeks of MAT. As longer treatment retention is correlated with better long-term outcomes, the development of an adjunctive medication to alleviate key psychiatric symptoms associated with treatment failure would address an important unmet need. This study seeks to evaluate the safety and efficacy of brexpiprazole as adjunctive treatment to buprenorphine/naloxone in OUD. If successful, this study could enhance the effectiveness of OUD treatments by extending the duration of treatment, thereby reducing the likelihood for relapse and overdose.

1R34DA046730-01
Web-Based Treatment for Perinatal Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA MEDICAL UNIVERSITY OF SOUTH CAROLINA Guille, Constance Charleston, SC 2019
NOFO Title: Behavioral & Integrative Treatment Development Program (R34)
NOFO Number: PA-16-073
Summary:

The increased risk of maternal, obstetric, and newborn morbidity and mortality associated with perinatal prescription opioid (PO) misuse and opioid use disorder (OUD) is well established. Despite clear advances in maternal, fetal, and newborn health with treatment of perinatal opioid misuse and OUD, much work remains. Preliminary data has demonstrated significant reductions in opioid misuse as a result of our Cognitive Behavioral Therapy (CBT) program for pain combined with shared decision making for medication management for pregnant women misusing POs or with OUD (including heroin). However, access to the program is still limited and several obstacles to its expansion remain. This proposal will fill this critical gap by converting their CBT intervention from in-person sessions to a web-based interface. The proposed research will result in a critical advance in the management of opioid use and abuse during pregnancy and prevent both the acute and long-term risks associated with pre- and perinatal PO misuse and OUD, including overdose and death.

1UG3DA054785-01A1
Development of Specific Mu Opioid Receptor Antagonists to Reverse the Acute and Chronic Toxicity of Fentanyls Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Virginia Commonwealth University ZHANG, YAN Richmond, Virginia 2022
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: PAR-20-092
Summary:

Fentanyl and its analogs are synthetic opioids that are 100 to 10,000 times more potent than morphine. Overdose from these opioids is extremely dangerous due to their ultra-potency and longer half-life than naloxone, the front-line treatment for fentanyl overdose. This research study will develop novel mu opioid receptor antagonists that bind to the same receptor as the opioid drugs and specifically counteract fentanyl and its analogs, thereby reversing the drugs’ acute toxicity more effectively and with fewer side effects than current treatments. The researchers will characterize novel fentanyl derivatives, identify promising compounds, and pursue preclinical development of these compounds as novel reversal agents against the acute toxicity of fentanyl. The goal is to file an Investigational New Drug application with the U.S. Food and Drug Administration.

1R01DA057120-01
Characterization, Optimization, and Development of Dual mGlu2/3 Positive Allosteric Modulators for Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Sanford Burnham Prebys Medical Discovery Institute COSFORD, NICHOLAS DAVID; VELICELEBI, GONUL La Jolla, CA 2022
NOFO Title: Strategic Alliances for Medications Development to Treat Substance Use Disorders (R01Clinical Trial Optional)
NOFO Number: PAR-19-318
Summary:

Given recent increases in co-use of opioids and methamphetamine, there is a dire need for novel treatment strategies that prevent relapse to drug use in both opioid use disorder (OUD) and methamphetamine use disorder (MUD). The localization of certain receptors for the neurotransmitter glutamate—metabotropic glutamate receptor subtypes 2 and 3 (mGlu2/3)—and the mechanism through which they transmit signals, strongly suggest that activation of both of these receptors will effectively treat multiple symptoms that contribute to relapse, such as responsiveness to drug cues, physical withdrawal symptoms, neuroinflammation, and sleep disturbances. This project seeks to evaluate molecules that can activate mGlu2/3 receptors without binding to the same site as glutamate (i.e., positive allosteric modulators) as a novel pharmacological treatment for preventing relapse to OUD. The research also will examine the potential of such modulators for treating MUD.

1R21DA047662-01
Human laboratory model to screen drugs with opioid analgesic-sparing effects: cannabidiol/morphine combinations Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA WAYNE STATE UNIVERSITY Lundahl, Leslie H Detroit, MI 2019
NOFO Title: NIH Exploratory/Developmental Research Grant Program (Parent R21 Clinical Trial Required)
NOFO Number: PA-18-344
Summary:

Chronic pain is a significant public health problem associated with tremendous personal and economic burden. First-line treatment consists of opioid medications, but despite only moderate efficacy and unpleasant side effects, rates of opioid prescriptions have quadrupled over the past 15 years, and this has contributed to high rates of misuse, overdose, and mortality. Clearly, alternative, or non-opioid strategies for treating pain are needed. In this context, “opioid-sparing” medications refer to compounds that can be combined with and enhance the analgesic effects of lower-dose opioids without increasing the rewarding properties of either drug. There is preclinical evidence suggesting that cannabidiol (CBD) may have the potential to function as “opioid-sparing” medications, but its ability to alter opioid-mediated analgesia in humans has yet to be determined. This proposal will fill this gap by conducting a double-blind, placebo-controlled, within-subject randomized crossover study of the effects of CBD and morphine co-administration on pain sensitivity and subjective reinforcement on 28 healthy males and females. This is the first known study to investigate the ability of CBD to alter morphine’s analgesic effects in humans. If successful, the model will have a lasting impact on our ability to develop and test medications that reduce our reliance on chronic use of opioid medications for pain relief.

1UG3DA056247-01
Phase 1 and 2 Studies of Sublingual Dexmedetomidine, an Alpha 2 Adrenergic Agonist, for Treating Opioid Withdrawal Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA NEW YORK STATE PSYCHIATRIC INSTITUTE dba RESEARCH FOUNDATION FOR MENTAL HYGIENE, INC LEVIN, FRANCES RUDNICK New York, NY 2022
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: PAR-20-092
Summary:

Withdrawal symptoms associated with current opioid use disorder treatments, such as naltrexone or buprenorphine, can be serious obstacles to successful treatment. This project aims to develop a U.S. Food and Drug Administration-approved sedative medication (dexmedetomidine) as an under-the-tongue film to treat opioid withdrawal symptoms at doses that have minimal ill effects on blood pressure and heart rate. This research will compare the safety and efficacy of dexmedetomidine to lofexidine, which is currently approved to treat opioid withdrawal.

1UG3DA049598-01
Novel Therapeutics for Opioid Use Disorder in the Acute Overdose and Maintenance Settings Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Epiodyne, Inc. Schmidt, William San Francisco, CA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Opioid use disorder (OUD) and opioid overdose (OD) are major health issues. Breathing can be restored after OD by naloxone, but its short half-life can require multiple administrations to reverse OD, and OD symptoms may return after initial reversal if illicit opioids are still present after the effects of naloxone have worn off. Additionally, while the standard treatment of OUD with buprenorphine and methadone reduces relapse and mortality, access and adoption are limited by dosage forms, metabolic liabilities, and potential for misuse and diversion. This study seeks to develop chemically novel, potent mu-opioid receptor (MOR) antagonists and low- and mid-efficacy partial agonists. Current lead counts can outcompete opioid overdoses in preclinical models with a longer half-life, a key naloxone liability for treating OD. The potent, low-efficacy partial agonists add a low opioid tone, diminishing the aversive effects of pure antagonists. These, and the mid-efficacy partial agonists, are leads to maintenance therapeutics for OUD.

1UG3DA048745-01A1
Nalmefene Long-Acting Injectable (AP007) for the Treatment of Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Emergent Product Development Gaithersburg Inc. Barry, John Gaithersburg, MD 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Although medications are available to treat opioid use disorder (OUD), adherence with treatment programs remains a problem. Nalmefene is an opioid receptor antagonist that was previously approved for treatment of opioid overdose–induced respiratory depression that has a longer duration of action than naloxone. AP007 is a unique formulation of nalmefene-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles that when injected intramuscularly continually releases an effective dose of nalmefene and thus reduces opioid cravings in OUD patients. This group is developing AP007 and will have a lead formulation selected based on in vitro release kinetics data and in vivo pharmacokinetics data in rats. The objectives of the project are to determine safety and efficacy of AP007 in a swine opioid use/withdrawal model, preliminary safety in a first-in-human Phase 1 study, and preliminary efficacy in a Phase 2a multidose study. These results will be used to develop Phase 2 human and Phase 3 clinical studies.

1U01DA051071-01A1
Process Development, Manufacturing, and Preclinical Evaluation of a Monoclonal Antibody for Fentanyl Overdose Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA CESSATION THERAPEUTICS, LLC Bremer, Paul T. San Jose, CA 2020
NOFO Title: Grand Opportunity in Medications Development for Substance-Use Disorders (U01 - Clinical Trial Optional)
NOFO Number: PAR-19-327
Summary:

Opioid use disorder (OUD) is a significant public health problem in the United States. Particularly troubling is the rapid evolution of an opioid epidemic within the past decade, characterized by a surge in unintentional overdose deaths involving synthetic opioids, such as fentanyl. The current standard of care for opioid overdose is reversal with opioid antagonist naloxone. Naloxone is effective at reversing overdose from prescription opioids and heroin, but less effective when combating fentanyl, due to fentanyl?s high potency. Therapeutic monoclonal antibodies (mAbs) against fentanyl could overcome this problem by specifically preventing the drug from entering the central nervous system, averting overdose and attenuating opioid-induced respiratory depression. This study will develop and design of laboratory protocols needed to establish a Good Manufacturing Practice (GMP) process, quality assurance protocol, and stability profile for a new human mAb against fentanyl. Subsequent production of current GMP material will enable Good Laboratory Practice (GLP) toxicology studies in rats and dogs and eventually a Phase I/IIa clinical trial. This material will also be used in final opioid-induced respiratory depression studies in mice and non-human primates to confirm therapeutic efficacy of final drug product. If successful, these activities will enable filing for an investigational new drug application for this mAb candidate with the FDA.

1R03DA046011-01A1
Opioid sparing potential of light-induced analgesia: a pilot trial of a novel, non-pharmacological treatment for pain Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA DUKE UNIVERSITY Gulur, Padma Durham, NC 2019
NOFO Title: NIDA Small Research Grant Program (R03 Clinical Trial Required)
NOFO Number: PA-18-634
Summary:

Exposure to opioid analgesics during medical care is a key driver of the opioid epidemic. Such exposures are widespread. Yet opioids remain essential first-line agents in treating pain, and it remains vital that pain be appropriately managed. Non-opioid pain treatments help to resolve the opioid/pain conflict. This project will examine the opioid-sparing and pain-relieving potential of a novel, non-pharmacological treatment for pain, using the effects of green light exposure to reduce pain and thereby reduce the quantity of opioids needed for pain relief.

1UG3DA048767-01
Development of a Soluble Epoxide Hydrolase Inhibitor to Spare or Replace Opioid Analgesics Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Eicosis, LLC Hammock, Bruce Davis, CA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

EicOsis is developing a first-in-class analgesic with efficacy against neuropathic pain that will reduce or replace the need for opioids and thus potentially prevent opioid use disorder (OUD). The target of the small molecule inhibitor EC5026 is the soluble epoxide hydrolase, a master regulatory enzyme that modulates the activity of endogenous bioactive lipids. The study will reach the next steps in clinical human clinical trials with EC5026 through additional preclinical studies to expand the efficacy into models of chronic pain conditions. Additionally, detailed pharmacokinetic, metabolism, and distribution studies are proposed that will provide the required information to optimize drug formulation and for advanced clinical trials examining efficacy in humans. EicOsis is meeting current development goals, and EC5026 is well positioned to meet the urgent need of reducing opioid use.

1R01DA056660-01
Target Specificity of Tabernanthalog Treatment in Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA University of Colorado, Denver PETERS, JAMIE (contact); HEINSBROEK, JASPER Denver, Colorado 2022
NOFO Title: HEAL Initiative: Novel Targets for Opioid Use Disorders and Opioid Overdose (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-22-031
Summary:

Currently available treatments for opioid use disorder (OUD) are insufficient for many patients. Novel compounds that can promote alterations in brain connections (i.e., neural plasticity) possess enormous potential for improving substance use disorder (SUD) treatments. Psychedelic compounds induce neural plasticity and can elicit long-lasting, beneficial impacts on a wide variety of SUDs. However, these compounds have significant side effects, including hallucinations and cardiotoxicity. Researchers have developed a novel, synthetic derivative of the psychedelic ibogaine, called tabernanthalog, that does not have these side effects. This compound has demonstrated both short- and long-term therapeutic effects in a preclinical model of OUD. This research study will determine the molecular and neural mechanisms through which tabernanthalog affects opioid seeking. It will also evaluate whether the effects are specific to opioids and do not alter response to natural rewards and will examine the efficacy of tabernanthalog in a preclinical model of comorbid opioid and alcohol use disorder.

1UG3DA048743-01
Advancing KNX100 for the treatment of opioid withdrawal: preclinical efficacy and toxicology, and a phase 1 clinical program. Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Kinoxis Therapeutics, PTY LTD MacGregor, Iain Camberwell, Vic, Australia 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Kinoxis has developed a novel small-molecule lead, KNX100, that reduces the severity of opioid withdrawal symptoms in preclinical animal models of opioid use disorder (OUD). KNX100 was discovered from a phenotypic screen of compounds derived from a fragment-based drug discovery program targeting the brain oxytocin system. KNX100 has a favorable pharmacokinetic and safety profile and has undergone testing for efficacy signals in two rodents and two non-human primate species. The proposed activity is to progress the development of KNX100 to treat opioid withdrawal in OUD. The overall objective of the project is to establish the safety and tolerability of KNX100 to enable human efficacy testing to commence in patients requiring treatment for opioid withdrawal. The long-term objective for this development program is to generate human efficacy data to support KNX100 as a potential treatment for opioid withdrawal symptoms and ultimately enable a New Drug Application to the FDA.