Funded Projects
Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.
Project # | Project Title | Research Focus Area | Research Program | Administering IC | Institution(s) | Investigator(s) | Location(s) | Year Awarded |
---|---|---|---|---|---|---|---|---|
1UG3NS128439-01
Show Summary |
Allosteric Targeting of Cannabinoid CB1 Receptor to Develop Non-Addictive Small Molecule Analgesics | Preclinical and Translational Research in Pain Management | Development and Optimization of Non-Addictive Therapies to Treat Pain | NINDS | Texas A&M Health Science Center | LU, DAI (contact); SELLEY, DANA E; TAO, FENG | College Station, TX | 2022 |
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010 Summary: Overreliance on opioids to treat chronic pain has been a contributor to the increase in individuals experiencing opioid addiction. This project aims to develop an innovative treatment approach for chronic pain that targets the cannabinoid receptor 1 (CB1R) to block the sensation of pain. The approach seeks to identify molecules that interact with a different part of the CBR1 receptor than do endocannabinoids and the primary active component of cannabis, tetrahydrocannabinol. Molecules that bind to and activate CBR1 in this different way (at an “allosteric” site) may produce nerve signaling that might differ from the effects of cannabis and endocannabinoids. This redirection of signaling pathways could help eliminate the risk of adverse effects observed with natural cannabinoids and other CBR1-binding molecules. The goal of this project is to identify a CB1R allosteric molecule, conduct studies toward obtaining federal permission to develop it as a medication, and to test it in a Phase I clinical study. |
||||||||
1RM1NS128787-01
Show Summary |
Understanding the Mechanistic, Neurophysiological, and Antinociceptive Effects of Transcutaneous Auricular Neurostimulation for Treatment of Chronic Pain | Preclinical and Translational Research in Pain Management | Translating Discoveries into Effective Devices to Treat Pain | NINDS | University of Texas Med BR | WILKES, DENISE (contact); BADRAN, BASHAR W; HOUGHTON, DAVID C; KHODAPARAST, NAVID | Galveston, TX | 2022 |
NOFO Title: HEAL Initiative: Interdisciplinary Teams to Elucidate the Mechanisms of Device-Based Pain Relief (RM1 Clinical Trial Optional)
NOFO Number: NS22-016 Summary: Despite the need for non-opioid treatments for chronic pain, few alternative treatment approaches exist. Transcutaneous auricular neurostimulation (tAN) is a safe and effective treatment for pain during opioid withdrawal; however, researchers do not understand how tAN reduces pain, which limits its clinical use. A better understanding of how tAN affects neurophysiological processes to provide pain relief would likely expand tAN development and use. This interdisciplinary project will conduct research in both healthy adults and those with chronic pain to explain the neurochemical and neurophysiological mechanisms for tAN-based pain relief, and also help optimize treatments and their use. |
||||||||
3UH3NS116218-02S1
Show Summary |
Novel mGlu5 Negative Allosteric Modulators as First-in-Class Non-Addictive Analgesic Therapeutic | Preclinical and Translational Research in Pain Management | Development and Optimization of Non-Addictive Therapies to Treat Pain | NINDS | Vanderbilt University | ROOK, JERRI MICHELLE | Nashville, TN | 2022 |
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements. Parent Grant: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: Supplement: PA-20-272; Parent NOFO: NS-21-010 Summary: Negative allosteric modulators (NAMs) of the metabotropic glutamate (mGlu) receptor, mGlu5, have shown promise for treatment of multiple pain conditions without the serious adverse effects and safety concerns associated with opioids. This project will develop and test a novel series of highly selective mGlu5 NAMs that are structurally unrelated to earlier failed compounds and do not form toxic byproducts as with previous mGlu5 NAMs. A lead candidate is now being characterized in several studies to assess readiness for testing in Phase I clinical studies. |
||||||||
1R61NS126026-01A1
Show Summary |
Antagonists of CRMP2 Phosphorylation for Chemotherapy-Induced Peripheral Neuropathy | Preclinical and Translational Research in Pain Management | Development and Optimization of Non-Addictive Therapies to Treat Pain | NINDS | UNIVERSITY OF ARIZONA | KHANNA, RAJESH | Tucson, Arizona | 2022 |
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: NS21-029 Summary: A more thorough understanding of neuropathic pain is critical for developing new target-specific medications. Researchers know that peripheral nerve injury changes various cell processes that affect two ion channels linked with chronic pain. Preliminary studies indicate that molecular changes known as phosphorylation to the collapsin response mediator protein 2 (CRMP2), one of five intracellular phosphoproteins, promotes abnormal excitability in the brain region that contributes to neuropathic pain. This project aims to develop small molecule inhibitors of CRMP2 phosphorylation as potential therapeutics for pain. |
||||||||
1R61NS127287-01
Show Summary |
Initial Development of AEG-1 Inactivation as a Possible Strategy for Pain Treatment | Preclinical and Translational Research in Pain Management | Development and Optimization of Non-Addictive Therapies to Treat Pain | NINDS | Virginia Commonwealth University | DAMAJ, M IMAD (contact); SARKAR, DEVANAND | Richmond, Virginia | 2022 |
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: NS21-029 Summary: There is a continued need to discover and validate new targets for potential therapeutic strategies for effective and safe treatment of pain. This project focuses on the protein metadherin, also known as astrocyte elevated gene-1 protein (AEG-1), as a possible new target for pain treatment. Preliminary studies have shown that mice genetically engineered to lack metadherin had significantly lower inflammation and chronic pain-related behaviors. This project aims to further validate AEG-1 as a pain target and test whether reducing levels in white blood cells called macrophages might work as a therapeutic strategy to reduce chronic inflammatory and/or neuropathic pain using an innovative nanoparticle approach to target specific cells. |
||||||||
1R61NS127286-01
Show Summary |
Developing GPR37 Activators as Non-Opioid Pain Therapeutics | Preclinical and Translational Research in Pain Management | Development and Optimization of Non-Addictive Therapies to Treat Pain | NINDS | University of Texas Med BR | LA, JUN-HO (contact); ALLEN, JOHN A; ZHOU, JIA | Galveston, TX | 2022 |
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: NS21-029 Summary: Chronic pain from tissue injury often stems from long-term changes in spinal cord circuits that change nerve sensation. Reversing these changes may provide better pain therapeutics. Previous work in animal models showed that activating G protein-coupled receptor 37 (GPR37) dampens nerve signal intensity after long-term stimulation and alleviates pain behavioral responses. This project aims to validate GPR37 in the spinal cord as a useful target for new treatments for neuropathic pain. The work will facilitate screening and identification of new molecules that activate GPR37, which can then be tested for efficacy and safety in further research in animal models of pain. |
||||||||
1R61NS127285-01
Show Summary |
Development of Therapeutic Antibodies to Target Sodium Channels Involved in Pain Signaling | Preclinical and Translational Research in Pain Management | Development and Optimization of Non-Addictive Therapies to Treat Pain | NINDS | University of California, Davis | YAROV-YAROVOY, VLADIMIR M (contact); TRIMMER, JAMES S | Davis, CA | 2022 |
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: NS21-029 Summary: Voltage-gated sodium channels such as Nav1.7, Nav1.8, and Nav1.9 transmit pain signals in nerve fibers and are molecular targets for pain therapy. While Nav channels have been validated as pharmacological targets for the treatment of pain, available therapies are limited due to incomplete efficacy and significant side effects. Taking advantage of recent advances in structural biology and computational-based protein design, this project aims to develop antibodies to attach to Nav channels and freeze them in an inactive state. These antibodies can then be further developed as novel treatments for chronic pain. |
||||||||
1U18EB030609-01
Show Summary |
Novel Implantable Device to Negate Post-Amputation Pain | Preclinical and Translational Research in Pain Management | Translating Discoveries into Effective Devices to Treat Pain | NIBIB | NOVAFLUX, INC. | LABIB, MOHAMED E (contact); KATHJU, SANDEEP | Princeton, NJ | 2021 |
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003 Summary: Approximately 3.6 million Americans live with an amputated extremity, and the majority of these individuals are likely to suffer from chronic post-amputation pain. There is no consensus as to a recommended therapy for such pain, and many treatments do not provide sufficient pain control. Some studies have shown effective pain suppression from delivering an anesthetic agent directly to an injured nerve. This research aims to develop a device that can be implanted near the injured nerves of an amputated limb to deliver an anesthetic. Findings from this preclinical study will optimize design and delivery features to maximize its effect on pain control for as long as possible without needing a drug refill. The research is expected to advance eligibility for further testing in large animals and humans. |
||||||||
3R01DE029951-01S1
Show Summary |
Targeting Endosomal Receptors for Treatment of Chronic Pain | Preclinical and Translational Research in Pain Management | Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain | NIDCR | NEW YORK UNIVERSITY | BUNNETT, NIGEL W | New York, NY | 2021 |
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107 Summary: G protein-coupled receptors (GPCRs) are the largest family of transmembrane signaling proteins and play important roles in inflammation and pain. GPCR signaling is fast and temporary, making it hard to measure in clinical studies of potential drugs to interfere with the signaling. This research is using selectively designed nanoparticles to stimulate or block GPCRs toward identifying new treatments for oral cancer pain. This award will use a new nanoformulation approach to understand how nanoparticles affect nerve function by i) testing the effects of continuous release of a GPCR inhibitor in an oral cancer microenvironment and ii) investigating the influence of various physicochemical characteristics of nanoparticles on nerve function in an oral cancer microenvironment. |
||||||||
3U44NS115111-03S1
Show Summary |
High-Resolution, Spinal Cord Stimulation for Non-Opioid Treatment of Neuropathic Pain | Preclinical and Translational Research in Pain Management | NINDS | MICRO-LEADS, INC. | MCLAUGHLIN, BRYAN L | Somerville, MA | 2021 | |
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107 Summary: This research seeks to develop a high-resolution spinal cord stimulation therapy for treating chronic neuropathic pain of the lower extremities, groin, and lower back. Systems that use wireless communication methods require robust strategies to prevent various forms of cyberattacks on implantable devices. The focus of this project's research will be to develop a new cybersecurity risk-reduced architecture for Bluetooth low-energy implant communication. |
||||||||
1U19NS126038-01
Show Summary |
Site-directed RNA editing of Nav1.7 as a novel analgesic | Preclinical and Translational Research in Pain Management | Development and Optimization of Non-Addictive Therapies to Treat Pain | NINDS | MARINE BIOLOGICAL LABORATORY, WOODS HOLE | ROSENTHAL, JOSHUA J C (contact); DIB-HAJJ, SULAYMAN D; DUSSOR, GREGORY O; EISENBERG, ELI | New Haven, CT | 2021 |
NOFO Title: HEAL Initiative: Team Research for Initial Translational Efforts in Non-addictive Analgesic Therapeutics Development (U19 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-21-015 Summary: Opioids are widely used pain treatments, despite their relative ineffectiveness for chronic pain and their high potential for misuse and addiction. There is thus an urgent need for alternative, non-addictive pain treatments. Genetic and functional studies of human pain disorders and animal models of pain have validated Nav1.7, a voltage-gated sodium channel as an attractive target for new pain treatments. Currently available blockers of these channels can sometimes provide symptomatic relief for patients but have worrisome side effects affecting the brain and heart. This study aims to develop and validate an innovative site-directed RNA editing strategy that will offer the ability to create new versions of molecules to block Nav1.7, toward establishing a novel, non-addictive approach to treat chronic pain. |
||||||||
1R34NS126030-01
Show Summary |
Profiling the human gut microbiome for potential analgesic bacterial therapies | Preclinical and Translational Research in Pain Management | Development and Optimization of Non-Addictive Therapies to Treat Pain | NINDS | HOLOBIOME, INC. | STRANDWITZ, PHILIP PETER (contact); GILBERT, JACK ANTHONY | Cambridge, MA | 2021 |
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development Initial Translational Efforts [Small Molecules and Biologics] (R34 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-21-016 Summary: Disruptions in make-up of the microbiome are associated with disorders characterized by chronic pain and inflammation, such as rheumatoid arthritis and fibromyalgia. The gut microbiome has immune and metabolic effects, and human gut-derived bacteria may be a source of novel, safe, and non-addictive pain treatments. However, connections between gut and pain signals, known as the “gut–pain axis,” are still poorly understood. This study aims to identify human-gut-native bacteria that i) interact with known pain targets in lab studies, ii) test their activity and analgesic/anti-inflammatory potential in an animal model, and iii) develop a computational approach to predict microbial-genetic effects on pain signals. |
||||||||
1R34NS126032-01
Show Summary |
Stem cell-loaded microgels to treat discogenic low back pain | Preclinical and Translational Research in Pain Management | Development and Optimization of Non-Addictive Therapies to Treat Pain | NINDS | CEDARS-SINAI MEDICAL CENTER | SHEYN, DMITRIY | Los Angeles, CA | 2021 |
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development Initial Translational Efforts [Small Molecules and Biologics] (R34 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-21-016 Summary: Pain caused by the degeneration of discs between vertebrae in the spine makes up a significant proportion of all chronic low back pain conditions. Although opioids are prescribed as treatments for this chronic condition, they often do not provide effective pain management, and currently there are no treatments that target the underlying disc disease. Notochordal cells mature into the cells that make up discs between vertebrae. Preliminary studies have shown that notochordal cells can be made from induced pluripotent stem cells, offering a potential replacement for diseased cells between discs. This study aims to develop a novel treatment for painful disc degeneration using a microgel/microtissue embedded with human notochordal cells made in the lab from induced pluripotent stem cells. |
||||||||
1UG3NS123965-01
Show Summary |
Novel, non-opioid, non-addictive intrathecal therapy for the treatment of chronic pain | Preclinical and Translational Research in Pain Management | Development and Optimization of Non-Addictive Therapies to Treat Pain | NINDS | CENTREXION THERAPEUTICS CORPORATION | CAMPBELL, JAMES N | Boston, MA | 2021 |
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010 Summary: Patients with severe, intractable chronic pain primarily receive treatment with opioids, and non-opioid treatment options are urgently needed. These patients may be candidates for treatment using other types of pain medications administered via intrathecal injection—that is, injection directly into the fluid-filled space between the membranes surrounding the brain and spinal cord. Intrathecal injection requires much lower medication doses than systemic administration. Centrexion Therapeutics Corporation seeks to develop CNTX-3100, a highly selective and highly potent novel small molecule that activates the nociception receptor (NOPr), for intrathecal administration using a pump approved by the U.S. Food and Drug Administration. In animal studies, such NOPr agonists had powerful analgesic effects when delivered directly to the spinal cord by intrathecal administration. CNTX-3100 has ideal properties for intrathecal delivery and in animal studies provided pain relief and a safety profile that was superior to intrathecally administered morphine. This project will scale up the drug, develop a formulation that ensures a stable product for intrathecal delivery, and conduct preclinical toxicity studies to prepare for a Phase 1 clinical trial. |
||||||||
1R34NS126036-01
Show Summary |
Synthesis of peripherally active CB1 agonists as analgesics | Preclinical and Translational Research in Pain Management | Development and Optimization of Non-Addictive Therapies to Treat Pain | NINDS | ST. LOUIS COLLEGE OF PHARMACY | MAJUMDAR, SUSRUTA (contact); DROR, RON ; GEREAU, ROBERT W | St. Louis, MO | 2021 |
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development Initial Translational Efforts [Small Molecules and Biologics] (R34 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-21-016 Summary: Current medications for chronic pain are largely ineffective and rely heavily on opioids, one contributor to the nation’s opioid crisis. The endocannabinoid system that consists of cannabinoid receptors (CB1R and CB2R) and their endogenous ligands is a natural pathway in the human body and has emerged as an alternative target for developing new pain medications with few side effects. Current molecules that bind to CB1R in the brain and spinal cord have psychoactive side effects, limiting their therapeutic use for treating chronic pain. This study aims to develop new molecules to bind to CB1R tightly and selectively, are metabolically stable, and are also unable to enter the brain. |
||||||||
1UG3NS123958-01
Show Summary |
Development of a CCKBR-targeting scFv as Therapy for Chronic Pain Patients | Preclinical and Translational Research in Pain Management | Development and Optimization of Non-Addictive Therapies to Treat Pain | NINDS | UNIVERSITY OF NEW MEXICO HEALTH SCIS CTR | WESTLUND-HIGH, KARIN N (contact); ALLES, SASCHA R | Albuquerque, NM | 2021 |
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010 Summary: Cholecystokinin B receptor (CCKBR) is a molecule found in the brain that helps regulate anxiety and depression but also influences the development of tolerance to opioids. CCKBR levels are also increased in models of nerve injury-induced (neuropathic) pain. Therefore, targeting CCKBR may offer a new approach to treating neuropathic pain and the associated anxiety and depression. Researchers have developed mouse antibodies that can inactivate CCKBR. However, to be usable in humans without causing an immune response, these antibodies need to be modified to include more human sequences. This project will use a fragment of the CCKBR antibody, modify it with the addition of human antibody sequences, and then select the clones that bind most strongly and specifically to human CCKBR. These will then be tested in cell and animal models of neuropathic pain to identify the most promising candidates for further evaluation in humans. |
||||||||
1UG3NS123964-01
Show Summary |
Disease Modifying Analgesia with CA8 Gene Therapy | Preclinical and Translational Research in Pain Management | Development and Optimization of Non-Addictive Therapies to Treat Pain | NINDS | UNIVERSITY OF MIAMI SCHOOL OF MEDICINE | LEVITT, ROY C | Coral Gables, FL | 2021 |
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010 Summary: Efforts to identify non-opioid analgesics for treatment of chronic pain have identified a protein, carbonic anhydrase-8 (CA8), in pain-sensing nerve cells in the spinal cord (dorsal root ganglion cells) whose expression regulates analgesic responses. Gene therapy delivering CA8 to dorsal root ganglion cells through clinically relevant routes of administration functions as a “local anesthetic” that induces long-lasting pain relief in animal models of chronic pain. This project will further develop CA8 gene therapy with the goal of treating chronic knee osteoarthritis pain. It will assess several gene therapy constructs to determine the doses needed, safety, efficacy, and specificity to nerve cells for each construct. It will then select the safest and most effective construct that can be administered via the least invasive route for further development. The project will include all steps necessary to identify one candidate gene therapy construct that will be suitable to begin clinical trials in patients with chronic knee osteoarthritis pain. |
||||||||
3U44NS115692-01S1
Show Summary |
Development and Optimization of MNK Inhibitors for the Treatment of Neuropathic Pain | Preclinical and Translational Research in Pain Management | Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain | NINDS | 4E THERAPEUTICS INC. | SAHN, JAMES JEFFREY | Austin, TX | 2020 |
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008 Summary: There is an urgent unmet need for more efficacious analgesics that act via a non-opioid pathway. Mitogen Activated Protein Kinase-interacting kinase 2 (MNK2) is an enzyme that has been implicated in pain signaling, and there is compelling evidence that inhibiting MNK2 has significant pain-reducing effects with few side-effects. Since MNK2 selective inhibitors have not yet been identified, selective inhibition of MNK2 with a small molecule has not been possible. The development of such compounds will enable studies that will illuminate key differences between MNK2 and MNK1. More importantly, from a therapeutic standpoint, highly selective MNK2 inhibitors may prove to have enhanced efficacy and a more favorable side-effect profile than molecules that inhibit both MNK2 and MNK1. This project will support the design and synthesis of at least one MNK2 inhibitor, with >100-fold selectivity over MNK1, that may be developed into a lead compound for treating neuropathic pain. |
||||||||
1UH3NS115647-01A1
Show Summary |
A Double-Blind, Randomized, Controlled Trial of Epidural Conus Medullaris Stimulation to Alleviate Pain and Augment Rehabilitation in Patients with Subacute Thoracic Spinal Cord Injury (SCI) | Preclinical and Translational Research in Pain Management | Translating Discoveries into Effective Devices to Treat Pain | NINDS | DUKE UNIVERSITY | LAD, SHIVANAND P | Durham, NC | 2020 |
NOFO Title: HEAL Initiative: Clinical Devices to Treat Pain (UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-19-018 Summary: Pain is a major problem for spinal cord injury (SCI) patients that tends to persist and even worsen with time. No treatments are currently available to consistently relieve pain in SCI patients. This study will investigate the feasibility of Epidural Electrical Stimulation (EES) using the Abbott Proclaim? SCS system with two electrodes to treat neuropathic pain in patients with thoracic spinal cord injury. In this double-blind, prospective, randomized clinical trial, patients with subacute, traumatic, complete thoracic SCIs with American Spinal Injury Association (ASIA) Impairment Scale A will be randomized to receive either ?EES on? (treatment intervention) or ?EES off? (control intervention) of the target regions for pain control (lead overlying the spinal cord anatomy corresponding with their pain distribution) and neurorestoration (lead overlying the conus medullaris) as an adjunct to physical therapy. This study will help determine whether EES can help patients with SCI neuropathic pain and have more widespread clinical applicability. |
||||||||
1R61NS118651-01A1
Show Summary |
Prognostic Biomarkers for High-Impact Chronic Pain: Development and Validation | Preclinical and Translational Research in Pain Management | Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions | NINDS | STANFORD UNIVERSITY | MACKEY, SEAN C | Redwood City, CA | 2020 |
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041 Summary: Multidisciplinary chronic pain treatments show incomplete recovery at the population level because of significant heterogeneity on the individual level in the high impact chronic pain population. Subgroups of individuals either completely respond, do not change, or even worsen following pain management. Therefore, diagnostic biomarker signatures are needed to differentiate high impact chronic pain from low impact chronic pain. This study aims to develop prognostic biomarkers to predict the disease trajectory for individuals with musculoskeletal high-impact chronic pain. These biomarker signatures will integrate central nervous system (CNS), multi-?omic?, sensory, functional, psychosocial, and demographic domains into detection algorithms. Biomarker signatures from the proposed research are intended to facilitate risk and treatment stratification for clinical trial design and to facilitate treatment decisions in clinical practice for patients with musculoskeletal chronic pain. |
||||||||
3UG3TR003149-02S1
Show Summary |
Supplement to hiPSC-based DRG Tissue Mimics on Multi-well Microelectrode Arrays as a Tissue Chip Model of Acute and Chronic Nociception | Preclinical and Translational Research in Pain Management | Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain | NCATS | UNIVERSITY OF TEXAS DALLAS | BLACK, BRYAN JAMES | Dallas, TX | 2020 |
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008 Summary: This study aims to determine whether a subset of understudied genes that are expressed in human and mouse dorsal root ganglia (DRG) tissues (critical for relaying the sensation of pain from the body to the central nervous system), are also expressed in human induced pluripotent stem cell DRG mimetics. The study will also determine if these genes are involved in neuronal excitability changes under inflammatory conditions and compare these responses to those of primary DRG neurons. Third and finally, the study will optimize genetic depletion of target genes enabling future fundamental and preclinical research studies. |
||||||||
3R35NS105092-03S1
Show Summary |
The biophysics of skin-neuron sensory tactile organs and their sensitivity to mechanical and chemical stress | Preclinical and Translational Research in Pain Management | Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain | NINDS | STANFORD UNIVERSITY | GOODMAN, MIRIAM B | Palo Alto, CA | 2020 |
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008 Summary: This project will establish a rapid research pipeline for linking plant-derived compounds to nociception (pain) and to G Protein-Coupled Receptors (GPCRs) and ion channels in the druggable human genome. As more than 80% of these membrane proteins are conserved in the C. elegans nematodes, the study will screen for compounds and genes affecting nociception as well as to identify novel ligand-receptor pairs using this model organism. The study will test which understudied GPCRs and ion channels are involved in nociception as well as attraction or repulsion behaviors. This research has the potential to reveal novel ligand-receptor pairs that could serve as new entry points for improved or alternative pain treatments. |
||||||||
3R01AT010757-02S1
Show Summary |
The study of Gpr149 in nociception and the peripheral action of minor cannabinoids | Preclinical and Translational Research in Pain Management | Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain | NCCIH | UNIVERSITY OF CALIFORNIA, SAN FRANCISCO | HELLMAN, JUDITH | San Francisco, CA | 2020 |
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008 Summary: The cannabis plant contains many active compounds known collectively as cannabinoids that have been shown to possess analgesic and anti-inflammatory properties. These compounds exert their biological activity, in part, through the cannabinoid receptor. The cannabinoid receptor is a member of a class of proteins known as G-protein coupled receptors (GPCRs). This study will test whether a GPCR with unknown biological function, called Gpr149, has a role in the activity of cannabinoids. The study will identify and characterize Gpr149 expression in mouse cells, and deeply characterize the action of minor cannabinoids, endocannabinoids and products of inflammation to modulate Gpr149. This research will provide insight into the analgesic and anti-inflammatory action of minor cannabinoids and into the role of Gpr149 in nociception and the sensitization of nociceptors to inflammatory mediators. |
||||||||
3R37DA020686-13S1
Show Summary |
Role for Tas2Rs in opioid addiction | Preclinical and Translational Research in Pain Management | Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain | NIDA | ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI | KENNY, PAUL J. | New York, NY | 2020 |
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008 Summary: Opioids and other addictive substances have powerful rewarding properties that drive the development of addiction. They also have aversive properties that motivate their avoidance and protect against addiction. This project will explore the role of Type 2 Taste Receptor proteins (Tas2Rs or T2Rs) in regulating the aversive properties of opioids, potentially establishing an entirely new class of receptors that can be targeted for the development of novel addiction therapeutics. |
||||||||
3UH3NS113661-02S1
Show Summary |
Deep Brain Stimulation of the Subgenual Cingulate Cortex for the Treatment of Medically Refractory Chronic Low Back Pain | Preclinical and Translational Research in Pain Management | Translating Discoveries into Effective Devices to Treat Pain | NINDS | UNIVERSITY OF CALIFORNIA LOS ANGELES | BARI, AUSAF; POURATIAN, NADER | Los Angeles, CA | 2020 |
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-18-906 Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-023 Summary: A current obstacle to developing more effective therapies for chronic low back pain is the lack of clinical trials assessing the feasibility and potential effectiveness of promising new targets for neuromodulation. This project will explore the feasibility of using deep brain stimulation of a new brain target for treating chronic low back pain. The study will also explore imaging biomarkers in patients with chronic low back pain that can be used to predict whether someone is a candidate or may respond to deep brain stimulation therapy, to guide programming and patient selection for this therapy in the future. |