Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Sort descending Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded
1R01DA045695-01A1 Treating Chronic Pain in Buprenorphine Patients in Primary Care Settings Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA BOSTON UNIVERSITY MEDICAL CAMPUS Stein, Michael D; Weisberg, Risa B Boston, MA 2019
NOFO Title: Behavioral & Integrative Treatment Development Program (R01 Clinical Trial Optional)
NOFO Number: PA-18-055
Summary:

Often (around 40 percent of the time), individuals being treated for opioid use disorder (OUD) also have pain that interferes with daily life. This study builds on the prior development of a collaborative primary care approach, entitled TOPPS (Treating Opioid Patients’ Pain and Sadness), in which behavioral health specialists and primary care providers share a unified plan for addressing pain and depression in patients receiving buprenorphine. Building in preliminary work, researchers are conducting a randomized controlled trial of TOPPS compared to a health education contact-control condition among 250 persons with OUD recruited from two primary care-based buprenorphine programs, provided over 3 months and followed over 12 months. The study will examine whether this intervention changes how much pain interferes with daily functioning, the severity of pain, depression, and whether individuals stay in OUD treatment.

1R01DA046532-01A1 Evaluation of drug mixtures for treating pain: behavioral and pharmacological interactions between opioids and serotonin agonists Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA UNIVERSITY OF TEXAS HLTH SCIENCE CENTER Maguire, David Richard San Antonio, TX 2019
NOFO Title: NIH Research Project Grant (Parent R01 Clinical Trial Not Allowed)
NOFO Number: PA-18-484
Summary:

Opioids remain the gold standard for treating moderate to severe pain, but their use is limited by numerous adverse effects, including tolerance, dependence, abuse, and overdose. Adverse effects could be avoided by combining an opioid with another drug, such that smaller doses of the opioid (in combination with another drug) produce the desired therapeutic effect. Direct-acting serotonin type 2 (5-HT2) receptor agonists interact in a synergistic manner with the opioid morphine to produce antinociceptive effects, suggesting a 5-HT2 receptor agonist could be combined with small amounts of an opioid to treat pain, thereby lowering the risk associated with larger doses. Unfortunately, very little is known about interactions between 5-HT2 receptor agonists and other opioids. The proposed studies will evaluate the therapeutic potential of mixtures of opioids and 5-HT2 receptor agonists using highly translatable and well-established procedures to characterize the antinociceptive, respiratory-depressant (overdose), positive-reinforcing (leading to misuse), and discriminative-stimulus (subjective) effects of drug mixtures as well as the impact of chronic treatment on the development of tolerance to and physical dependence on opioids. If successful, these studies will provide proof-of-concept for this innovative approach to pain treatment and evaluate the utility of targeting 5-HT receptors for analgesic drug development.

1R01DA047094-01A1 Guanfacine Target Engagement and Validation to Improve Substance Use Outcomes in Women Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA YALE UNIVERSITY Sinha, Rajita New Haven, CT 2019
NOFO Title: NIH Research Project Grant (Parent R01 Clinical Trial Required)
NOFO Number: PA-18-345
Summary:

There are currently no FDA-approved treatments for cocaine use disorder (CUD) or co-occurring substance use disorder. High relapse rates pose a major obstacle to treatment, and this is due in part to the way that high drug cravings reduce individuals’ cognitive flexibility in situations where they are stressed or exposed to drug-related cues. These effects appear to be stronger in women with CUD than in men. Building on preliminary data that a drug called Guanfacine reverses these effects in women, but not in men, this 3-year pilot clinical study will test whether Guanfacine will reduce cocaine use and increase abstinence and will use laboratory challenges to determine whether it reduces cravings and enhances cognitive flexibility in stressful or drug-cue-related situations.

1R01DA047574-01 In vivo characterization of opioid biased agonists Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA MCLEAN HOSPITAL Paronis, Carol A; Bergman, Jack Belmont, MA 2019
NOFO Title: Prescription Drug Abuse (R01 Clinical Trial Optional)
NOFO Number: PA-18-058
Summary:

The ongoing opioid crisis has led to renewed concerns about the clinical prescription of addictive opioid analgesics. However, there are currently no suitable alternatives for treating severe or malignant pain. Studies of opioid signaling mechanisms in mice deficient in ?-arrestin have suggested that biased agonists displaying preferential activation of G-protein signaling over ?-arrestin signaling could offer a promising avenue for the development of opioid analgesics with a reduced adverse effects profile. However, there is no concluding evidence showing that such biased signaling can indeed be associated with reduced opioid side effects and, consequently, an improved safety profile. This research will address the need for preclinical data to rigorously evaluate this hypothesis with a program of in vivo studies to compare the effects of “balanced” opioids (morphine, oxycodone, and fentanyl) with that of the “biased” agonists PZM21 and two novel ligands provided by colleagues at the NIDA IRP in nonhuman primates. The results of these studies will provide critical information regarding the dependence liability of “biased” agonists that, in clinical practice, might be given on a repeated, or chronic, basis, potentially adding a powerful new tool for the safer management of severe or malignant pain.

1R01DA048417-01 A novel opioid receptor antagonist for treating abuse and overdose Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA UNIVERSITY OF TEXAS HLTH SCIENCE CENTER France, Charles P San Antonio, TX 2019
NOFO Title: NIH Research Project Grant (Parent R01 Clinical Trial Not Allowed)
NOFO Number: PA-18-484
Summary:

Deaths from opioid overdose continue to rise; from 2015 to 2016, there was a 28 percent increase in the number of fatal overdoses. Currently available pharmacotherapies include MOR agonists (e.g., buprenorphine) and antagonists (e.g., naloxone), all of which suffer from specific and clear limitations. To address the main deficits in these treatments, the researchers will develop and optimize medications with longer duration of action that prevent and reverse the effects of opioids in a manner that is not surmounted by increasing doses of agonist. Their pilot studies in monkeys show that the pseudo irreversible MOR selective antagonist methocinnamox (MCAM) decreases heroin but not cocaine self-administration, decreases choice for remifentanil in a food/drug choice procedure, and reverses—as well as protects against—respiratory depression by heroin, with a single injection being effective for a week or longer. Bringing a medication like this to marketable fruition could significantly improve the treatment of OUD and save lives by providing insurmountable extended protection after rescue from overdose, including from ultra-potent fentanyl analogs.

1R01DA056608-01 Endocannabinoid Targeting for Opioid Induced Respiratory Depression Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA University of Arizona MILNES, TALLY MARIE (contact); VANDERAH, TODD W Tucson, Arizona 2022
NOFO Title: HEAL Initiative: Novel Targets for Opioid Use Disorders and Opioid Overdose (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-22-031
Summary:

This research project will investigate the cannabinoid receptor 2 protein (CB2R) as a novel therapeutic target for opioid-induced respiratory depression caused by fentanyl, oxycodone, and heroin. This study will shed light on how the endocannabinoid system in the brainstem works to control breathing under normal conditions and during opioid-induced respiratory depression. The research aims to determine whether activation of the CB2R with a brain-penetrant CB2R-binding molecule is safe and clinically useful for treating opioid overdose prevention and reversal. This research will pave the way for discovering new medications that activate CB2R to reduce opioid-related deaths.

1R01DA056646-01 Ghrelin Deacylase as a Treatment for Opioid Polysubstance Abuse Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA University of Kentucky Research Foundation ZHAN, CHANG-GUO (contact); ZHENG, FANG Lexington, KY 2022
NOFO Title: HEAL Initiative: Novel Targets for Opioid Use Disorders and Opioid Overdose (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-22-031
Summary:

There is an urgent need for novel substance use disorder treatments aimed at treating polysubstance use disorders, such as opioid and methamphetamine co-use. One promising new target is the peptide ghrelin, which recent studies have implicated in drug- and reward-relevant behaviors. This research project will investigate the recently identified enzyme, ghrelin deacylase, that affects the activity of ghrelin to attenuate the rewarding and reinforcing effects of fentanyl and heroin in combination with methamphetamine. The researchers will also design and test new, long-acting forms of ghrelin deacylase that may be potential therapeutic candidates for the treatment of polysubstance use disorders.

1R01DA056658-01 Transcriptomic Single-Cell Profiling in Breathing-Specific Parabrachial Mu-Opioid Receptor Neurons Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Salk Institute for Biological Sciences HAN, SUNG La Jolla, CA 2022
NOFO Title: HEAL Initiative: Novel Targets for Opioid Use Disorders and Opioid Overdose (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-22-031
Summary:

Opioids can be effective analgesics but can also be fatal due to opioid-induced respiratory depression after overdose. This project will use cutting-edge molecular, physiological, behavioral, and imaging techniques to better understand and distinguish opioid-induced respiratory depression and opioid-mediated analgesia. Nerve cell-specific, single-cell transcriptomic analysis will be used to identify functional markers expressed in nerve cells that play a specific role in opioid-induced respiratory depression, but not opioid analgesia. This research study will help to identify novel therapeutic targets that could selectively rescue opioid-induced respiratory depression while maintaining the beneficial pain-relieving effects of opioids. 

1R01DA056660-01 Target Specificity of Tabernanthalog Treatment in Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA University of Colorado, Denver PETERS, JAMIE (contact); HEINSBROEK, JASPER Denver, Colorado 2022
NOFO Title: HEAL Initiative: Novel Targets for Opioid Use Disorders and Opioid Overdose (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-22-031
Summary:

Currently available treatments for opioid use disorder (OUD) are insufficient for many patients. Novel compounds that can promote alterations in brain connections (i.e., neural plasticity) possess enormous potential for improving substance use disorder (SUD) treatments. Psychedelic compounds induce neural plasticity and can elicit long-lasting, beneficial impacts on a wide variety of SUDs. However, these compounds have significant side effects, including hallucinations and cardiotoxicity. Researchers have developed a novel, synthetic derivative of the psychedelic ibogaine, called tabernanthalog, that does not have these side effects. This compound has demonstrated both short- and long-term therapeutic effects in a preclinical model of OUD. This research study will determine the molecular and neural mechanisms through which tabernanthalog affects opioid seeking. It will also evaluate whether the effects are specific to opioids and do not alter response to natural rewards and will examine the efficacy of tabernanthalog in a preclinical model of comorbid opioid and alcohol use disorder.

1R01DA056673-01 Targeting Tiam1-Mediated Synaptic Plasticity for the Relief of Opioid Tolerance Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Baylor College of Medicine LI, LINGYONG (contact); TOLIAS, KIMBERLY Houston, TX 2022
NOFO Title: HEAL Initiative: Novel Targets for Opioid Use Disorders and Opioid Overdose (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-22-031
Summary:

Chronic opioid use results in tolerance, a primary driver for opioid misuse and overdose that directly contribute to increased morbidity and mortality. Changes in neuronal connectivity known as synaptic plasticity are a key determinant of opioid tolerance, but the underlying molecular mechanisms remain unclear. Tiam1 is a protein known to control the development of nerve cells and their connections and is also involved in morphine-induced neuronal changes. This research will examine Tiam1-mediated synaptic plasticity underlying opioid tolerance and validate Tiam1 as a potential therapeutic target for prevention of tolerance development.

1R01DA056675-01 Domain-Specific Inhibition of Angiotensin-Converting Enzyme as a Therapeutic Strategy for Opioid Use Disorders Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA University of Minnesota ROTHWELL, PATRICK (contact); MORE, SWATI S Minneapolis, MN 2022
NOFO Title: HEAL Initiative: Novel Targets for Opioid Use Disorders and Opioid Overdose (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-22-031
Summary:

Novel treatments for opioid use disorder are urgently needed. Previous research has shown that angiotensin-converting enzyme (ACE) can control levels and activity of natural, “endogenous,” opioids in a way that might reduce the rewarding effects of opioids like fentanyl. ACE inhibitors have been used to treat hypertension for decades, with no evidence of addiction or dependence. This research will evaluate ACE effects on endogenous opioids toward generating new, domain-specific ACE inhibitors with optimized properties for treating opioid use disorder. The research will also test the behavioral impact of these compounds in preclinical models of opioid use disorder. 

1R01DA056828-01 Brain-Penetrant GPR88 Agonists as Novel Therapeutics for Opioid Abuse Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Sanford Burnham Prebys Medical Discovery Institute SMITH, LAYTON HARRIS; KENNY, PAUL J La Jolla, CA 2022
NOFO Title: HEAL Initiative: Novel Targets for Opioid Use Disorders and Opioid Overdose (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-22-031
Summary:

Opioid dependence is a leading cause of premature illness and death. Previous research suggests that a protein called G-protein coupled receptor (GPR88) controls many addiction-relevant behavioral and physiological actions of opioids. This research study will validate GPR88 as a drug target for opioid use disorder as well as develop novel, brain-penetrant GPR88-binding molecules with properties optimized for treating opioid dependence. This research is an initial step toward the goal of developing GPR88-binding molecules as novel therapeutics to facilitate abstinence in people dependent on opioids.

1R01DA057120-01 Characterization, Optimization, and Development of Dual mGlu2/3 Positive Allosteric Modulators for Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Sanford Burnham Prebys Medical Discovery Institute COSFORD, NICHOLAS DAVID; VELICELEBI, GONUL La Jolla, CA 2022
NOFO Title: Strategic Alliances for Medications Development to Treat Substance Use Disorders (R01Clinical Trial Optional)
NOFO Number: PAR-19-318
Summary:

Given recent increases in co-use of opioids and methamphetamine, there is a dire need for novel treatment strategies that prevent relapse to drug use in both opioid use disorder (OUD) and methamphetamine use disorder (MUD). The localization of certain receptors for the neurotransmitter glutamate—metabotropic glutamate receptor subtypes 2 and 3 (mGlu2/3)—and the mechanism through which they transmit signals, strongly suggest that activation of both of these receptors will effectively treat multiple symptoms that contribute to relapse, such as responsiveness to drug cues, physical withdrawal symptoms, neuroinflammation, and sleep disturbances. This project seeks to evaluate molecules that can activate mGlu2/3 receptors without binding to the same site as glutamate (i.e., positive allosteric modulators) as a novel pharmacological treatment for preventing relapse to OUD. The research also will examine the potential of such modulators for treating MUD.

1R03DA046011-01A1 Opioid sparing potential of light-induced analgesia: a pilot trial of a novel, non-pharmacological treatment for pain Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA DUKE UNIVERSITY Gulur, Padma Durham, NC 2019
NOFO Title: NIDA Small Research Grant Program (R03 Clinical Trial Required)
NOFO Number: PA-18-634
Summary:

Exposure to opioid analgesics during medical care is a key driver of the opioid epidemic. Such exposures are widespread. Yet opioids remain essential first-line agents in treating pain, and it remains vital that pain be appropriately managed. Non-opioid pain treatments help to resolve the opioid/pain conflict. This project will examine the opioid-sparing and pain-relieving potential of a novel, non-pharmacological treatment for pain, using the effects of green light exposure to reduce pain and thereby reduce the quantity of opioids needed for pain relief.

1R21DA047662-01 Human laboratory model to screen drugs with opioid analgesic-sparing effects: cannabidiol/morphine combinations Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA WAYNE STATE UNIVERSITY Lundahl, Leslie H Detroit, MI 2019
NOFO Title: NIH Exploratory/Developmental Research Grant Program (Parent R21 Clinical Trial Required)
NOFO Number: PA-18-344
Summary:

Chronic pain is a significant public health problem associated with tremendous personal and economic burden. First-line treatment consists of opioid medications, but despite only moderate efficacy and unpleasant side effects, rates of opioid prescriptions have quadrupled over the past 15 years, and this has contributed to high rates of misuse, overdose, and mortality. Clearly, alternative, or non-opioid strategies for treating pain are needed. In this context, “opioid-sparing” medications refer to compounds that can be combined with and enhance the analgesic effects of lower-dose opioids without increasing the rewarding properties of either drug. There is preclinical evidence suggesting that cannabidiol (CBD) may have the potential to function as “opioid-sparing” medications, but its ability to alter opioid-mediated analgesia in humans has yet to be determined. This proposal will fill this gap by conducting a double-blind, placebo-controlled, within-subject randomized crossover study of the effects of CBD and morphine co-administration on pain sensitivity and subjective reinforcement on 28 healthy males and females. This is the first known study to investigate the ability of CBD to alter morphine’s analgesic effects in humans. If successful, the model will have a lasting impact on our ability to develop and test medications that reduce our reliance on chronic use of opioid medications for pain relief.

1R21DA048074-01 Prescription Opioid Formulation to Deter Extraction, Injection, Insufflation, and Smoking Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA PURDUE UNIVERSITY Solorio, Luis West Lafayette, IN 2019
NOFO Title: NIH Exploratory/Developmental Research Grant Program (Parent R21 Clinical Trial Not Allowed)
NOFO Number: PA-18-489
Summary:

This project aims to develop a novel abuse deterrent formulation (ADF) that will be uniquely designed to prevent abuse of the prescription pill. The study will focus on the development of the ADF with design aspects specifically focused on abuse through insufflation, smoking, injection, and taking multiple pills. The study will also validate the design by putting the pill through a rigorous test following the procedures outlined by the FDA Abuse-Deterrent-Opioids-Evaluation and Labeling guidelines. The study could result in the development of a novel ADF that will be resistant to a wide range of tampering, resulting in a safer formulation and pill design.

1R21DA056637-01 KCa2 Channel Activators for Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA University of California, Davis WULFF, HEIKE Davis, CA 2022
NOFO Title: HEAL Initiative: Novel Targets for Opioid Use Disorders and Opioid Overdose (R21 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-22-032
Summary:

Safe and effective options are urgently needed to prevent and treat opioid use disorder and polysubstance use disorders. Previous research in humans and animals suggests that activating the calcium-activated potassium channel KCa2.2 is a promising therapeutic approach for treating substance use disorders and associated health conditions. This project will perform a virtual high-throughput screen using novel machine learning approaches to discover new molecules that interact with the KCa2.2 channel. The newly discovered molecules help develop novel drugs for the treatment of opioid use disorder and associated health conditions.

1R21DA056740-01 Recruiting Active Expiration to Overcome Opioid-Induced Persistent Apnea Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA University of California, Los Angeles FELDMAN, JACK L Los Angeles, CA 2022
NOFO Title: HEAL Initiative: Novel Targets for Opioid Use Disorders and Opioid Overdose (R21 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-22-032
Summary:

Prescription opioids provide pain relief, but overdose can be fatal because opioids also depress breathing through opioid-induced persistent apnea, when breathing stops. This research will determine whether targeted activation of a specific, opioid-insensitive brain region that triggers exhalation can increase tolerance to fentanyl-induced apnea. The research also seeks to identify the receptors responsible for this exhalation, which could be targets for new medications that prevent the negative impact of opioids on breathing. This research lays the groundwork for more preclinical and translational studies to prevent opioid-induced persistent apnea. 

1R34DA046635-01A1 Treatment of chronic low back pain with transcutaneous auricular vagus nerve stimulation Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA MASSACHUSETTS GENERAL HOSPITAL Kong, Jian Boston, MA 2019
NOFO Title: Behavioral & Integrative Treatment Development Program (R34 Clinical Trial Optional)
NOFO Number: PA-18-073
Summary:

Low back pain (LBP) is one of the most common reasons for all physician visits in the U.S. The financial costs associated with the care of LBP are staggering. The treatments for chronic low back pain (cLBP) are far from satisfactory, and opioids are often prescribed with varying degrees of success. This study builds on prior work suggesting that auricular transcutaneous vagus nerve stimulation (tVNS), a non-invasive therapeutic, can significantly reduce symptoms of chronic pain and common comorbidities of chronic pain, such as depression and anxiety. This proposal aims to investigate the treatment effect and underlying mechanism of tVNS on chronic low back pain. Patients with chronic low back pain will be randomized to either real or sham tVNS treatment for 1 month, with a 3-month follow-up. This study, if successful, could provide new treatment options for chronic low back pain and reduce the use of opioid analgesics in chronic pain management.

1R34DA046730-01 Web-Based Treatment for Perinatal Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA MEDICAL UNIVERSITY OF SOUTH CAROLINA Guille, Constance Charleston, SC 2019
NOFO Title: Behavioral & Integrative Treatment Development Program (R34)
NOFO Number: PA-16-073
Summary:

The increased risk of maternal, obstetric, and newborn morbidity and mortality associated with perinatal prescription opioid (PO) misuse and opioid use disorder (OUD) is well established. Despite clear advances in maternal, fetal, and newborn health with treatment of perinatal opioid misuse and OUD, much work remains. Preliminary data has demonstrated significant reductions in opioid misuse as a result of our Cognitive Behavioral Therapy (CBT) program for pain combined with shared decision making for medication management for pregnant women misusing POs or with OUD (including heroin). However, access to the program is still limited and several obstacles to its expansion remain. This proposal will fill this critical gap by converting their CBT intervention from in-person sessions to a web-based interface. The proposed research will result in a critical advance in the management of opioid use and abuse during pregnancy and prevent both the acute and long-term risks associated with pre- and perinatal PO misuse and OUD, including overdose and death.

1R61HL156240-01 Treatment of Fentanyl Overdose-Induced Respiratory Failure by Low-Dose Dexmedetomidine Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NHLBI PENNSYLVANIA STATE UNIV HERSHEY MED CTR HAOUZI, PHILIPPE A Hershey, PA 2020
NOFO Title: HEAL Initiative: Pharmacotherapies to Reverse Opioid Overdose Induced Respiratory Depression without Central Opioid Withdrawal (Target Validation and Candidate Therapeutic Development (R61/R33 - Clinical Trial Not Allowed)
NOFO Number: RFA-HL-20-031
1R61HL156248-01 Intranasal Leptin as A Novel Treatment of Opioid-Induced Respiratory Depression Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NHLBI JOHNS HOPKINS UNIVERSITY POLOTSKY, VSEVOLOD Y Baltimore, MD 2020
NOFO Title: HEAL Initiative: Pharmacotherapies to Reverse Opioid Overdose Induced Respiratory Depression without Central Opioid Withdrawal (Target Validation and Candidate Therapeutic Development (R61/R33 - Clinical Trial Not Allowed)
NOFO Number: RFA-HL-20-031
1RF1DA050571-01A1 Reversing opioid-induced hypoxemia with novel thiol-based drugs without compromising analgesia in goats Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA MEDICAL COLLEGE OF WISCONSIN HODGES, MATTHEW ROBERT; FORSTER, HUBERT V Milwaukee, WI 2022
NOFO Number: PA-19-056
Summary:

Opioid overdoses result from reduced oxygen in the bloodstream. Although the opioid blocker naloxone can reverse the immediate harmful effects of opioids, it also has limitations. It does not last very long, blocks pain relief, and may induce withdrawal. This project will characterize and test the effectiveness of a novel, potent, and long-lasting respiratory stimulant. The study will use a freely behaving, large animal model with physiology similar to humans.

1U01DA046430-01A1 Efficacy of buprenorphine and XR-naltrexone combination for relapse prevention in opioid use disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA NEW YORK STATE PSYCHIATRIC INSTITUTE Bisaga, Adam New York, NY 2020
NOFO Title:
NOFO Number: PA18-345
1U01DA047713-01 PTPRD ligands for stimulant and opiate use disorders Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA BIOMEDICAL RESEARCH INSTITUTE OF NEW MEX Uhl, George Richard Albuquerque, NM 2019
NOFO Title: Grand Opportunity in Medications Development for Substance-Use Disorders (U01 Clinical Trial Optional)
NOFO Number: PAR-18-219
Summary:

There are no FDA-approved medications for stimulant use disorders, and therapies for opioid use disorders remain suboptimal in ways that are now a focus of national attention. Thus, there is a clear need to identify new targets and explore new approaches for addiction medication development. Several lines of evidence suggest that PTPRD (receptor type protein tyrosine phosphatase D) may be a promising target for development of pharmacotherapeutics to treat not only stimulant use disorders but opioid use disorders as well. This research will focus on improving existing PTPRD ligands, identifying their effects on the dopamine and opioid systems, and moving the best novel, patentable PTPRD ligands toward human studies. If successful, this project will generate novel, well-tolerated, and bioavailable PTPRD ligands that display in vitro potency, selectivity and stability, and in vivo modulation of both cocaine and opioid-mediated reward at doses that present no significant toxicity.