Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Sort descending Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded
1R41AR080620-01A1 Injectable Ice Slurry Cooling Technology for Treatment of Postoperative Pain Cross-Cutting Research Small Business Programs NIAMS BRIXTON BIOSCIENCES, INC. SIDOTI, CHARLES Cambridge, MA 2022
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R41/R42 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-009
Summary:

More than 700,000 total knee replacement surgeries are performed each year in the United States to relieve joint pain in patients with end-stage osteoarthritis or rheumatic arthritis. However, many patients still experience significant pain after this procedure, calling for additional long-lasting, drug-free pain management strategies. This project will develop and test a commercial prototype device for persistent knee pain after total knee replacement. The injection-based method freezes peripheral nerves to reduce pain sensation.

1R41DA047779-01 DEVELOPMENT OF A TRACHEAL SOUND SENSOR FOR EARLY DETECTION OF HYPOVENTILATION DUE TO OPIOID OVERDOSE. Cross-Cutting Research Small Business Programs NIDA RTM Vital Signs, LLC Joseph, Jeffrey I FORT WASHINGTON, MD 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH for Small Business Technology Transfer Grant Applications (Parent STTR [R41/R42] Clinical Trial Not Allowed)
NOFO Number: PA-18-575
Summary:

One of the current critical needs in addressing the opioid crisis is the development of new overdose-reversal interventions, including wearable technologies that can detect an (impending) overdose from physiological signals to signal for help, or trigger a coupled automated injection of naloxone. This project tests the approach of monitoring respiration by detecting the sounds of breathing in the trachea. This proposal aims to develop a machine learning algorithm that could process those sounds, detect the kinds of patterns of reduced breathing that occur during an opioid overdose, and design a miniature wireless sensor that could be used to detect those sounds. Such a sensor and algorithm could be a key component to a device to detect and intervene in overdoses.

1R41DA048689-01 BEST-OUD: Behavioral Economic Screening Tool of Opioid Use Disorder for use in clinical practice Cross-Cutting Research Small Business Programs NIDA BEAM DIAGNOSTICS, INC SNIDER, SARAH EMILY Roanoke, VA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH for Small Business Technology Transfer Grant Applications (Parent STTR [R41/R42] Clinical Trial Not Allowed)
NOFO Number: PA-18-575
Summary:

A critical line of defense against opioid use disorder (OUD), one of the nation’s leading preventable causes of death, must be standardized screening provided by the patient’s primary care physician, psychiatrist, and/or counselor. Standardized screening methods for opioids, however, are simply inferior and no gold standards exist. This project aims to develop a validated, theoretically guided tool that provides clinicians with information beyond OUD symptoms using reinforcer pathology, a measure of severity derived from the synergy between excessive delay discounting and high behavioral economic demand. The Behavioral Economic Screening Tool (BEST-OUD) will use these combined measures in a mobile tablet application to enable clinicians to screen for OUD.

1R41DA050364-01 Optimization of Betulinic Acid analogs for T-type calcium channel inhibition for non-addictive relief of chronic pain Cross-Cutting Research Small Business Programs NIDA REGULONIX, LLC KHANNA Tucson, AZ 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

The increase in prevalence of cancer coupled with an increase in the cancer survival rates due to chemotherapy regimens is transforming cancer pain into a large, unmet medical problem. Chemotherapy-induced peripheral neuropathy (CIPN) is a common and potentially dose-limiting side effect of many cancer drug treatment regimens and is caused in part by alterations in ion channels; blocking or depleting Cav3.2 channels in dorsal root ganglion (DRG) neurons should thus mediate analgesic effects. This proposal aims to develop and test potent, orally available, and selective Cav3.2 channel antagonists, building on the structure of a medicinal plant product—betulinic acid (BA)—that has been identified to be Cav3.2-selective and antinociceptive in CIPN. Such compounds could reduce the reliance on opioids in cancer patients.

1R41DA050386-01 Prevention of renarcotization from synthetic opioids Cross-Cutting Research Small Business Programs NIDA CONSEGNA PHARMA, INC. AVERICK, SAADYAH Pittsburgh, PA 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

While the mu opioid receptor (MOR) antagonist naloxone has proven invaluable as an opioid overdose antidote, naloxone suffers from a very short duration of action (half-life is approximately 1 hour) and has been found to be less effective against newer, long-acting opioids, including fentanyl (half-life is approximately 7–10 hours). This leads to a highly lethal and increasingly prevalent phenomenon known as “renarcotization,” wherein an overdose patient revived with naloxone can re-enter an overdose state from residual fentanyl in the body. Thus, there is a critical need to develop a long-acting MOR antagonist formulation that can address renarcotization by providing multi-hour protection. The goal of this project is to reformulate naloxone using FDA-approved microencapsulation technology into a long-acting injectable (LAI) that can provide 12–24 hours of sustained antagonist activity in vivo. It will employ a proprietary Computational Drug Delivery™ software, called ADSR™, to perform in silico formulation optimization as well as to predict its in vitro dissolution and in vivo pharmacokinetic behavior.

1R41NS113717-01 Pre-clinical evaluation of DT-001, a small molecule antagonist of MD2-TLR4 for utility in the treatment of pain Cross-Cutting Research Small Business Programs NINDS DOULEUR THERAPEUTICS, INC. YAKSH, TONY L; CHAKRAVARTHY, KRISHNAN San Diego, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Technology Transfer Grant Applications (Parent STTR [R41/R42] Clinical Trial Not Allowed)
NOFO Number: PA-18-575
Summary:

 Chronic persistent post-operative pain (CPOP) is a devastating outcome from any type of surgical procedure. Its incidence is anywhere between 20-85% depending on the type of surgery, with thoracotomies showing one of the highest annual incidences of 30-60%. Given that millions of patients (approximately 23 million yearly based on incidence) are affected by CPOP, the results are increased direct medical costs, increased indirect medical costs due to decreased productivity, and associated negative effects on an individual’s physical functioning, psychological state, and quality of life. Given these extensive public health and economic consequences there is a resurgence of research in the area of preventative analgesia.  The goal of this project is to evaluate a novel small molecule antagonist of MD2-TLR4, DT-001 in preclinical models of surgical pain representative of persistent post-operative pain. In collaboration with University of California, San Diego, DT-001 will be evaluated for its ability to block the development of neuropathic pain states. These studies will evaluate dose escalating efficacy of DT001 in rats in formalin and spinal nerve injury (SNI) models using both intrathecal and intravenous routes of administration. Tissues will be preserved to assess functional effects on relevant pain centers for analysis by Raft. With demonstration of efficacy, these studies will determine the optimal dose and route of administration of DT001 and guide a development path to IND and eventually clinical trials.

1R41NS115460-01 Minimally Invasive Intercostal Nerve Block Device to Treat Severe Pain and Reduce Usage of Opiates Cross-Cutting Research Small Business Programs NINDS TAI, CHANGFENG; POPIELARSKI, STEVE THERMAQUIL, INC. Philadelphia, PA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Technology Transfer Grant Applications (Parent STTR [R41/R42] Clinical Trial Not Allowed)
NOFO Number: PA-18-575
Summary:

Most of the 200k Americans who undergo thoracotomy each year receive opiates to reduce postoperative pain because clinicians have few non-addictive, cost-effective choices to control the severe pain patients often experience in the first two weeks after surgery. Managing pain post-thoracotomy is critical to enable patients to take deep breaths and remove (via coughing) lung secretions that otherwise significantly increase risk of pneumonia and collapsed lung, hospital re-admission and morbidity. The most severe pain associated with thoracotomy is transmitted along the intercostal nerves, but no long-term analgesic or nerve block device exists that can provide safe and effective long-term reduction of pain. A reversible, patient-controlled, non- addictive, intercostal nerve block device would reduce suffering due to thoracotomy, broken ribs and herpes zoster. In this Phase I project, the team will develop a minimally invasive thermal nerve block device that can control nerve conduction by gently warming and cooling a short nerve segment between room temperature and warm water temperature. This novel approach is based on the discovery that warm and cool temperature mechanisms of nerve block are different and additive, enabling moderate-temperature nerve block by cycling neural tissues slightly above and below body temperature. Reversible thermal nerve blocks represent a completely new approach to managing pain.  

1R41NS116784-01 Discovery of T-type Calcium Channel Antagonists from Multicomponent Reactions and Their Application in Paclitaxel-induced Peripheral Neuropathy Cross-Cutting Research Small Business Programs NINDS REGULONIX, LLC KHANNA, RAJESH Tucson, AZ 2019
NOFO Title: PHS 2017-02 Omnibus Solicitation of the NIH for Small Business Technology Transfer Grant Applications (Parent STTR [R41/R42])
NOFO Number: PA-17-303
Summary:

Chemotherapy-induced peripheral neuropathy (CIPN) is detected in 64% of cancer patients during all phases of cancer. CIPN can result in chemotherapy dose reduction or discontinuation, and can also have long-term effects on the quality of life. Taxanes (like Paclitaxel) may cause structural damage to peripheral nerves, resulting in aberrant somatosensory processing in the peripheral and/or central nervous system. Dorsal root ganglia (DRG) sensory neurons as well as neuronal cells in the spinal cord are key sites in which chemotherapy induced neurotoxicity occurs. T-type Ca2+ channels are critical determinants of increased neuronal excitability and neurotransmission accompanying persistent neuropathic pain. Though Cav3.2 has been targeted clinically with small molecule antagonists, no drugs targeting these channels have advanced to phase II human clinical trials. This proposal aims to explore multicomponent reaction products, for the rapid identification of potent and selective T-type Ca2+ channel antagonists. The work proposed here is the first step in developing non-opioid pain treatments for CIPN. The team anticipates success against paclitaxel-induced chronic pain will translate into other chronic pain types as well, but CIPN provides focus for early stage proof-of-concept.

1R41NS118992-01 Development of selective calpain-1 inhibitors for chronic pain Cross-Cutting Research Small Business Programs NINDS 1910 GENETICS, INC. NWANKWO, JENNIFER Cambridge, MA 2021
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: NS-20-011
Summary:

The need to develop non-opioid therapeutics for chronic pain is greater than ever.  One option being explored is inhibiting the activity of calpains – enzymes that have been shown to cause pain in animal models of chronic pain.  Using an artificial intelligence (AI)-driven drug discovery platform, researchers have uncovered and validated four calpain-1 inhibitors using biochemical assays.  This study by 1910 Genetics Inc. hopes to synthesize multiple analogs of its most potent discovered calpain-1 inhibitor and determine its effectiveness against calpain-2 and certain enzymes that break down proteins.  Findings that successfully significantly inhibit calpain-1 in at least one animal model of chronic pain could lead to the first oral, central nervous system penetrating selective calpain-1 inhibitor [non-opioid therapeutic] for chronic pain.

1R41NS127637-01A1 Protease-Activated-Receptor-2 Antagonists for Treatment of Migraine Pain Cross-Cutting Research Small Business Programs NINDS PARMEDICS, INC. DEFEA, KATHRYN (contact); DUSSOR, GREGORY O Temecula, CA 2023
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R41/R42 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-009
Summary:

There is a need for additional effective treatments for migraine, which affects more than 36 million people in the United States. This project will develop an oral medication to disrupt the biological processes that drive migraine pain, which include nerve inflammation in response to pain signals. 

1R41NS132625-01A1 Opioid-Sparing Non-Surgical, Bioresorbable Nerve Stimulator for Pain Relief Cross-Cutting Research Small Business Programs NINDS VANISH THERAPEUTICS INC. CUI, XINYAN TRACY Mars, PA 2023
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R41/R42 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-23-007
Summary:

Nerve stimulators are devices surgically implanted near a peripheral nerve or on the spinal cord that use electrical signals to reduce the perception of pain. Although these devices can provide effective pain relief to patients, many have high complication rates, resulting from the wire moving, breaking, not working, or the implantable battery pack or permanent wire causing new pain. This project will support the development and animal testing of a peripheral nerve stimulator to treat chronic pain which can be implanted without surgery. Once injected, the device will provide pain relief through electrical stimulation and then be safely degraded and resorbed by the body.

1R42DA049448-01 Reward-based technology to improve opioid use disorder treatment initiation after an ED visit Cross-Cutting Research Small Business Programs NIDA Q2I, LLC BOUDREAUX, EDWIN D Rindge, NH 2019
NOFO Title: Loyalty and Reward-Based Technologies to Increase Adherence to Substance Use Disorder Pharmacotherapies (R41/R42 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-015
Summary:

Medication-assisted treatment (MAT) for opioid use disorder (OUD) is highly efficacious, but only a fraction of people with OUD access MAT, and treatment non-adherence is common and associated with poor outcomes. This project aims to increase rates of Suboxone (buprenorphine/naloxone) treatment initiation and adherence among OUD patients recruited from emergency and inpatient acute care by enhancing the Opioid Addiction Recovery Support (OARS)—an existing Q2i company technology—with a new evidence-based reward, contingency management (CM) function that allows for the automatic calculation, delivery, and redemption of rewards contingent on objective evidence of Suboxone initiation and adherence.

1R42NS132622-01 Targeting TLR4-lipid rafts to prevent postoperative pain Cross-Cutting Research Small Business Programs NINDS RAFT PHARMACEUTICALS, LLC DOUGHERTY, PATRICK M (contact); KOGAN, YAKOV San Diego, CA 2023
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R41/R42 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-009
1R43AR074369-01 Development of a fixed-dose combination therapy for the treatment of chronic musculoskeletal pain Cross-Cutting Research Small Business Programs NIAMS NEUROCYCLE THERAPEUTICS, INC. TOCZKO, MATTHEW ALEXANDER Sheridan, WY 2019
NOFO Title: PHS 2017-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-17-302
Summary:

Non-steroidal anti-inflammatory drugs (NSAIDs) are a first line pharmacologic pain therapy for chronic musculoskeletal pain, and rheumatoid arthritis (RA) and moderate to severe osteoarthritis (OA) specifically. However, insufficient pain relief by NSAID monotherapy has encouraged the use of combination therapy. Combinations of NSAIDs plus weak opioids are widely used although objective evidence for efficacy is limited and they have many adverse events.  A growing body of evidence suggests that ?2/?3 subtype-selective positive allosteric modulators (PAM) of the ?- aminobutyric acid A receptor (GABAAR) may effectively restore central pain regulatory mechanisms thus providing effective relief of chronic pain with reduced prevalence and severity of side-effects.  Based on these promising preliminary studies and considerable supporting literature data, the research team will test the hypothesis that combination dosing of TPA-023B with an NSAID will work synergistically to suppress the acute and chronic pain components of chronic musculoskeletal pain. 

1R43CA233371-01A1 Inhibiting soluble epoxide hydrolase as a treatment for chemotherapy inducedperipheral neuropathic pain Cross-Cutting Research Small Business Programs NCI EICOSIS, LLC BUCKPITT, ALAN R Davis, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

 Investigating the broader efficacy of sEH inhibition and specifically our IND candidate, EC5026, has indicated that it is efficacious against chemotherapy induced peripheral neuropathy (CIPN). This painful neuropathy develops from chemotherapy treatment, is notoriously difficult to treat, and can lead to discontinuation of life-prolonging cancer treatments. Thus, new therapeutic approaches are urgently needed. The research team will investigate if EC5026 has potential drug-drug interaction with approved chemotherapeutics or alters immune cells function, and assess the effects of sEHI on the lipid metabolome and probe for changes in endoplasmic reticulum stress and axonal outgrowth in neurons. The team proposes to more fully characterize the analgesic potential of our compound and investigate on and off target actions in CIPN models and model systems relevant to cancer therapy.

1R43CA268700-01A1 Pre-clinical Validation of Phase II Peptide LRP-1 Agonist to Treat and Prevent Chemotherapy Induced Peripheral Neuropathy Cross-Cutting Research Small Business Programs NCI SERPIN PHARMA, LLC GELBER, COHAVA (contact); CAMPANA, WENDY M Manassas, VA 2022
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

Some chemotherapy treatments damage nerves outside the brain and spinal cord. This condition, chemotherapy-induced peripheral neuropathy, involves tingling, burning, weakness, or numbness in hands and/or feet and affects nearly 70% of cancer patients receiving chemotherapy. Common pain medications, including opioids, can relieve pain for short intervals but are not suitable for long-term therapy. This project will develop and test a new type of treatment (reduced size cyclic analogs) for this condition. The research will evaluate the ability of this therapy to reduce inflammation and pain, as well as to repair nerve damage.

1R43DA046973-01 Device to Measure Pain using Facial Expression Recognition with Patiene PAINReportitA Tablet Cross-Cutting Research Small Business Programs NIDA ENSURING, LLC CHEN, ZHANLI Seattle, WA 2019
NOFO Title: Development of a Device to Objectively Measure Pain (R43/R44)
NOFO Number: RFA-DA-18-012
Summary:

Even though pain is a nearly universal experience, objective measurements of pain remain difficult. Given that responding to the opioid crisis will require both better ways to manage pain and better ways to detect drug-seeking behavior, finding approaches to objectively measure pain is crucial. The goal of this project is to develop a product that will objectively measure pain using computer vision and machine learning technologies together with tablet-based self-reported pain data from patients for research or clinical purposes. The product will be low cost, involving one or two cameras to record the video and a computer to analyze the video in almost-real time, and will involve software that can be portable to ordinary personal computers and tablets. The project will capture facial expressions related to genuine pain and integrate it with patients’ self-reported pain data, in order to refine the product and create an objective measure of pain intensity that can be used in clinical settings and test its accuracy. This new tool has the potential to help rectify the poor pain outcomes that still plague Americans with opioid addiction, cancer, and other health conditions in many health care settings.

1R43DA046974-01 IMPACT-Instrument to Measure Pain and Assess Correlation to Treatment. Create a smartphone pupillometry to objectively determine the presence of acute pain, evaluate opioid as the treatment for pain. Cross-Cutting Research Small Business Programs NIDA BENTEN TECHNOLOGIES, INC MA, TONY XUYEN Manassa, VA 2019
NOFO Title: Development of a Device to Objectively Measure Pain (R43/R44)
NOFO Number: RFA-DA-18-012
Summary:

While patient self-report of pain is the gold standard of pain measurement, this may not be feasible in critically ill patients who are sedated and intubated, unconscious, or unable to verbally communicate. Pupillary dilation (PD) is a reliable indicator of acute pain, and measurement of pupil size changes may be useful in determining the intensity of pain experienced as well as the efficacy of an analgesia. Research also demonstrates that pupillary unrest under ambient light (PUAL) is an objective marker of sensitivity to opioids, and facial expression analysis can help detect pain. Benten Technologies, Inc. aims to develop and validate IMPACT, a device that uses pupillometry with a proprietary algorithm to measure both PD and PUAL and conduct facial expression analysis using computer vision. The project team will then demonstrate the feasibility of IMPACT in helping clinicians objectively determine pain and assess opioid efficacy and compare results obtained to pain scores reported by patients.

1R43DA046998-01 DEVELOPMENT OF A MULTIPLEX PEPTIDE ARRAY TO IDENTIFY PATIENTS WITH AN AUTOANTIBODY SIGNATURE FOR CHRONIC PAIN Cross-Cutting Research Small Business Programs NIDA Affinergy, LLC Darby, Martyn Durham, NC 2019
NOFO Title: Development of a Device to Objectively Measure Pain (R43/R44)
NOFO Number: RFA-DA-18-012
Summary:

One of the most widely used treatments for chronic pain is opioid analgesics. Importantly, there is evidence of a pathological interaction between opioids and the immune system that can contribute to both opioid tolerance and elevated levels of pain. Chronic pain conditions for which opioids are most often prescribed have been shown to involve dysregulation of the immune system, which may contribute to pathological effects of opioid use in these patients. To address this unmet need, this study aims to develop a reliable, cost-effective, and non-invasive in vitro diagnostic assay for chronic pain with an underlying inflammatory pathology, as a blood test available in primary care settings, with the hope that doctors can use the test to identify which patients might benefit less from opioids and be more likely to become addicted.

1R43DA047722-01 PERIPHERALLY-RESTRICTED AND LONG-ACTING MAS1(LA-MAS1) AGONISTS FOR PAIN Cross-Cutting Research Small Business Programs NIDA Peptide Logic, LLC Riviere, Pierre SAN DIEGO, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

This project seeks to develop a first-in-class (FIC), peripherally restricted and long-acting drug with potential to reduce or replace opioid for moderate to severe pain, and that will be non-addictive, safe, and convenient to use. The program is based on strong scientific evidence showing that activation of a receptor called MAS1 produces opioid-independent and peripheral pain relieving activity in a wide range of animal models of chronic pain, including inflammatory, neuropathic, and bone cancer pain. This project focuses on the development of potent, stable, and specific molecules that stimulate MAS1. Researchers will then attach peptides that stimulate MAS to antibody carriers that make them last longer and selectively affect only the peripheral nervous system, which could allow for once a week or twice a month dosing while maintaining the drug’s efficacy and reducing potential side effects, and test the resulting molecule in animal models.

1R43DA047781-01 A NOVEL FAST ACTING NALMEFENE FORMULATION FOR THE PREVENTION AND TREATMENT OF OPIOID OVERDOSE Cross-Cutting Research Small Business Programs NIDA AVIOR, INC. Vasisht, Niraj Cary, NC 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

Rescue of victims of opioid overdose is accomplished by treatment with antagonist drugs, such as naloxone, that can reverse the respiratory depression. However, naloxone has serious liver toxicity and a short half-life, and its complete antagonism results in a withdrawal effect. Nalmefene is an FDA-approved opioid derivative that is an antagonist of the MOR and a weak agonist of the k-opioid receptors (KOR). An immediate release intravenous injectable formulation was approved by the FDA in 1995 for opioid overdose; however, the requirement for intravenous administration has limited its clinical use. This project, in partnership with Avior, aims to develop a fast-onset, rapidly-dissolving, mucoadhesive thin film formulation that carries uniformly distributed nalmefene nanoparticles on the surface of the film. This film, produced using Avior’s proprietary Speedit™ transmucosal drug delivery technology, rapidly delivers nalmefene when the film is placed in contact with the lower lining of the inner lip. This project will generate non-clinical data to support critical human clinical trials to determine if a transmucosal film can be developed with a rapid onset of action that is required for rescue of opioid overdose patients or taken prophylactically to prevent respiratory depression, to assess whether the effective speed of delivery is sufficient to conduct a human clinical trial.

1R43DA049300-01A1 PRAPELA™ SVS: A COST-EFFECTIVE STOCHASTIC VIBROTACTILE STIMULATION DEVICE TO IMPROVE THE CLINICAL COURSE OF INFANTS WITH NEONATAL ABSTINENCE SYNDROME Cross-Cutting Research Small Business Programs NIDA PRAPELA, Inc. KONSIN, JOHN PHILLIP (contact); SINGH, RACHANA Concord, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

Maternal use and addiction to opioids or other drugs has resulted in an unprecedented rise in drug withdrawal complications in newborns known as neonatal abstinence syndrome (NAS). While there is no accepted standard for treating NAS, non-pharmacological bundles are recommended as an initial course of treatment. Unfortunately, non-pharmacological care (swaddling, rocking, frequent feedings, and skin contact) require significant use of human resources. This project studies the technical feasibility of a stochastic vibrotactile stimulation (SVS) technology incorporated into the hospital bassinet pad, which provides gentle vibrating sensory stimulation to soothe infants with NAS. Building on preliminary evidence that this type of stimulation calms NAS infants without altering their sleep, this study aims to develop a commercially viable bassinet pad that could be used in a hospital setting.

1R43DA049495-01 Removing implementation obstacles and tailoring reward-based technology programs to patient psychographic characteristics to sustainably increase adherence to substance use disorder pharmacotherapies Cross-Cutting Research Small Business Programs NIDA TRANSCENDENT INTERNATIONAL, LLC Grosso, Ashley Lynn New York, NY 2019
NOFO Title: Loyalty and Reward-Based Technologies to Increase Adherence to Substance Use Disorder Pharmacotherapies (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-014
Summary:

While effective treatments exist for substance use disorders, adhering to treatment and retaining patients in treatment can be a challenge. The objectives of this project are to facilitate the implementation of loyalty/reward-based programs to increase adherence to medical treatment among patients with substance use disorders through innovative solutions to common challenges. Building on experience developing software to promote patient appointment attendance, the project will build a new tool to test on a sample of 10 providers and 10 patients who are prescribed but not fully adherent to substance use disorder treatment. Patients will receive tailored text messages (in English or Spanish) encouraging adherence, self-report their treatment adherence (which will be verified through smart pill caps and biological testing), earn points for adherence that can be exchanged for rewards customized for them based on a baseline survey, and report their satisfaction with the program and process at the end of the 4-week study. This pilot will assess the feasibility and perceived usefulness of the product in support of eventual larger-scale testing in a clinical trial.

1R43DA049616-01 Development and Evaluation of Computerized Chemosensory-Based Orbitofrontal Cortex Training (CBOT) for relapse preventionin patients with Opioid Use (OUD) Cross-Cutting Research Small Business Programs NIDA EVON MEDICS, LLC SETH, SUMEET (contact); NWULIA, EVARISTUS A Elkridge, MD 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

The orbitofrontal cortex (OFC) plays an important role in regulation of addiction, and OFC impairment from cocaine and opioids use leads to repetitive drug use. Brief optogenetic activation of the OFC reduces self-administration of drugs in neurobiology studies. However, the OFC is less accessible for noninvasive stimulation using direct transcutaneous current stimulation or transcranial magnetic stimulation. The small business EvON Medics LLC and Howard University have created a home-based olfactory pulsing prototype, called computerized chemosensory-based orbitofrontal cortex training (CBOT), using a high-fidelity chemosensory and computerized olfactory training approach to enable home-based neuromodulation of the OFC for treatment of opioid use disorder (OUD). A pilot feasibility study in OUD samples suggests that CBOT can minimize withdrawal symptoms, reduce drug cravings, enhance positive affect, and reduce rate of positive urine drug tests. The project seeks to establish CBOT stimulation parameters needed to maximally improve outcome inference and emotion regulation in OUD.

1R43DA049617-01 At-Home Virtual Reality Guided Imagery Intervention for Chronic Pain Cross-Cutting Research Small Business Programs NIDA LIMBIX HEALTH, INC. LEWIS, BENJAMIN (contact); RICHEIMER, STEVEN H Palo Alto, CA 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

Chronic pain affects more than 100 million adults in the United States, resulting in disability, loss of work productivity, and overall reductions in health, making chronic pain a major public health problem with an economic burden estimated at $560–635 billion annually. Opioids, the most frequently prescribed class of drugs to control pain, lack evidence supporting their long-term efficacy and carry a 15% to 26% risk of misuse and abuse among pain patients. Guided imagery (GI) is an effective non-pharmacological intervention for reducing pain, but its effectiveness is limited by patients’ imaging abilities. This project will develop and assess the feasibility of an at-home virtual reality system, Limbix VR Kit, to reduce chronic pain and opioid reliance, as well as improve other functional outcomes, by delivering an immersive GI experience.