Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded
1UG3TR003081-01
Multi-organ human-on-a-chip system to address overdose and acute and chronic efficacy and off-target toxicity Preclinical and Translational Research in Pain Management Translational Research to Advance Testing of Novel Drugs and Human Cell-Based Screening Platforms to Treat Pain and Opioid Use Disorder NCATS UNIVERSITY OF CENTRAL FLORIDA HICKMAN, JAMES J (contact); SHULER, MICHAEL L Orlando, FL 2019
NOFO Title: HEAL Initiative: Tissue Chips to Model Nociception, Addiction, and Overdose (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-TR-19-003
Summary:

This project will build overdose models for fentanyl, methadone, codeine, and morphine in a multi-organ system and evaluate the acute and repeat dose, or chronic effects, of overdose treatments as well as off-target toxicity. Researchers developed a system using human cells in a pumpless multi-organ platform that allows continuous recirculation of a blood surrogate for up to 28 days. They will develop two overdose models for male and female phenotypes based on pre-B?tzinger Complex neurons and will integrate functional immune components that enable organ-specific or systemic monocyte actuation. Models for cardiomyopathy and infection will be utilized. Researchers will establish a pharmacokinetic/pharmacodynamic model of overdose and treatment to enable prediction for a range of variables. We will use a serum-free medium with microelectrode arrays and cantilever systems integrated on chip that allow noninvasive electronic and mechanical readouts of organ function.

1U01HL150835-01
Evaluating the Role of the Orexin System in Circadian Rhythms of Sleep and Stress in Persons on Medication-Assisted Treatments for Opioid Use Disorder New Strategies to Prevent and Treat Opioid Addiction Sleep Dysfunction as a Core Feature of Opioid Use Disorder and Recovery NHLBI Johns Hopkins University HUHN, ANDREW S (contact); FINAN, PATRICK Baltimore, MD 2019
NOFO Title: HEAL Initiative: Sleep and Circadian-Dependent Mechanisms Contributing to Opiate Use Disorder (OUD) and Response to Medication Assisted Treatment (MAT) (U01 Clinical Trial Optional)
NOFO Number: RFA-HL-19-029
Summary:

For individuals with moderate to severe opioid use disorder (OUD), medication-assisted treatments (MATs) such as oral methadone and extended-release naltrexone (XR-NTX) are the gold standard in initiating and maintaining long-term recovery. Still, many patients struggle with persistent sleep disturbance and stress reactivity in the early stages of recovery, which drive relapse behaviors. This proposal constitutes a novel mechanistic approach to understanding the role of the orexin system in sleep disturbance and circadian rhythms of stress in OUD patients who are maintained on MATs and are early in recovery. This study will determine whether the FDA-approved sleep medication suvorexant (SUVO) improves sleep continuity and decreases diurnal measures of stress, and whether improvement of sleep/stress processes translates to improved OUD treatment outcomes. Its findings will fill critical gaps in our understanding of the role of the orexin system in sleep disturbance and circadian rhythms of stress that impact OUD recovery.

1R44DA047866-01
NEONATAL OPIOID SCREENING USING APTAMERS AND COMPENSATED INTERFEROMETRY Cross-Cutting Research Small Business Programs NIDA Base Pair Biotechnologies, Inc. Jackson, George W PEARLAND, TX 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

Newborn Abstinence Syndrome, which results from maternal opioid drug use prior to birth, is a serious condition that affects approximately 6% of all neonates born today in the U.S. and which is increasing rapidly in incidence because of this epidemic. Availability of a rapid screening test that can be administered at the point of care to all neonates would allow for early intervention, reducing costs of treatment and reducing pain and suffering for this vulnerable and helpless patient population. Providing a platform to accurately monitor actual levels of these drugs and their metabolites in such patients would allow better-controlled use of these pain management treatments, personalized to the needs of the individual neonate, and would reduce the probability of addiction and resulting complications, which include deleterious neurological effects. The purpose of this FastTrack SBIR project is to expand upon preliminary results that a device can sensitively and accurately detect opioids and their primary urinary metabolites in one-microliter urine samples, in less than a minute after sample introduction into the device, and adapt the device into a point-of-care instrument for use in hospitals, clinics, and other venues in which such tests are likely to be deployed.

1R44DA046316-01A1
A Phase 1 Randomized Single Oral Dose Four Period Cross-Over Study Investigating Omnitram Dose Proportionality and Food Effect in Normal Human Subjects Cross-Cutting Research Small Business Programs NIDA SYNTRIX BIOSYSTEMS, INC. Kahn, Stuart J Auburn, WA 2019
NOFO Title: PHS 2017-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-17-302
Summary:

From 2009 to 2013, the utilization of the Schedule II opioids codeine, OxyContin, and fentanyl declined significantly, down about 14 percent for all three drugs. In sharp contrast, the use of tramadol, a Schedule IV controlled substance, increased by 32.5 percent. Schedule IV substances have lower potential for abuse and harm than Schedule II substances, and the fortuitous trend to tramadol has reduced the use of the relatively unsafe Schedule II opioids dramatically. However, tramadol is less effective in some individuals with a particular gene variant that makes them unable to metabolize it well. A new analgesic, omnitram, uses similar mechanisms to tramadol but is not as dependent on this gene. This SBIR Fast-Track project will conduct a Phase 1 clinical trial of Omnitram in normal human subjects. Success in this in-patient Phase 1 clinical trial will provide direct support for Omnitram’s continued clinical development toward FDA approval.

1R44DA050375-01
A Novel Workflow to Screen for Illicit Drug Exposure in Newborns Cross-Cutting Research Small Business Programs NIDA BAEBIES, INC. KENNEDY, ADAM Durham, NC 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

Rates of neonatal abstinence syndrome (NAS) have skyrocketed during the last decade, and estimates suggest that 5% of mothers use at least one addictive drug during their pregnancy. To address this public health crisis, multiple groups—including the American College of Obstetricians and Gynecologists and the American Academy of Pediatrics—recommend universal screening of substance use in pregnancy using standardized behavioral scoring tools. Unfortunately, such tools are often biased due to subjective scoring or self-reporting errors, and fail to identify babies who did not receive proper prenatal care. This project will develop a fast and accurate NAS screening tool that pairs a simple sample preparation protocol with a high-sensitivity panel of homogeneous enzyme immunoassays recognizing five common classes of drugs: fentanyl, morphine, amphetamine/methamphetamine, cocaine, and benzodiazepines. The potential benefits of such a system include reduced length of hospitalization for unaffected newborns, accelerated time to confirmatory results (under 2 hours), faster resolution of acute withdrawal symptoms, and improved referral to family/maternal support services.

1R01HL150836-01
Sleep, opiate withdrawal and the N/OFQ - NOP system New Strategies to Prevent and Treat Opioid Addiction Sleep Dysfunction as a Core Feature of Opioid Use Disorder and Recovery NHLBI SRI International KILDUFF, THOMAS S (contact); BRUCHAS, MICHAEL R Menlo Par, CA 2019
NOFO Title: HEAL Initiative: Sleep and Circadian-Dependent Mechanisms Contributing to Opiate Use Disorder (OUD) and Response to Medication Assisted Treatment (MAT) (R01 - Clinical Trial Not Allowed)
NOFO Number: RFA-HL-19-028
Summary:

The widespread misuse of opioids has underscored the need to develop nonaddicting pain medications. Chronic pain is a major factor contributing to insomnia, and sleep disruption due to chronic pain causes patients to seek relief, exacerbating the drive for prescription opioids. In opioid use disorder, withdrawal from opiates induces insomnia, posing an additional challenge for successful abstinence. This study aims to determine whether treatment of opioid withdrawal-induced insomnia with nociceptin/orphanin FQ receptor (NOPR) agonists will mitigate the drive for opiate use. A major component of the arousal/withdrawal circuitries resides in the locus coeruleus (LC), which expresses MOPRs. The study will determine whether and how the NOPR system engages LC circuits to reduce arousal and insomnia-related phenotypes and assess the hypotheses that 1) the NOPR system is a component of the endogenous sleep/wake regulatory system and 2) NOPR agonists can act as therapeutic interventions to reduce opiate use.

1UG3DA050234-01
Community Randomized Trial in the Cherokee Nation: CONNECT and CMCA for Preventing Drug Misuse among Older Adolescents New Strategies to Prevent and Treat Opioid Addiction Preventing Opioid Use Disorder NIDA Emory University KOMRO, KELLI ANN (contact); LIVINGSTON, MELVIN D Atlanta, GA 2019
NOFO Title: HEAL Initiative: Preventing Opioid Use Disorder in Older Adolescents and Young Adults (ages 16–30) (UG3/UH3 Clinical Trial Required
NOFO Number: RFA-DA-19-035
Summary:

The national public health opioid crisis has disproportionately burdened rural white populations and American Indian populations. To address this crisis, the Cherokee Nation and Emory University public health scientists will carry out an opioid prevention trial to be conducted in at-risk rural communities in the Cherokee Nation (in northeast Oklahoma) with populations of white and American Indian adolescents and young adults. The study will expand and integrate two established intervention approaches, consisting of community organizing and universal school-based brief intervention and referral to further enhance their effects in preventing and reducing opioid misuse. These interventions, called CMCA and CONNECT, were originally designed to target adolescent alcohol use, but showed significant beneficial effects on use of other drugs, including prescription drug misuse. The expanded, integrated interventions will be tested in a community-randomized trial with the goal of new systems for sustained implementation within existing structures of the Cherokee Nation.

1R44DA049629-01
Connected Pharmacy Platform to Improve Adherence to Buprenorphine-Naloxone Prescription Treatment of Opioid Use Disorder Cross-Cutting Research Small Business Programs NIDA PILLSY INC. LEBRUN, JEFFREY (contact); MCPHERSON, STERLING M Seattle, WA 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

Opioid agonist therapy (OAT), such as buprenorphine/naloxone (BUP/NAL), is proven effective against opioid use disorder (OUD), but poor medication adherence is a major barrier. This project aims to substantially increase adherence to oral BUP/NAL with Pillsy, a smart technology platform, which acts like a digital medication coach, providing education and reminders using a mobile app, text messages, and automated phone calls. The platform is built around a Bluetooth-based smart pill bottle cap that automatically tracks doses and timing, and sends intelligent reminders to create a unique feedback loop, which allows constant optimization of the incentive/reminder messages to meet user needs to increase adherence. A dashboard enables providers to easily track medication use and patient engagement. The Pillsy platform only nominally increases the cost of oral BUP/NAL treatment, and physicians can bill for monitoring time (CPT code 99091). The project team will adapt the current Pillsy platform and perform a randomized efficacy trial of BUP/NAL adherence.

1UG3DA048508-01
Combined tDCS and Cognitive Training for the Treatment of Opioid Addiction Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA University of Minnesota Lim, Kelvin Minneapolis, MN 2019
NOFO Title: Device-Based Treatments for Substance Use Disorders (UG3/UH3, Clinical Trial Optional)
NOFO Number: PAR-18-494
1U19AR076737-01
UCSF Core Center for Patient-centric Mechanistic Phenotyping in Chronic Low Back Pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF CALIFORNIA, SAN FRANCISCO LOTZ, JEFFREY C San Francisco, CA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program: Mechanistic Research Centers (U19 Clinical Trial Optional)
NOFO Number: RFA-AR-19-026
Summary:

The UCSF Core Center for Patient-centric Mechanistic Phenotyping in Chronic Low Back Pain (UCSF REACH) is an interdisciplinary consortium of basic and clinical scientists dedicated to understanding and clarifying the biopsychosocial mechanisms of chronic low back pain (cLBP). The goal of REACH is to define cLBP phenotypes and pain mechanisms that can lead to effective, personalized treatments for patients across the population. UCSF REACH has six cores that will support a single research project that is focused on the challenge of developing validated and adoptable tools that enable comprehensive yet routine clinical assessment and treatment of cLBP patients. Overall, the object of REACH is to make optimum use of all available resources to catalyze discovery and translation of novel diagnostics and therapeutics that improve outcomes of cLBP patients.

1R01DA046532-01A1
Evaluation of drug mixtures for treating pain: behavioral and pharmacological interactions between opioids and serotonin agonists Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA UNIVERSITY OF TEXAS HLTH SCIENCE CENTER Maguire, David Richard San Antonio, TX 2019
NOFO Title: NIH Research Project Grant (Parent R01 Clinical Trial Not Allowed)
NOFO Number: PA-18-484
Summary:

Opioids remain the gold standard for treating moderate to severe pain, but their use is limited by numerous adverse effects, including tolerance, dependence, abuse, and overdose. Adverse effects could be avoided by combining an opioid with another drug, such that smaller doses of the opioid (in combination with another drug) produce the desired therapeutic effect. Direct-acting serotonin type 2 (5-HT2) receptor agonists interact in a synergistic manner with the opioid morphine to produce antinociceptive effects, suggesting a 5-HT2 receptor agonist could be combined with small amounts of an opioid to treat pain, thereby lowering the risk associated with larger doses. Unfortunately, very little is known about interactions between 5-HT2 receptor agonists and other opioids. The proposed studies will evaluate the therapeutic potential of mixtures of opioids and 5-HT2 receptor agonists using highly translatable and well-established procedures to characterize the antinociceptive, respiratory-depressant (overdose), positive-reinforcing (leading to misuse), and discriminative-stimulus (subjective) effects of drug mixtures as well as the impact of chronic treatment on the development of tolerance to and physical dependence on opioids. If successful, these studies will provide proof-of-concept for this innovative approach to pain treatment and evaluate the utility of targeting 5-HT receptors for analgesic drug development.

1U24NS113784-01
University of Rochester Hub and Spokes for the EPPIC Network - Specialized Clinical Center Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS UNIVERSITY OF ROCHESTER MARKMAN, JOHN DOUGLAS (contact); GEWANDTER, JENNIFER Rochester, NY 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trials Not Allowed)
NOFO Number: RFA-NS-19-025
Summary:

The NIH’s HEAL Initiative aims to support collaboration between clinical research experts in academia and industry to accelerate the development of highly efficacious, nonaddictive analgesics for well-defined chronic pain syndromes. The University of Rochester (UR), and its leadership for the UR Hub and Spokes within Early Phase Pain Investigation Clinical Network (EPPIC-Net), will recruit subjects with a broad range of pain conditions, with a focus on leveraging clinical trial infrastructure to support patient recruitment and retention, timely and accurate data entry, and regulatory documentation, as well as recruit additional Spoke sites through a national network of analgesic researchers.

1UG3DA050306-01
1-Year Sustained Release Naltrexone Implant for the prevention of relapse to opioid dependence Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Delpor, Inc. Martin, Francis South San Francisco, CA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

There is a need for longer-acting prophylactic pharmacologic options for opioid use disorder (OUD) patients during maintenance therapy. This study tests a titanium implant loaded with a formulation of naltrexone and a naturally occurring carboxylic acid. The device is implanted subcutaneously with local anesthetic during an in-office procedure. The technology is based on a unique formulation that keeps the pH within the reservoir low and promotes passive diffusion of naltrexone. The benefits of the product include complete medication adherence for one year after administration, fewer relapses, smooth profile ensuring complete prophylaxis without sub-therapeutic plasma troughs, full reversibility, and similar efficacy with less drug exposure. This technology has been validated clinically with another drug and tested preclinically with naltrexone. This project will finalize the chemistry manufacturing and controls, produce IND supplies, conduct an IND-enabling safety study, and submit the IND.

3U24DK116214-02S1
ILLUMINATING DRUGGABLE DARK MATTER Preclinical and Translational Research in Pain Management NIDDK UNIVERSITY OF CALIFORNIA, SAN FRANCISCO MCMANUS, MICHAEL T; JAN, LILY Y San Francisco, CA 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

The goal of this project is to generate data and reagents that help uncover critical functions of the poorly characterized members of ion channels. It focuses on co-perturbation of ion channel genes and their interacting genetic components as opposed to singly altering ion channel genes in mouse models. This approach will validate our proteomics approaches in the most definitive manner: in vivo. We see in vivo exploration as an essential step to evaluate ion channel function. Our major aims include mapping ion channel interactions and complexes using a high-throughput proteomics platform at UCSF. These data will be interrogated using integrative approaches established by the Monarch Initiative, where biochemical interactions will be validated and prioritized for further study. Another major aim is function-centric: We use mouse models for elucidation of human disease mechanisms, where we embrace a genetic interaction scheme to uncover ion channel redundancy and polygenic effects.

1R43DA050393-01
Evaluation of the therapeutic potential of exclusive antagonists of extrasynaptic NMDA receptors for treatment of opioid use disorders Cross-Cutting Research Small Business Programs NIDA NEURANO BIOSCIENCE MOLOKANOVA, ELENA Encinitas,CA 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

Novel therapies that could alleviate the severe symptoms of opioid withdrawal and/or reduce risk of relapse could help address the devastating opioid crisis. Memantine, an FDA-approved NMDA receptor antagonist, has shown encouraging results as an adjunct to existing opioid use therapies. Its therapeutic efficacy likely derives from its preferential binding to NMDA receptors located outside the synapse, since broad spectrum NMDA receptor antagonists are associated with multiple clinical side effects. This project will use a preclinical model to evaluate a nanostructured version of memantine (AuM) that physically prevents its binding to synaptic NMDA receptors but allows activation of extrasynaptic receptors with potency exceeding that of free memantine.

1R34DA050289-01
4/5 The Cumulative Risk of Substance Exposure and Early Life Adversity on Child Health Development and Outcomes Enhanced Outcomes for Infants and Children Exposed to Opioids HEALthy Brain and Child Development Study (HBCD) NIDA BOSTON CHILDREN'S HOSPITAL NELSON, CHARLES ALEXANDER Boston, MA 2019
NOFO Title: HEAL Initiative: HEALthy Brain and Child Development Study (HEALthy BCD) (Collaborative R34 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-19-029
Summary:

Despite increased efforts to understand the neurodevelopmental sequelae of in utero opioid and other substance exposure on long-term behavioral, cognitive, and societal outcomes, important questions remain, specifically, 1) How is brain growth disrupted by fetal substance and related pre- and post-natal exposures? and 2) How are these disrupted growth patterns causally related to later cognitive and behavioral outcomes? This project seeks to formulate an approach to addressing these key questions and decipher the individual and cumulative effect of these intertwined pre- and post-natal exposures on child neurodevelopment. First, researchers will address the legal, ethical, and mother-child care and support concerns implicit in this study. Next, they will integrate across our areas of neuroimaging expertise to develop, implement, and harmonize a multi-modal MRI and EEG protocol to assess maturing brain structure, function, and connectivity. Finally, researchers will develop and test advanced statistical approaches to model and analyze this multidimensional and longitudinal data.

1RF1NS113256-01
Dnmt3a as an epigenetic target for chronic pain treatment Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TX MD ANDERSON CAN CTR PAN, ZHIZHONG Z Houston, TX 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

It is unclear what changes in the brain mediate the development of chronic pain from acute pain and how chronic pain may change responses to opioid reward for the altered liability of opioid abuse under chronic pain. Preliminary studies have found that Dnmt3a, a DNA methyltransferase that catalyzes DNA methylation for gene repression, is significantly downregulated in the brain in a time-dependent manner during the development of chronic pain and after repeated opioid treatment. This project will investigate whether Dnmt3a acts as a key protein in the brain for the development of chronic pain, and whether Dnmt3a could be a novel epigenetic target for the development of new drugs and therapeutic options for the treatment of chronic pain while decreasing abuse liability of opioids.

1UG3DA050316-01
Development of SBI-553, an allosteric modulator of NTR1, for the treatment of substance use disorders Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Sanford Burnham Prebys Medical Discovery Institute Pinkerton, Anthony La Jolla, CA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Addiction to opioids is related to the physiology of the brain’s dopamine-based reward system. As a modulator of dopaminergic systems, the neurotensin 1 receptor (NTR1) should be a molecular target for treating addictive disorders; however, few non-peptide brain penetrant neurotensin modulators have been identified, and orthosteric NTR1 ligands display side effects that have limited their clinical development. This group discovered a series of brain-penetrant NTR1 modulators, including a lead compound SBI-553, with a unique mechanism of action at NTR1. SBI-553 is an orally available, brain penetrant ?-arrestin biased allosteric modulator of NTR1, which shows efficacy in a range of addiction models and circumvents the clinically limiting side effects. While potentially high risk, the activity of SBI-553 has been validated in vitro and in vivo, and the initial safety profiling indicates no issues that would preclude further development. This study will develop SBI-553 as a treatment for opioid use disorder.

1U24NS113800-01
University of Florida Early Phase Pain Investigation Clinical Center Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS UNIVERSITY OF FLORIDA PRZKORA, RENE (contact); TIGHE, PATRICK J Gainesville, FL 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trials Not Allowed)
NOFO Number: RFA-NS-19-025
Summary:

A major barrier to developing new pain treatments has been the absence of infrastructure to facilitate well-designed and carefully conducted clinical trials to test the efficacy of promising treatments. The UF Health Specialized Clinical Center Network will include UF Health as “hub” and statewide partners serving as spokes as part of the EPPIC Network. The University of Florida (UF) has the capability to reach more than 50% of the population of Florida, the third most populous state of the United States, and the capacity to successfully enroll patients with varying pain conditions into clinical trial protocols through its hub and spoke infrastructure as part of EPPIC-Net.

3R21DA044443-02S1
DAT-OPTIMIZING THE IMPACT OF MEDICATION ASSISTED TREATMENT INTERVENTIONS IN PRISON AND JAIL SETTINGS Translation of Research to Practice for the Treatment of Opioid Addiction NIDA MIRIAM HOSPITAL RICH, JOSIAH D Providence, RI 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

We propose to estimate the impact of expanded access to medication-assisted treatment (MAT) in prisons and jails on post-release rates of overdose. Our approach will use agent-based modeling, data collected through the parent study, existing surveillance data, and recently published data from similar settings to understand how different MAT interventions in the prison and jail setting impact overdose death post-release. We will examine the impact of standard of care/no intervention, providing access to depot-naltrexone alone, providing access to all three MATs to only those who were prescribed it prior to incarceration, and comprehensive provision of all three MATs on post-release rates of overdose. These models will incorporate advanced methodological techniques that will allow for the investigation of engaged treatment, program attrition, and other complex events on a population level. This study’s findings may be used by health agencies, policymakers, and correctional systems to inform their efforts to expand MAT access.

1UG3DA050303-01
Development of an implantable closed-loop system for delivery of naloxone for the prevention of opioid-related overdose deaths Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Washington University Rogers, John St. Louis, MO 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Current opioid overdose treatment requires administration of naloxone by first responders, which requires timely identification of the overdose, the need for a rescue injection, and immediate availability of the medication. The development of a fail-safe treatment that would provide a life-saving dose of naloxone without the need for intervention by another party could significantly reduce mortality. The researchers aim to develop a new medical device comprising an implantable, closed-loop system that senses the presence of an opioid overdose, automatically administers a life-saving bolus injection of naloxone, and simultaneously alerts first responders.

3UG1DA013035-18S4
Ancillary Study of the Adoption and Sustainability of ED-Initiated Buprenorphine Translation of Research to Practice for the Treatment of Opioid Addiction Enhancing the National Drug Abuse Treatment Clinical Trials Network to Address Opioids NIDA NEW YORK UNIVERSITY SCHOOL OF MEDICINE ROTROSEN, JOHN P; NUNES, EDWARD V. New York, NY 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

For many reasons, the emergency department (ED) is a critical venue to initiate opioid use disorder (OUD) interventions. ED patients have a disproportionately high prevalence of substance use disorders and are at an elevated risk of overdose, and many do not access health care elsewhere. Despite this, OUD interventions are rarely initiated in EDs. The Emergency Department Connection to Care with Buprenorphine for Opioid Use Disorder study (CTN-0079) will assess the feasibility, acceptability and impact of introducing clinical protocols for screening for OUD, buprenorphine treatment initiation, and referral for ongoing treatment in ED settings with high need, limited resources and different staffing structures. This extension study will use the existing infrastructure to evaluate the adoption and sustainability of the clinical protocols introduced at each of the study sites and to identify factors influencing their diffusion and effectiveness.

1U44NS115692-01
Development and Optimization of MNK Inhibitors for the Treatment of Neuropathic Pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS 4E THERAPEUTICS INC. SAHN, JAMES JEFFREY Austin, TX 2019
NOFO Title: HEAL Initiative: Optimization of Non-addictive Therapies [Small Molecules and Biologics] to Treat Pain - (U44 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-020
Summary:

MNK-eIF4E signaling is activated in nociceptors upon exposure to pain or peripheral nerve injury, promoting cytokines and growth factors and increasing nociceptor excitability, which leads to neuropathic pain. Genetic or pharmacological inhibition of MNK signaling blocks and reverses nociceptor hyperexcitability as well as behavioral signs of neuropathic pain. A clinical phase drug for cancer shows strong specificity as an MNK inhibitor but requires optimization because MNK inhibition in the central nervous system (CNS) may lead to depression, an unacceptable side effect for a neuropathic pain drug. The research team plans a targeted medicinal chemistry and screening campaign directed at generating a MNK-inhibitor-based neuropathic pain treatment with the goal of restricting its CNS penetration while retaining potency, specificity, and in vivo bioavailability and efficacy.

4R33AT010125-02
Effect of Mindfulness Training on Opioid Use and Anxiety During Primary Care Buprenorphine Treatment Translation of Research to Practice for the Treatment of Opioid Addiction Behavioral Research to Improve Medication-Based Treatment NCCIH CAMBRIDGE HEALTH ALLIANCE SCHUMAN OLIVIER, Z Cambridge, MA 2019
NOFO Title: Clinical Trials or Observational Studies of Behavioral Interventions for Prevention of Opioid Use Disorder or Adjunct to Medication Assisted Treatment-SAMHSA Opioid STR Grants (R21/R33)
NOFO Number: RFA-AT-18-002
3R44TR001326-03S1
Automation and validation of human on a chip systems for drug discovery Cross-Cutting Research Small Business Programs NCATS HESPEROS, LLC SHULER, MICHAEL L; HICKMAN, JAMES J Orlando, FL 2019
NOFO Title: PHS 2017-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-17-302
Summary:

Hesperos uses microphysiological systems in combination with functional readouts to establish systems capable of analysis of chemicals and drug candidates for toxicity and efficacy during pre-clinical testing, with initial emphasis on predictive toxicity. The team constructed physiological systems that represent cardiac, muscle and liver function, and demonstrated a multi-organ functional cardiac/liver module for toxicity studies as well as metabolic activity evaluations. In addition, the team demonstrated multi-organ toxicity in a 4-organ system composed of neuronal, cardiac, liver and muscle components. While much is known about the cells and neural circuitry regulating pain modulation there is limited knowledge regarding the precise mechanism by which peripheral and spinal level antinociceptive drugs function, and no available human-based model reproducing this part of the pain pathway. The ascending pain modulatory pathways provide a well characterized neural architecture for investigating pain regulatory physiology. In this project, the research team propose a human-on-a-chip neuron tri-culture system composed of nociceptive neurons, GABAergic interneurons and glutamatergic dorsal projection neurons (DPN) integrated with a MEMS construct. Using this model, investigators will interrogate pain signaling physiology at three levels, 1) at the site of origin by targeting nociceptive neurons with pain modulating compounds including noxious stimuli and inflammatory mediators, 2) at the inhibitory GABAergic interneuron, and 3) at the ascending spinal level by targeting glutamatergic DPNs. These circuits will be integrated utilizing expertise in patterning neurons as well as integration with BioMEMs devices. This system provides scientists with a better understanding of ascending pain pathway physiology and enable clinicians to consider alternative indications for treating pain at peripheral and spinal levels.