Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Sort descending Institution(s) Investigator(s) Location(s) Year Awarded
3UH3DA047714-04S1
Feasibility of Deep Brain Stimulation as a Novel Treatment for Refractory Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA WEST VIRGINIA UNIVERSITY REZAI, ALI R Morgantown, WV 2023
NOFO Title: Feasibility of Deep Brain Stimulation as a Novel Treatment for Refractory Opioid Use Disorder
NOFO Number: PA-20-272
Summary:

Novel treatments for opioid use disorder are critically needed as the addiction and overdose crises continue. Neuromodulation is a promising supplemental treatment to standard care. The overarching project seeks to evaluate low-intensity focused ultrasound that targets the nucleus accumbens, a primary component of the brain’s reward neurocircuitry. This supplement will expand the number of participants in part of the study and will increase the project’s overall impact consistent with the original objectives and aims of the parent grant.

1UG3DA047699-01
Development of ITI-333, a ?-opioid Receptor Partial Agonist and 5HT2A and D1 Receptor Antagonist, for the Treatment of Opioid Use Disorders Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA INTRA-CELLULAR THERAPIES, INC. VANOVER, KIMBERLY E New York, NY 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Deaths from opioid overdose continue to rise; from 2015 to 2016, there was a 28 percent increase in the number of fatal overdoses. Currently available pharmacotherapies include MOR agonists (e.g., buprenorphine) and antagonists (e.g., naloxone), all of which suffer from specific and clear limitations. To address some of the key limitations, Intra-Cellular Therapies Inc (ITI) is developing ITI-333, a novel compound with high-affinity activity at mu opiate (MOP), 5-HT2A, and D1 receptors, that lacks abuse liability and thus offers great promise for the treatment of opioid use disorders. This proposal is for a 2-year UG3 program, including a first-in-human, single ascending dose (SAD) study to assess the safety, tolerability, and pharmacokinetics of ITI-333 in healthy volunteers. This study will then be repeated in a single-center in-patient study with the goal of determining a maximally- tolerated dose (MTD) and completed with human abuse liability and functional pharmacology studies. Together, the researchers believe this clinical development plan will inform further development of ITI-333 and the selection of a cogent Phase 3 clinical path toward FDA approval as a medication for the treatment of OUD.

3UG3DA047711-02S1
PHASE 1A/1B CLINICAL TRIALS OF MULTIVALENT OPIOID VACCINE COMPONENTS Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA NEW YORK STATE PSYCHIATRIC INSTITUTE COMER, SANDRA D; PRAVETONI, MARCO New York, NY 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Opioid use disorder (OUD) is a serious public health problem that is associated with high rates of morbidity and mortality. The proposed Phase 1a/1b studies are designed to evaluate a novel treatment strategy for OUD. Specifically, the safety, immunogenicity and preliminary efficacy of a vaccine (OXY-KLH) targeted against oxycodone (Study 1) and a vaccine (M-KLH) targeted against heroin/morphine (Study 2) will be evaluated in participants diagnosed with OUD.

1UG3DA048502-01A1
Non-Invasive Vagal Nerve Stimulation in Patients with Opioid Use Disorders Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA EMORY UNIVERSITY Bremner, James Douglas Atlanta, Georgia 2020
NOFO Title:
NOFO Number: PAR18-494
1UG3DA048385-01
Development of novel therapeutics for opioid dependence Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI KENNY, PAUL J.; KAMENECKA, THEODORE M New York, NY 2018
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

This project proposes to develop novel Gpr151 antagonists to facilitate long-term abstinence in opioid-dependent individuals. Gpr151 is an orphan G-protein coupled receptor that is expressed almost exclusively in the medial habenula and co-localizes with ?-opioid receptors to regulate the inhibitory effects of opioids on habenular neurons. Mice with a null mutation in Gpr151 (Gpr151-/- mice) are resistant to the stimulant and rewarding effects of opioids and self-administer lower quantities of oxycodone. Based on this preliminary work, the study will seek to identify Gpr151 antagonists through a variety of methods and optimize them for potency, selectivity, drug metabolism, pharmacokinetics, and brain penetration properties. The study will evaluate effects of those with the most favorable drug-like physiochemical properties on electrophysiological responses of medial habenula to opioid drugs and assess the in vivo efficacy of these novel antagonists in wild-type and Gpr151-/- mice.

1R01DA056828-01
Brain-Penetrant GPR88 Agonists as Novel Therapeutics for Opioid Abuse Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Sanford Burnham Prebys Medical Discovery Institute SMITH, LAYTON HARRIS; KENNY, PAUL J La Jolla, CA 2022
NOFO Title: HEAL Initiative: Novel Targets for Opioid Use Disorders and Opioid Overdose (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-22-031
Summary:

Opioid dependence is a leading cause of premature illness and death. Previous research suggests that a protein called G-protein coupled receptor (GPR88) controls many addiction-relevant behavioral and physiological actions of opioids. This research study will validate GPR88 as a drug target for opioid use disorder as well as develop novel, brain-penetrant GPR88-binding molecules with properties optimized for treating opioid dependence. This research is an initial step toward the goal of developing GPR88-binding molecules as novel therapeutics to facilitate abstinence in people dependent on opioids.

1UG3DA047717-01
MOR/DOR Heterodimer Antagonists: A Novel Treatment for Opioid Dependence Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA WASHINGTON STATE UNIVERSITY MORGAN, MICHAEL M Pullman, WA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Tens of thousands of people die each year from opioid overdose. Many of these people began taking opioids for pain. A critical treatment goal is to reduce the development of opioid dependence either by enhancing opioid analgesia so lower doses can be used or by blocking withdrawal symptoms. Current pharmacological treatments in these two categories, although effective, present serious limitations. The recent finding that reducing the signaling through mu-delta opioid heterodimers appears to enhance opioid antinociception and reduce dependence suggests that a blocker of mixed mu-delta receptors (MDOR antagonist) could be effective in reducing dependence by limiting opioid tolerance and preventing opioid withdrawal. This research group has developed a compound with that characteristic, called D24M, which preliminary studies have shown could reduce opioid dependence by enhancing opioid antinociception, reducing opioid tolerance, or directly inhibiting opioid withdrawal. They propose to extend this research by investigating whether it can reduce chronic pain in an animal model that mimics the clinical situation of pain patients who transition to dependence. If these studies are successful, they could lead to the development of an optimized drug ready for Investigational New Drug (IND) application and enable translational and clinical testing.

3UH3DA047700-05S2  
Biased Mu-Opioid Receptor Analgesics to Prevent Overdose and Opioid Use Disorders Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA MEBIAS DISCOVERY, INC KUO, LAWRENCE C (contact); BARRETT, JAMES E Philadelphia, PA 2023
NOFO Title: Biased Mu-Opioid Receptor Analgesics to Prevent Overdose and Opioid Use Disorders
NOFO Number: PA-20-272
Summary:

There is an urgent need for a new generation of non-addictive, pain-relieving medications that do not cause problematic side effects like breathing problems or constipation. The overarching project is testing a new potential medication that interacts in a new way with the opioid system in human research participants. This supplement will help cover costs associated with the Safety Review Committee meeting required by the U.S. Food and Drug Administration.

1UG3DA048387-01A1
Methocinnamox (MCAM): A novel ?-opioid receptor antagonist for opioid use disorders Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA University of Texas Health Science Center San Antonio Woods, James San Antonio, TX 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

MCAM is a novel opioid antagonist that can be used for opioid overdose reversal and has advantages over naloxone, including a pseudo-irreversible interaction with the ?-opioid receptor and a longer duration of action. Studies in animal models demonstrate MCAM’s long duration of action against the reinforcing and respiratory-depressant effects of remifentanil and heroin, indicating that could be a better treatment option for opioid use disorder. This project studies the pharmacodynamics of MCAM through animal toxicity and safety studies to establish the necessary and sufficient conditions from which to establish MCAM’s safety and antagonist activity in animals and humans. MCAM may be able to prevent all actions of any ?-receptor opioid drug in humans for a longer period of time than any other antagonist given acutely.

1UG3DA047711-01
Phase 1a/1b Clinical Trials of Multivalent Opioid Vaccine Components Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA NEW YORK STATE PSYCHIATRIC INSTITUTE COMER, SANDRA D; PRAVETONI, MARCO New York, NY 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

The current studies are designed to examine a novel approach to treating OUD, namely use of a vaccine (OXY-KLH) targeted against oxycodone, one of the most commonly misused prescription opioids, and a vaccine (M-KLH) targeted against heroin/morphine. The researchers will evaluate the safety, immunogenicity, and preliminary efficacy of OXY-KLH and M-KLH. Overall, the proposed studies will provide a great deal of information about the safety and potential efficacy of the vaccines in reducing the addiction liability of opioids, which will be administered in a controlled laboratory setting. If the outcomes of the proposed studies with OXY-KLH and M-KLH are favorable, development of the bivalent vaccine (OXY-KLH plus M-KLH) that will target oxycodone and heroin will proceed. The long-term goal of this research is to develop a multivalent vaccine directed against oxycodone, heroin, and other relevant opioids.

1UF1DA054817-01A1
Preclinical Development of Novel Dual OXR/KOR Antagonists for Treatment of Substance Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA HAGER BIOSCIENCES, INC. BUTERA, JOHN A Bethlehem, PA 2021
NOFO Title: Grand Opportunity in Medications Development for Substance-Use Disorders (U01 - Clinical Trial Optional)
NOFO Number: PAR-19-327
Summary:

Substance use disorder (SUD) is a serious public health and socioeconomic burden. In this project, researchers will develop novel drug compounds that dually target orexin receptors and kappa opioid receptors, which have both been implicated in SUD. The compounds will then be tested for effectiveness in preclinical models of SUD, including models of cocaine, methamphetamine, and fentanyl use. This research has the potential to provide highly impactful and innovative treatment options for SUD via simultaneous modulation of multiple signaling pathways.

1UG3DA047682-01
PF614 MPAR Abuse Deterrent opioid prodrug with overdose protection: Pre-Clinical Development and Phase 1 Clinical Trial Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA ENSYSCE BIOSCIENCES, INC. KIRKPATRICK, LYNN San Diego, CA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Several abuse-deterrent opioid products (primarily formulations) are currently marketed or in clinical development, but they fall short of being resistant to abuse. Rather than abuse-deterrent formulations, this project, in partnership with Ensyce Biosciences, has created two complementary, novel technologies that control the release of known opioids. One technology delivers prodrugs — drugs that are not active until they have been exposed to the right conditions within the body, at which point they are gradually converted into active drugs, making them difficult to tamper with and reducing the potential for misuse. Another technology makes it so that taking increasing numbers of pills inhibits the process of converting prodrug into active drug, reducing the potential for overdose. This project aims to refine the development of these two technologies and work to combine them, and to translate promising animal results into human use.

1R01DA056675-01
Domain-Specific Inhibition of Angiotensin-Converting Enzyme as a Therapeutic Strategy for Opioid Use Disorders Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA University of Minnesota ROTHWELL, PATRICK (contact); MORE, SWATI S Minneapolis, MN 2022
NOFO Title: HEAL Initiative: Novel Targets for Opioid Use Disorders and Opioid Overdose (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-22-031
Summary:

Novel treatments for opioid use disorder are urgently needed. Previous research has shown that angiotensin-converting enzyme (ACE) can control levels and activity of natural, “endogenous,” opioids in a way that might reduce the rewarding effects of opioids like fentanyl. ACE inhibitors have been used to treat hypertension for decades, with no evidence of addiction or dependence. This research will evaluate ACE effects on endogenous opioids toward generating new, domain-specific ACE inhibitors with optimized properties for treating opioid use disorder. The research will also test the behavioral impact of these compounds in preclinical models of opioid use disorder. 

1UG3DA048379-01
Arylepoxamides: A new class of potent, safer analgesics Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA SLOAN-KETTERING INST CAN RESEARCH PAN, YING-XIAN New York, NY 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

The expansion of opioid prescribing in recent years to better treat pain has markedly increased their usage and availability and fueled an epidemic of abuse. Up to 80 percent of addicts reported initiating their habit through prescriptions drugs. Decreasing opioid prescriptions would lower opioid exposure, with fewer people receiving the drugs and less drug available for diversion. Study investigators have identified a novel target in the brain, distinct from any of the traditional opioid receptors capable of mediating potent analgesia without the reward behavior and side effects seen with traditional opioids. They targeted this site with a series of arylepoxamides and have identified a clinical candidate (MP1000) and backup compound. MP1000 is a potent analgesic in a range of thermal, inflammatory, and neuropathic analgesic assays. It fails to show reward behavior and does not produce respiratory depression at doses 5-fold greater than its analgesic ED50. Chronic administration does not produce physical dependence or withdrawal when challenged with an antagonist. It shows no cross tolerance to morphine and can be co-administered to subjects already on opioids for pain to lower their opioid usage (i.e., opioid sparing), facilitating the eventual discontinuation of the opioid. If successful, this project could lead to the development of a viable alternative to current opioid-based analgesics with reduced side effects (such as reward and respiratory depression) compared to opioids.

1UG3DA059285-01
Development of Cebranopadol, a Potent Dual MOP/NOP Agonist, for the Treatment of Opioid Use Disorder (OUD) Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA PARK THERAPEUTICS, INC. GRIECO, JOSEPH (contact); GREENWALD, MARK K; CICCOCIOPPO, ROBERTO Morristown, NJ 2023
NOFO Title: Development of Medications to Prevent and Treat Opioid and/or Stimulant Use Disorders and Overdose (UG3/UH3 - Clinical Trial Optional)
NOFO Number: PAR-22-200
Summary:

There is an urgent need for improved medications to treat OUD. This project will test cebranopadol, a novel synthetic medication that interacts in a new way with the human opioid system as a safe and potentially effective alternative treatment for OUD. The research will test the safety and efficacy of cebranopadol in preclinical and clinical studies, toward guiding future research to support potential approval of this medication by the U.S. Food and Drug Administration.

1UG3DA048768-01A1
Novel LAAM formulations to treat Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Virginia Commonwealth University Xu, Qingguo Richmond, VA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Levo-alpha-acetylmethadol (LAAM) offers numerous behavioral and clinical advantages for select opioid use disorder (OUD) patients who do not respond to standard treatment. While LAAM was withdrawn from the market despite being approved for OUD treatment, this project seeks to develop novel, patentable, convenient dosage forms of LAAM, including novel LAAM oral dosage formulations and novel buccal film formulations of LAAM. Morphology, mechanical property, drug release kinetics, and stability of the oral dosage and buccal film formulations will be characterized to determine the instant release or steady release of LAAM, respectively. The two lead LAAM formulations with adequate release and stability profiles will be chosen through optimization studies both in vitro and in vivo. A human pharmacokinetic/pharmacodynamic study will then be carried out on the two selected formulations.

1UG3DA050317-01
Targeting the Ghrelin System for Novel Opioid Use Disorder Therapeutics Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA The University of Texas Medical Branch at Galveston Cunningham, Kathryn Galveston, TX 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

To address the need for novel therapeutics for opioid use disorder (OUD), this research group identified ghrelin as an endogenous regulator of the mesocorticostriatal circuit, which contributes to the enhanced motivational attributes of addictive drugs and drug-associated cues. Ghrelin binds to the growth hormone secretagogue receptor 1? (GHS1?R) to transduce several physiological and behavioral processes, including the reward-related effects of opioid agonists. Systemic administration of a GHS1?R antagonist/inverse agonist dose-dependently attenuated self-administration of the addictive opioid analgesic oxycodone as well as oxycodone-seeking. This project proposes to employ a suite of validated rodent OUD models to define the preclinical profile for PF5190457, a selective GHS1?R antagonist/inverse agonist. PF5190457’s abuse liability, ability to suppress withdrawal and relapse-like behaviors, drug metabolism and pharmacokinetics, and brain penetrability in rats will be assessed. Phase 1 clinical studies in non–treatment seeking OUD participants will follow to assess the safety and tolerability of PF5190457.

1UG3DA053123-01
Bacteriophage virus-like particle vaccines for fentanyl and heroin overdose Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA UNIVERSITY OF NEW MEXICO HEALTH SCIS CTR CHACKERIAN, BRYCE C Albuquerque, NM 2021
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: PAR-20-092
Summary:

Opioids account for nearly 70 percent of overdose deaths in the United States, with fentanyl and heroin use the most common causes. The goal of this project is to create a vaccine to elicit serum antibodies that bind and sequester the drug in the blood, preventing it from crossing the blood-brain barrier where it acts on the central nervous system. Current opioid vaccine strategies require multiple boosts and months to reach peak titers, the level of antibodies in a blood sample, and have yet to show protection against lethal overdose. In this project, researchers will use a bacteriophage virus-like particle vaccine platform to engineer and test the effectiveness of a combined vaccine to elicit high titer antibodies quickly to protect against lethal overdose from fentanyl or heroin.

1UG3DA050271-01
R-methadone-TAAP/MPAR: an abuse deterrent methadone prodrug with overdose protection: Pre-Clinical Development and Phase 1 Clinical Trial Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Ensysce Biosciences, Inc. Kirkpatrick, Lynn San Diego, CA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Methadone is useful in the treatment of opioid dependence; however, methadone misuse and methadone-related fatalities have increased. Ensysce has created two complementary, novel technologies that can be applied to methadone. Their Trypsin Activated Abuse Protection (TAAP™) prodrugs are “enzyme-activated” to release clinically effective opioid drugs only when taken orally and exposed to the correct physiologic conditions, such as exposure to trypsin in the small bowel. Their multi-pill abuse resistance (MPAR™) feature involves in situ bioregulation of opioid delivery from the TAAP™ systems, enabling control over oral multi-dose pharmacokinetic profiles. It is envisaged that an R-methadone-TAAP™ prodrug would demonstrate similar reduced addiction liability as with other opioid-TAAP products. The objective of this proposal is to develop an R-methadone-TAAP™/MPAR™ drug through Phase 1 clinical studies and to translate R-methadone-TAAP™/MPAR™ results into humans, to ultimately reduce the misuse and oral overdose potential of methadone.

1R01DA056608-01
Endocannabinoid Targeting for Opioid Induced Respiratory Depression Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA University of Arizona MILNES, TALLY MARIE (contact); VANDERAH, TODD W Tucson, Arizona 2022
NOFO Title: HEAL Initiative: Novel Targets for Opioid Use Disorders and Opioid Overdose (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-22-031
Summary:

This research project will investigate the cannabinoid receptor 2 protein (CB2R) as a novel therapeutic target for opioid-induced respiratory depression caused by fentanyl, oxycodone, and heroin. This study will shed light on how the endocannabinoid system in the brainstem works to control breathing under normal conditions and during opioid-induced respiratory depression. The research aims to determine whether activation of the CB2R with a brain-penetrant CB2R-binding molecule is safe and clinically useful for treating opioid overdose prevention and reversal. This research will pave the way for discovering new medications that activate CB2R to reduce opioid-related deaths.

1UG3DA048774-01
Injectable naltrexone 2-month depot formulations Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA PURDUE UNIVERSITY PARK, KINAM West Lafayette, IN 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Naltrexone (NTX) has been proven as an important, safe, and effective therapy in helping patients overcome opioid addition and in preventing overdose. Unfortunately, the therapeutic potential of NTX has been blunted by poor adherence. To combat this issue, a system must be developed to deliver NTX for longer durations than are currently available with a more patient-friendly format. The goal of this research is to optimize and scale up our laboratory PLGA-based microparticle formulations of NTX delivery (either 2 months or 7–10 days) and bridge it to a Phase 1 clinical trial. This innovation will result in a more patient-friendly format consisting of less painful injections and improved release kinetics. PLGA-based drug delivery systems have been used successfully in a number of small-molecule products and are the most widely utilized and studied biocompatible polymer systems in controlled release. Thus, the regulatory and development hurdles with the FDA will be lower than with other novel excipients or technologies. The significance of this research and product development is that the final outcome of this project will ultimately provide a new, readily viable, essential tool to help patients overcome opioid dependence.

1UG3DA059286-01
A Therapeutic Agent to Lower the Level of Synthetic Opioids in the Body Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA CLEAR SCIENTIFIC, LLC LI, XINHUA Cambridge, MA 2023
NOFO Title: Development of Medications to Prevent and Treat Opioid and/or Stimulant Use Disorders and Overdose (UG3/UH3 - Clinical Trial Optional)
NOFO Number: PAR-22-200
Summary:

There is an urgent need for longer acting opioid overdose reversal medications to treat acute fentanyl intoxication and overdose. This project will develop a novel molecule (CS-1103) that sticks to fentanyl and removes it from the body. Previous research with animal models shows that CS-1103 has several features that make it attractive for a new medication. It can reverse fentanyl-induced respiratory depression, preventing another overdose; work in combination with naloxone; and appears to be safe and well-tolerated. The research will continue exploration of CS-1103 toward testing CS-1103 in human research participants.

1UG3DA048371-01
Development of Next-generation Pharmacotherapy for Opioid Use Disorders Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA ASTRAEA THERAPEUTICS, LLC ZAVERI, NURULAIN T Mountain View, CA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Although effective, current pharmacotherapies for opioid use disorder (OUD) present serious limitations. For example, methadone, a mu opioid receptor (MOP) full agonist, has significant abuse liability and causes withdrawal after chronic use, while buprenorphine (Bup), an MOP partial agonist and kappa opioid receptor (KOP) antagonist, produces limited respiratory depression and is less effective than methadone in reducing drug use, craving, and relapse. To address the limitation of currently available MATs, this project uses a phased plan that will fast-track the IND development of a next-generation medication for OUD based on small-molecule compounds targeting the nociception opioid receptor (NOP)—with no misuse or dependence liability—that have shown promising efficacy in reducing oxycodone intake in rhesus monkeys trained to self-administer, with efficacies similar to that of buprenorphine. The project’s ultimate goal is to file an IND application for an NOP agonist as a promising new approach to treat illicit and prescription OUD that may offer an alternative to buprenorphine.

1UG3DA050322-01
Preclinical and clinical evaluation of the NMDA modulator NYX-783 for OUD Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Yale University DiLeone, Ralph New Haven, CT 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

This study will conduct preclinical and clinical assessments of the NMDA modulator NYX-783 for treatment of opioid drug-seeking and relapse to opioid use disorder (OUD). NYX-783, a novel small molecule being developed by Aptinyx, has shown evidence of safety/tolerability in Phase 1 studies and is currently in Phase 2 trials for post-traumatic stress disorder. This project will test the safety, tolerability, and pharmacokinetics (PK) of NYX-718 in morphine-maintained patients in residential settings and then conduct a combined inpatient (safety/tolerability/PK) / outpatient (preliminary efficacy) study testing NYX-783’s effects on opioid use and relapse, stress/cue reactivity, craving, and quality of life in OUD subjects maintained on standard extended release naltrexone over a 10-week period. Successful completion of these studies will set the stage for larger scale Phase 2/3 studies of efficacy in OUD that will ultimately be required for FDA approval of NYX-783 for the treatment of drug-seeking and relapse in OUD.

1UG3DA050942-01A1
An Intranasal GDNF Gene Therapy for Opioid Relapse Reduction Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA NORTHEASTERN UNIVERSITY WASZCZAK, BARBARA LEE Boston, MA 2021
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: PAR-20-092
Summary:

There are currently no effective non-opioid-based pharmacotherapies for treatment of opioid use disorder (OUD). Glial cell line-derived neurotrophic factor (GDNF) is a beneficial protein normally present in low levels in the adult brain, and there is strong evidence that it has clinical potential as a therapy for OUD and relapse reduction. Researchers have developed a non-invasive approach that bypasses the blood-brain barrier to increase levels of GDNF using intranasal administration of gene nanoparticles that make GDNF protein within the brain. This project will test whether this intranasal GDNF gene therapy can suppress drug craving and reduce the tendency to start using a drug again after a period of abstinence in experimental models, thus providing a long-term therapeutic strategy for reducing opioid craving and preventing relapse.