Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded Sort descending
1R01NS103350-01A1
Regulation of Trigeminal Nociception by TRESK Channels Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS WASHINGTON UNIVERSITY CAO, YUQI St. Louis, MO 2018
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

TWIK-related spinal cord K+ (TRESK) channel is abundantly expressed in all primary afferent neurons (PANs) in trigeminal ganglion (TG) and dorsal root ganglion (DRG), mediating background K+ currents and controlling the excitability of PANs. TRESK mutations cause migraine headache but not body pain in humans, suggesting that TG neurons are more vulnerable to TRESK dysfunctions. TRESK knock out (KO) mice exhibit more robust behavioral responses than wild-type controls in mouse models of trigeminal pain, especially headache. We will investigate the mechanisms through which TRESK dysfunction differentially affects TG and DRG neurons. Based on our preliminary finding that changes of endogenous TRESK activity correlate with changes of the excitability of TG neurons during estrous cycles in female mice, we will examine whether estrogen increases migraine susceptibility in women through inhibition of TRESK activity in TG neurons. We will test the hypothesis that frequent migraine attacks reduce TG TRESK currents.

3U19TW008163-10S1
DIVERSE DRUG LEAD COMPOUNDS FROM BACTERIAL SYMBIONTS IN PHILIPPINE MOLLUSKS Preclinical and Translational Research in Pain Management FIC UNIVERSITY OF UTAH HAYGOOD, MARGO GENEVIEVE Salt Lake City, UT 2018
NOFO Title: Limited Competition: International Cooperative Biodiversity Groups (U19)
NOFO Number: RFA-TW-13-001
Summary:

The Philippine Mollusk Symbiont International Cooperative Biodiversity Group harnesses the vast biodiversity of the Philippines to discover new drugs to treat bacterial infections, parasitic infections, pain, and other neurological conditions and cancer, all of which are serious health problems in both the Philippines and the United States. The Republic of the Philippines represents a unique nexus of exceptional biodiversity, dense human population with pressing societal needs, consequent urgent need for conservation, and government commitment to education and technology to harness national human and natural resources for a sustainable future. Mollusks are one of the most diverse groups of marine animals, and their associated bacteria represent an unexplored trove of chemical diversity. Researchers will use an increasing understanding of the interactions between mollusk symbionts and their hosts to discover the most novel and useful molecules. The project will document and describe Philippine mollusk biodiversity and support training and infrastructure that provide the foundation for conservation of Philippine biodiversity.

3R01AR069557-03S1
USE AND SAFETY OF OPIOIDS IN PATIENTS UNDERGOING TOTAL JOINT REPLACEMENT New Strategies to Prevent and Treat Opioid Addiction NIAMS Brigham And Women's Hospital KIM, SEOYOUNG CATHERINE Boston, MA 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Over 30% of adults aged 65 years and older in the United States suffer from osteoarthritis (OA). Opioid analgesics are often used for patients with moderate to severe symptomatic OA. When non-pharmacologic and pharmacologic treatments are not effective, patients with severe OA may undergo total joint replacement (TJR). Our primary objectives are to evaluate patterns of opioid use before and after TJR and to assess the effect of opioid use patterns on clinical outcomes and safety events in a large U.S. population–based cohort of OA patients. The specific aims are to: 1) identify predictors of persistent opioid use and opioid dose escalation in patients after TJR for hip or knee OA and 2) evaluate effects of opioid use patterns on short- and long-term clinical outcomes and safety following TJR. The results of this study will provide guidance on surgical risk stratification and pain management of patients before and after TJR.

1R21AT010125-01
EFFECT OF MINDFULNESS TRAINING ON OPIOID USE AND ANXIETY DURING PRIMARY CARE BUPRENORPHINE TREATMENT Translation of Research to Practice for the Treatment of Opioid Addiction Behavioral Research to Improve Medication-Based Treatment NCCIH Cambridge Health Alliance SCHUMAN OLIVIER, ZEV DAVID CAMBRIDGE, MA 2018
NOFO Title: Clinical Trials or Observational Studies of Behavioral Interventions for Prevention of Opioid Use Disorder or Adjunct to Medication Assisted Treatment-SAMHSA Opioid STR Grants (R21/R33)
NOFO Number: RFA-AT-18-002
Summary:

Office-based opioid treatment (OBOT) with buprenorphine/naloxone prevents overdose deaths. Nonpharmacologic approaches to anxiety, stress, and emotion dysregulation are needed during primary care OBOT, which is the primary access point for opioid use disorder (OUD) treatment in most U.S. counties. Mindfulness-based interventions (MBI) safely and reliably reduce the impact of stress, anxiety, depression, and chronic pain, which could increase OBOT retention while reducing rates of relapse and overdose deaths. Current 8-week standard MBIs do not appear to have strong, sustained impact on substance use outcomes, suggesting longer or enhanced MBIs are needed in the OUD treatment setting. This project proposes to adapt, refine, and compare the effectiveness of the 6-month Mindful Recovery OUD Care Continuum delivered within group-based opioid treatment (GBOT) versus standard GBOT alone.

3UG3TR002151-01S1
INTEGRATED MICROPHYSIOLOGICAL SYSTEM OF CEREBRAL ORGANOID AND BLOOD VESSEL FOR DISEASE MODELING AND NEUROPSYCHIATRIC DRUG SCREENING Preclinical and Translational Research in Pain Management NCATS COLUMBIA UNIVERSITY HEALTH SCIENCES LEONG, KAM W NEW YORK, NY 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

The clinical utility of opioids for pain treatment is limited by its risk for developing opioid usage disorders (OUD). These untoward effects impose a severe burden on society and present difficult therapeutic challenges for clinicians. We propose to extend our cerebral organoid MPS to facilitate the investigation of neuronal response to opioids and identify cellular and molecular signatures in patients vulnerable to OUD. We have assembled a team with complementary expertise in clinical characterization of OUD, cerebral organoid MPS modeling, single cell RNA-seq technology, and functional characterization of neurons in a mesolimbic reward system to test the hypothesis that midbrain MPS is a clinically relevant pre-clinical model for study of opioid usage disorder.