Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Sort descending Institution(s) Investigator(s) Location(s) Year Awarded
3R01NS118563-01A1S1
Diversity Supplement to FKBP51 Antagonism to Prevent Chronic Pain: Optimizing Efficacy & Evaluating Safety and Mechanisms Cross-Cutting Research Training the Next Generation of Researchers in HEAL NINDS UNIV OF NORTH CAROLINA CHAPEL HILL LINNSTAEDT, SARAH; MCLEAN, SAMUEL A Chapel Hill, NC 2022
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107; PA-21-071
Summary:

Current evidence indicates that chronic pain after a traumatic injury is influenced by the body’s response to stress. This project will conduct a comprehensive analysis of gene expression after traumatic stress exposure in a range of animal models in various body regions including the brain (amygdala, hippocampus, hypothalamus) and spinal cord, as well as nerves and immune cells throughout the body. These studies will be conducted in animals with no stress exposure as well as in animals treated with a molecule (FKBP51) known to block the stress response. This research will enhance understanding of how FKBP51 and post-injury stress affect pain processes.

2SB1NS119103-04
Novel non-narcotic analgesic for acute and chronic pain Cross-Cutting Research Small Business Programs NINDS SOUTH RAMPART PHARMA, LLC NAISMITH, ROBERT New Orleans, LA 2023
NOFO Title: HEAL Commercialization Readiness Pilot (CRP) Program: Embedded Entrepreneurs for Small Businesses in Pain Management (SB1 Clinical Trial Not Allowed)
NOFO Number: PAR-23-069
3U24NS113850-03S1
Clinical Coordinating Center for the Health Initiative in Early Phase Pain Investigation Clinical Network - Murray Supplement Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS MASSACHUSETTS GENERAL HOSPITAL FAVA, MAURIZIO (contact); EDWARDS, ROBERT R; RATHMELL, JAMES P Boston, MA 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for Administrative Supplements to Support Career Enhancement Related to Clinical Research on Pain (Admin Supp – Clinical Trial Not Allowed)
NOFO Number: NOT-NS-21-048
Summary:

Key goals of the NIH HEAL Initiative are improving non-opioid pain management and expanding the workforce of clinical researchers working on individualized pain treatments know as pain precision medicine. This award enables an exceptional early career clinician with the opportunity to obtain expertise with high-quality pain-related biomarker assessment methods and biomarker-informed clinical trial design. This research centers on eating-related gastrointestinal functional/motility pain disorders – an understudied area of clinical pain science – and will prepare the clinician to be a future leader in the clinical pain research community.

1R61NS129050-01
Integrating Nonpharmacologic Strategies for Pain with Inclusion, Respect, and Equity (INSPIRE): Tailored Digital Tools, Telehealth Coaching, and Primary Care Coordination Clinical Research in Pain Management Advancing Health Equity in Pain Management NINDS University of California, San Francisco SATTERFIELD, JASON M San Francisco, CA 2022
NOFO Title: HEAL Initiative: Advancing Health Equity in Pain Management (R61/R33 Clinical Trial Required)
NOFO Number: NS22-002
Summary:

There is a need to improve access to treatments and address the stigma, bias, and mistrust that harm and isolate people with chronic pain, especially those from ethnic and racial minority populations. The Integrating Nonpharmacologic Strategies for Pain with Inclusion, Respect, and Equity (INSPIRE) Chronic Pain (CP) intervention blends cognitive-behavioral therapy, physical therapy, mindfulness, and pain education, and is delivered by a trilingual mobile app and supported by a telehealth pain coach who coordinates with doctors. The coach will collect and summarize patient reports on pain, depression, anxiety, substance use, and social factors, and share them with healthcare providers. In this project, researchers will create the digital tool and coaching protocol, develop educational and implementation strategies for healthcare providers, and conduct a pilot test. They will then perform a randomized clinical trial to compare INSPIRE to current treatment, analyze its effects, and evaluate outcomes.

1R24NS132283-01
PURPOSE: Positively Uniting Researchers of Pain to Opine, Synthesize, and Engage Cross-Cutting Research Training the Next Generation of Researchers in HEAL NINDS NEUROVATIONS COVERSTONE, JACOB SUTTON Napa, CA 2022
NOFO Title: Emergency Awards: HEAL Initiative: Coordinating Center for National Pain Scientists Career Development (R24 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-22-060
Summary:

The Interagency Pain Research Coordinating Committee has identified a need for organized opportunities for early-stage pain researchers to meet and learn from more experienced pain researchers and mentors – who are exiting the field at a faster rate than they are being replaced. This project will create a coordinating center for early-stage pain researchers, with an online networking platform to encourage interactions and collaboration among these scientists. The research will also develop a training curriculum and make it accessible to NIH funded, early-stage pain scientists.

3R01NS102432-02S1
AIBP AND REGULATION OF NEUROPATHIC PAIN Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF CALIFORNIA, SAN DIEGO MILLER, YURY; YAKSH, TONY L. LA JOLLA, CA 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Persistent pain states arising from inflammatory conditions, such as in arthritis, diabetes, HIV, and chemotherapy, exhibit a common feature in the release of damage-associated molecular pattern molecules, which can activate toll-like receptor-4 (TLR4). Previous studies suggest that TLR4 is critical in mediating the transition from acute to persistent pain. TLR4 as well as other inflammatory receptors localize to lipid raft microdomains on the plasma membrane. We have found that the secreted apoA-I binding protein (AIBP) accelerates cholesterol removal, disrupts lipid rafts, prevents TLR4 dimerization, and inhibits microglia inflammatory responses. We propose that AIBP targets cholesterol removal to lipid rafts harboring activated TLR4. The aims of this proposal are to: 1) determine whether AIBP targets lipid rafts harboring activated TLR4; 2) test whether AIBP reduces glial activation and neuroinflammation in mouse models of neuropathic pain; and 3) identify the origin and function of endogenous AIBP in the spinal cord.

1R01DE029951-01
Targeting Endosomal Receptors for Treatment of Chronic Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS COLUMBIA UNIVERSITY HEALTH SCIENCES BUNNETT, NIGEL W; SCHMIDT, BRIAN L New York, NY 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Many non-opioid drugs target G Protein-Coupled Receptors (GPCRs), a family of proteins involved in many pathophysiological processes including pain, fail during clinical trials for unknown reasons. A recent study found GPCRs not only function at the surface of nerve cells but also within a cell compartment called the endosome, where their sustained activity drives pain. This study will build upon this finding and test whether the clinical failure of drugs targeting plasma membrane GPCRs is related to their inability to target and engage endomsomal GPCRs (eGPCRs). This study will use stimulus-responsive nanoparticles (NP) to encapsulate non-opioid drugs and selectively target eGPCR dyads to investigate how eGCPRs generate and regulate sustained pain signals in neuronal subcellular compartments. This study will also validate eGCPRs as therapeutic targets for treatment of chronic inflammatory, neuropathic and cancer pain. Using NPs to deliver non-opioid drugs, individually or in combinations, directly into specific compartments in nerve cells could be a potential strategy for new pain therapies.

1RF1NS113883-01
Sympathetic-mediated sensory neuron cluster firing as a novel therapeutic target for neuropathic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS JOHNS HOPKINS UNIVERSITY DONG, XINZHONG Baltimore, MD 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

An important component of neuropathic pain is spontaneous or ongoing pain, such as burning pain or intermittent paroxysms of sharp and shooting pain, which may result from abnormal spontaneous activity in sensory nerves. However, due to technical limitations, spontaneous activity in sensory neurons in vivo has not been well studied. Using in vivo imaging in genetically-modified mice, preliminary findings identified spontaneously-firing clusters of neurons formed within the dorsal root ganglia (DRG) after traumatic nerve injury that exhibits increased spontaneous pain behaviors. Furthermore, preliminary evidence has been collected that cluster firing may be related to abnormal sympathetic sprouting in the sensory ganglia. This project will test the hypothesis that cluster firing is triggered by abnormal sympathetic inputs to sensory neurons, and that it underpins spontaneous paroxysmal pain in neuropathic pain models. Findings from this project will identify potential novel therapeutic targets for the treatment of neuropathic pain.

1R61NS113329-01
Discovery of Biomarker Signatures Prognostic for Neuropathic Pain after Acute Spinal Cord Injury Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS UNIVERSITY OF TEXAS HLTH SCI CTR HOUSTON HERGENROEDER, GEORGENE W Houston, TX 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Debilitating neuropathic pain occurs in 40 percent to 70 percent of people who suffer from spinal cord injury (SCI). There are no distinguishing characteristics to identify who will develop neuropathic pain. The objective of this research is to develop a biomarker signature prognostic of SCI-induced neuropathic pain (NP). The aims of the project are to (1) identify autoantibodies in plasma samples from acute SCI patients to CNS autoantigens and determine the relationship between autoantibodies levels to the development of NP, (2) identify the autoantibody combination with maximal prognostic accuracy for the development of NP at six months after SCI, and (3) develop and optimize an assay to simultaneously measure several autoantibodies and independently validate the prognostic efficacy for NP using plasma samples collected prospectively. Establishing a panel will refine the prognostic value of these autoantibodies as biomarkers to detect who are vulnerable to NP and may be used to for development of nonaddictive pain therapeutics.

5R01NS094461-04
Clustering of individual and diverse ion channels together into complexes, and their functional coupling, mediated by A-kinase anchoring protein 79/150 in neurons Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TEXAS HLTH SCI CTR SAN ANTONIO SHAPIRO, MARK S San Antonio, TX 2018
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Multi-protein complexes have emerged as a mechanism for spatiotemporal specificity and efficiency in the function and regulation of cellular signals. Many ion channels are clustered either with the receptors that modulate them or with other ion channels whose activities are linked. Often, the clustering is mediated by scaffolding proteins, such as AKAP79/150. We will probe complexes containing AKAP79/150 and three different channels critical to nervous function: KCNQ/Kv7, TRPV1, and CaV1.2. We will use"super-resolution" STORM imaging of primary sensory neurons and heterologously expressed tissue-culture cells, in which individual complexes can be visualized at 10–20 nm resolution with visible light. We hypothesize that AKAP79/150 brings several of these channels together to enable functional coupling, which we will examine by patch-clamp electrophysiology of the neurons. Since all three of these channels bind to AKAP79/150, we hypothesize that they co-assemble into complexes in neurons and that they are dynamically regulated by other cellular signals.

1R61NS127285-01
Development of Therapeutic Antibodies to Target Sodium Channels Involved in Pain Signaling Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS University of California, Davis YAROV-YAROVOY, VLADIMIR M (contact); TRIMMER, JAMES S Davis, CA 2022
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: NS21-029
Summary:

Voltage-gated sodium channels such as Nav1.7, Nav1.8, and Nav1.9 transmit pain signals in nerve fibers and are molecular targets for pain therapy. While Nav channels have been validated as pharmacological targets for the treatment of pain, available therapies are limited due to incomplete efficacy and significant side effects. Taking advantage of recent advances in structural biology and computational-based protein design, this project aims to develop antibodies to attach to Nav channels and freeze them in an inactive state. These antibodies can then be further developed as novel treatments for chronic pain.

9SB1NS137964-04
Advancing precision pain medicines to the clinic Cross-Cutting Research Small Business Programs NINDS NAVEGA THERAPEUTICS, INC. MORENO, ANA MARIA (contact); ALEMAN GUILLEN, FERNANDO San Diego, CA 2023
NOFO Title: HEAL Commercialization Readiness Pilot (CRP) Program: Embedded Entrepreneurs for Small Businesses in Pain Management (SB1 Clinical Trial Not Allowed)
NOFO Number: PAR-23-069
1R41NS132625-01A1
Opioid-Sparing Non-Surgical, Bioresorbable Nerve Stimulator for Pain Relief Cross-Cutting Research Small Business Programs NINDS VANISH THERAPEUTICS INC. CUI, XINYAN TRACY Mars, PA 2023
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R41/R42 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-23-007
Summary:

Nerve stimulators are devices surgically implanted near a peripheral nerve or on the spinal cord that use electrical signals to reduce the perception of pain. Although these devices can provide effective pain relief to patients, many have high complication rates, resulting from the wire moving, breaking, not working, or the implantable battery pack or permanent wire causing new pain. This project will support the development and animal testing of a peripheral nerve stimulator to treat chronic pain which can be implanted without surgery. Once injected, the device will provide pain relief through electrical stimulation and then be safely degraded and resorbed by the body.

1UG3NS115637-01
Clinical Translation of Ultrasonic Ketamine Uncaging for Non-Opioid Therapy of Chronic Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS STANFORD UNIVERSITY AIRAN, RAAG D (contact); WILLIAMS, NOLAN R Stanford, CA 2019
NOFO Title: HEAL Initiative: Translational Devices to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-19-016
Summary:

The research team has developed ultrasonic drug uncaging for neuroscience, in which neuromodulatory agents are uncaged from ultrasound-sensitive biocompatible and biodegradable drug-loaded nanocarriers. This project will clinically translate ultrasonic ketamine uncaging for chronic pain therapy. In the UG3 phase, the research team will scale our nanoparticle production processes to human scales and adapt them to pharmaceutical standards. In the UH3 phase, they will complete a first-in-human evaluation of the safety and efficacy of ultrasonic ketamine uncaging by quantifying how much ketamine is released relative to the ultrasound dose and assessing whether the uncaged ketamine can modulate the sensitivity and affective response to pain, in patients suffering from chronic osteoarthritic pain. This project aims to yield a novel, noninvasive, non-opioid therapy for chronic pain that maximizes the therapeutic efficacy of ketamine over its side effects, by targeting its action to a critical hub of pain processing.

1U24NS115691-01
UPENN HEAL - Pain Clinical Trial Network Specialized Clinical Center Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS UNIVERSITY OF PENNSYLVANIA FARRAR, JOHN T (contact); ASHBURN, MICHAEL ALAN Philadelphia, PA 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-036
Summary:

EPPIC-Net will provide a robust and readily accessible infrastructure for the rapid implementation and performance of high-quality comprehensive studies of patients with well-defined pain conditions, and the rapid design and performance of high-quality Phase 2 clinical trials to test promising novel therapeutics for pain. Using the Hospital of the University of Pennsylvania as a hub and five additional centers that are part of the UPenn Health System and the Children’s Hospital of Philadelphia (CHOP) as spokes, studies will be conducted as designed by the expertise of the EPPIC Network, which intends to bring intense focus to relatively small numbers of patients with clinically well-defined pain conditions and high unmet therapeutic needs. The UPenn Specialized Clinical Center (SCC) will test novel, efficient study designs including adaptive and platform designs, validation studies of biomarkers, and biomarker-informed proof of principle or target engagement studies in Phase 2 trials of interventions from academic and industry partners.

3R01NS098826-02S1
PROTEASE ACTIVATED RECEPTOR TYPE 2 TARGETING FOR MIGRAINE PAIN Preclinical and Translational Research in Pain Management NINDS UNIVERSITY OF TEXAS DALLAS PRICE, THEODORE J; BOITANO, SCOTT; DUSSOR, GREGORY O; VAGNER, JOSEF RICHARDSON, TX 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Migraine is the most common neurological disorder. Currently available treatments fail to effectively manage migraine in most patients. Development of new therapeutics has been slow due in large part to a poor understanding of the underlying pathology of migraine. Endogenous proteases, released in the meninges by resident mast cells, have been proposed as a potential driver of migraine pain via an action on protease activated receptor type 2 (PAR2). The central hypothesis is that PAR2 expression in nociceptors that project to the meninges plays a key role in the pathogenesis of migraine pain. The aims are to: 1) use the established PAR2 development pipeline to design new PAR2 antagonists with improved drug-like properties; 2) use pharmacological tools in a novel mouse migraine model to further understand the potential role of PAR2 in migraine; and 3) use mouse genetics to study the cell type–specific role of PAR2 in migraine pain.

1R43NS115312-01
Long-acting ghrelin for neuropathy Cross-Cutting Research Small Business Programs NINDS EXTEND BIOSCIENCES, INC. SOLIMAN, TARIK Newton, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

There is a need for safe, effective, well- tolerated drugs to treat painful neuropathy by halting or reversing the underlying pathology of the disease. One promising approach to treating painful neuropathy without opioids is the use of ghrelin, a 28-amino acid acylated peptide hormone. However, it has a short half-life and must be delivered via a constant intravenous infusion to have a therapeutic effect. Extend Biosciences' D-VITylation platform technology is truly enabling for small peptide-based therapeutics that are rapidly cleared from the bloodstream by renal filtration. The platform harnesses the naturally long half-life of vitamin D and its dedicated binding protein, VDBP. When the vitamin D molecule is conjugated to a biological therapeutic, it dramatically improves the half-life and bioavailability of the drug. Use of the technology should also allow the drug to be self-administered by subcutaneous injection. This would be of significant benefit to patients. In this project, the team will test the efficacy of EXT405 in a cell-based model of neuropathy as well as in animal models of CIPN and diabetes- induced neuropathy.

3U24NS112873-03S2
Clinical Coordinating Center for the Acute to Chronic Pain Signatures Program: Administrative Supplement Clinical Research in Pain Management Acute to Chronic Pain Signatures Program NINDS UNIVERSITY OF IOWA SLUKA, KATHLEEN A Iowa City, IA 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for Administrative Supplements to Support Career Enhancement Related to Clinical Research on Pain (Admin Supp – Clinical Trial Not Allowed) 
NOFO Number: NOT-NS-21-048
Summary:

The Acute to Chronic Pain Signatures (A2CPS) Program aims to identify combinations of biomarkers that predict susceptibility or resilience to the development of chronic pain. This career enhancement award will help a promising postdoctoral trainee gain access to tools and develop skills needed to pursue a career in clinical pain research. The research involves conducting collaborative multi-site cohort studies and analyzing A2CPS data to determine if a combination of metabolic and psychosocial biomarkers can be used to explain pre-surgery differences in pain, function, and disability in patients with severe knee osteoarthritis.

1U19NS130608-01
Human Nociceptor and Spinal Cord Molecular Signature Center Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TEXAS DALLAS PRICE, THEODORE J (contact); CURATOLO, MICHELE; DOUGHERTY, PATRICK M Richardson, TX 2023
NOFO Title: Notice of Special Interest (NOSI): Encourage Eligible NIH HEAL Initiative Awardees to Apply for Administrative Supplements to Support Career Enhancement Related to Clinical Research on Pain
NOFO Number: NOT-NS-22-087
Summary:

This project supports a post-baccalaureate trainee develop skills needed to pursue a career in clinical pain research. The research will use molecular tools to study nerve, joint, muscle, and fascia tissues from individuals with chronic low back pain who had spine surgery. The research will include working with patients, designing clinical studies, and sharing results. 

1U24NS113849-01
The Icahn School of Medicine at Mount Sinai (ISMMS) EPPIC-Net Specialized Clinical Center Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI ROBINSON-PAPP, JESSICA New York, NY 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trials Not Allowed)
NOFO Number: RFA-NS-19-025
Summary:

The Icahn School of Medicine at Mount Sinai (ISMMS) will support the mission of the Early Phase Pain Investigation Clinical Network (EPPIC-Net), through the ISMMS Department of Neurology as the core of a hub and spokes structure. The study contains four specific aims: (1) to streamline and optimize rapid implementation of EPPIC-Net studies, exceeding the required minimum of 100 subjects recruited per year to EPPIC-Net studies; (2) to ensure access to patient populations with a wide range of pain disorders, including CLBP, using a hub and spokes model to ensure effective recruitment; (3) to provide the highest-quality protocol implementation, deep clinical phenotyping of pain disorders, and accurate and complete data collection; and (4) to work collaboratively with the EPPIC-Net Coordinating Centers and investigators from the NIH HEAL Partnership to assist with development/design of clinical trials. The study team will also increase training opportunities through EPPIC-Net within ISMMS and the larger pain research community, training junior investigators to become future pain clinical trials leaders and increase and disseminate knowledge about pain research throughout the network.

2R44NS086343-04
IND-ENABLING STUDIES ON NOVEL CAV3 T-CHANNEL MODULATORS FOR TREATMENT OF NEUROPATHIC PAIN Cross-Cutting Research Small Business Programs NINDS AFASCI, INC. XIE, XINMIN SIMON REDWOOD CITY, CA 2018
NOFO Title: NINDS Renewal Awards of SBIR Phase II Grants (Phase IIB) for Pre-Clinical Research (R44)
NOFO Number: PAR-17-480
Summary:

We discovered a class of non-opioid modulators of the T-type Cav3.2 channel that could treat neuropathic pain. In vivo pharmacokinetic and pharmacodynamic studies and preliminary toxicological studies identified AFA-279 and other candidates, which did not produce observable side-effects and showed greater analgesic effects than other neuropathic pain medications in rodent models. The goal of this proposed project is to submit the IND application on our Cav3.2 modulator to the Food and Drug Administration (FDA). We will produce AFA-279 under Good Manufacturing Practice (GMP)–like conditions using chemical manufacturing controls for Good Laboratory Practice (GLP) nonclinical toxicity studies and GMP clinical batch future Phase 1 clinical trials, complete toxicological and safety studies to establish the safety profile of AFA-279, prepare and submit the IND application, and then initiate early clinical trials. Our ultimate goal is to deliver a safer, more effective, non-opioid Cav3.2 channel modulator to patients suffering from neuropathic pain.

1R43NS124421-01A1
Development of Nav1.7 Monoclonal Antibodies for Treating Pain Cross-Cutting Research Small Business Programs NINDS INTEGRAL MOLECULAR RUCKER, JOSEPH BENJAMIN Philadelphia, PA 2021
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 - Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

Many current pain relief treatments rely on use of opioid drugs. This research is conducting preclinical development on a non-addictive, non-opioid therapeutic that uses antibodies to target the sodium channel Nav1.7. This channel is known to be one of the primary routes for generating pain signals – thus it is a target for reducing pain. The antibody approach offers potential for greater specificity than small molecule approaches, potentially resulting in fewer side effects.

1RF1NS113839-01
Target validation of a novel CGRP receptor in migraine Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF IOWA RUSSO, ANDREW F Iowa City, IA 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Migraine is a painful and debilitating neurological condition, the development and maintenance of which involves the neuropeptide calcitonin gene-related peptide (CGRP). An exciting development in the treatment of migraine is the recent FDA approval of a new class of CGRP-targeted therapies designed to prevent migraine. However, these drugs meet a clinically relevant endpoint for only about half of the patients. This project will test the hypothesis that the high-affinity CGRP receptor AMY1 is a novel and unexplored target that mediates specific migraine-related behaviors in the brain and/or periphery to cause migraine. Validation of CGRP and AMY1 receptor involvement in migraines will create a new direction for the development of novel drugs and provide alternatives to opioids for management of migraine and potentially for other chronic pain conditions.

1R01NS116704-01
Validation of Fibroblast-Derived PI16 as a Novel Target for pain Treatment Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TX MD ANDERSON CAN CTR KAVELAARS, ANNEMIEKE; HEIJNEN, COBI J Houston, TX 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

This project aims to validate Peptidase Inhibitor 16 (PI16) as a novel target for the treatment of chronic pain using mouse models and tissues of human patients with neuropathy. PI16 was identified as a novel regulator of chronic pain in preclinical bench studies. PI16 is a small molecule that has not been studied in the context of pain. Mice that are deficient for PI16 function are protected against mechanical allodynia (tactile pain from light touch) in spared nerve injury (SNI) and paclitaxel models of neuropathic pain. PI16 is only detectable in fibroblasts around peripheral nerves (perineurium), and in the meninges of dorsal root ganglia (DRG), spinal cord, and brain, but not in neurons, glia or leukocytes. PI16 levels in perineurial and DRG meningeal fibroblasts increase during neuropathic pain. Increased PI16 secretion by DRG meningeal and perineurial fibroblasts may promote chronic pain by increasing blood nerve barrier (BNB) permeability and leukocyte trafficking into nerve and DRG.

3U24NS113844-03S1
EPPIC-NET DCC Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS NEW YORK UNIVERSITY SCHOOL OF MEDICINE TROXEL, ANDREA B (contact); YU, CHANG New York, NY 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

There is a clear public health imperative to improve the care and outcomes of people who experience severe acute and chronic pain. The Early Phase Pain Investigation Clinical Network (EPPIC-Net) is charged with conducting deep phenotyping and biomarker studies for specific pain conditions – and with conducting high-quality phase II clinical trials to test novel non-opioid pain treatments with academic and industry partners. This research will extend EPPIC-Net’s current portfolio to develop novel and efficient data-analytic methodologies for complex medical data, such as those that are expected to be generated by the clinical trials conducted by EPPIC-Net.