Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Sort descending Institution(s) Investigator(s) Location(s) Year Awarded
3UH3AR077360-03S2
Increasing Participant Diversity in a 'Sequenced-Strategy to Improve Outcomes in People with Knee Osteoarthritis Pain (SKOAP) Clinical Research in Pain Management Pain Management Effectiveness Research Network (ERN) NIAMS JOHNS HOPKINS UNIVERSITY COHEN, STEVEN P Baltimore, MD 2021
NOFO Title: HEAL Initiative: Notice of Special Interest (NOSI) regarding the Availability of Administrative Supplements to Support Strategies to Increase Participant Diversity, Inclusion and Engagement in Clinical Studies
NOFO Number: NOT-NS-21-025
Summary:

Knee osteoarthritis is one of the leading causes of disability worldwide, particularly among older adults. Despite multiple guidelines for care, most patients do not receive adequate treatment, and about 30% are prescribed long-term opioids. This award will be used to recruit and support an early career faculty member from a group underrepresented in biomedicine. This research, part of the Pain Management Effectiveness Research Network will evaluate conservative and more aggressive treatments for knee osteoarthritis and determine which individual-level factors contribute to treatment outcomes.

3U19AR076734-01S5
University of Michigan BACPAC Mechanistic Research Center Cross-Cutting Research Training the Next Generation of Researchers in HEAL NIAMS UNIVERSITY OF MICHIGAN CLAUW, DANIEL J; HASSETT, AFTON L Ann Arbor, MI 2022
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for Administrative Supplements to Support Career Enhancement Related to Clinical Research on Pain (Admin Supp – Clinical Trial Not Allowed)
NOFO Number: NOT-NS-22-087
Summary:

Many medication-based and complementary/integrative interventions are available to treat chronic low back pain, yet no treatment works for all patients. This clinical research strives to understand patient characteristics that predict differential responses to chronic low back pain interventions such as acupressure. This knowledge will enable early career researchers and clinicians to develop tailored treatments for individual patients.

1SB1AR083748-01
Commercial Readiness in CTS Pain Management Cross-Cutting Research Small Business Programs NIAMS HIGHLAND INSTRUMENTS, INC. WAGNER, TIMOTHY ANDREW (contact); DIPIETRO, LAURA Cambridge, MA 2023
NOFO Title: HEAL Commercialization Readiness Pilot (CRP) Program: Embedded Entrepreneurs for Small Businesses in Pain Management (SB1 Clinical Trial Not Allowed)
NOFO Number: PAR-23-069
1R41AR080620-01A1
Injectable Ice Slurry Cooling Technology for Treatment of Postoperative Pain Cross-Cutting Research Small Business Programs NIAMS BRIXTON BIOSCIENCES, INC. SIDOTI, CHARLES Cambridge, MA 2022
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R41/R42 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-009
Summary:

More than 700,000 total knee replacement surgeries are performed each year in the United States to relieve joint pain in patients with end-stage osteoarthritis or rheumatic arthritis. However, many patients still experience significant pain after this procedure, calling for additional long-lasting, drug-free pain management strategies. This project will develop and test a commercial prototype device for persistent knee pain after total knee replacement. The injection-based method freezes peripheral nerves to reduce pain sensation.

1UC2AR082195-01
Comprehensive Functional Phenotyping of Trigeminal Neurons Innervating Temporomandibular Joint (TMJ) Tissues in Male, Female and Aged Mice, Primates, and Humans With and Without TMJ Disorders (TMJD) Preclinical and Translational Research in Pain Management Restoring Joint Health and Function to Reduce Pain (RE-JOIN) NIAMS UNIVERSITY OF TEXAS HLTH SCIENCE CENTER AKOPIAN, ARMEN N; BOADA, MARIO DANILO; ERNBERG, MALIN; MACPHERSON, LINDSEY J San Antonio, TX 2022
NOFO Title: HEAL Initiative: Restoring Joint Health and Function to Reduce Pain Consortium (RE-JOIN) (UC2 Clinical Trial Not Allowed)
NOFO Number: RFA-AR-22-009
Summary:

Scientists do not know the details of how the nervous system interacts with the temporomandibular joint (TMJ) that connects the lower jaw with the skull. This project aims to comprehensively explain the functions, types, neuroanatomical distributions, and adaptability (plasticity) of specific nerve cells in the brain (trigeminal neurons) that connect with the TMJ. The research will analyze nerve-TMJ connections associated with chewing muscles and other structures that form the TMJ such as cartilage and ligaments. The project will analyze samples from both sexes of aged mice, primates, and humans with and without painful TMJ disorders. This research aims to uncover potential treatment and prevention targets for managing TMJ pain.

1UH2AR076724-01
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF CALIFORNIA, SAN FRANCISCO MAJUMDAR, SHARMILA San Francisco, CA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

Despite the significance of spine disorders, there are few reliable methods to determine appropriate patient care and evaluate intervention effectiveness. The research and tool development take the critical next step in the clinical translation of faster, quantitative magnetic resonance imaging (MR) of patients with lower back pain. The multidisciplinary Technology Research Site (Tech Site) of BACPAC will develop Phase IV (i.e., technology optimization) technologies and/or methods (TTMs) to leverage two key technical advancements: development of machine learning-based, faster MR acquisition methods and machine learning for image segmentation and extraction of objective disease related features from images. The team will develop, validate, and deploy end-to-end deep learning-based technologies (TTMs) for accelerated image reconstruction, tissue segmentation, and detection of spinal degeneration to facilitate automated, robust assessment of structure-function relationships between spine characteristics, neurocognitive pain response, and patient-reported outcomes.

3UH3AR076573-04S1
Randomized-Controlled Trial of Virtual Reality for Chronic Low-Back Pain to Improve Patient-Reported Outcomes and Physical Activity (HEAL Supplement) Cross-Cutting Research Training the Next Generation of Researchers in HEAL NIAMS CEDARS-SINAI MEDICAL CENTER SPIEGEL, BRENNAN Los Angeles, CA 2022
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for Administrative Supplements to Support Career Enhancement Related to Clinical Research on Pain (Admin Supp – Clinical Trial Not Allowed)
NOFO Number: NOT-NS-22-087
Summary:

This research is measuring patient-reported outcomes, unique physical and behavioral characteristics, and opioid use in individuals with chronic low back pain who are using virtual reality (VR) therapy. This project expands the clinical pain workforce by enhancing the ability of an early career clinician to conduct mixed-methods research involving patients using VR technology. This research will contribute new information about barriers to implementing VR technologies across diverse populations, patient preferences for using VR for relief of chronic low back pain.

1UH2AR076723-01
Wearable nanocomposite sensor system for diagnosing mechanical sources of low back pain and guiding rehabilitation Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS BRIGHAM YOUNG UNIVERSITY BOWDEN, ANTON E Provo, UT 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

Chronic low back pain (cLBP) is recurrent and often nonresponsive to conservative treatments. Biomechanists, physical therapists, and surgeons each utilize a variety of tools and techniques to assess and interpret qualitative movement changes to understand potential mechanical and neurological sources of low back pain and as critical elements in their treatment paradigm. However, objectively characterizing and communicating this information is currently impossible, since clinically feasible (i.e., cost-effective, objective, and accurate) tools and quantitative benchmarks do not exist. This research addresses the challenge to improve cLBP outcomes through the use of unique, inexpensive, screen-printable, elastomer-based, nanocomposite, piezoresponsive sensors, which will be integrated into a SPInal Nanosensor Environment (SPINE) sense system to measure lumbar kinematics and provide an objective, quantitative platform for diagnosis, monitoring, and follow-up assessment of cLBP.

1UC2AR082196-01
Innervation of the Knee and TMJ  Preclinical and Translational Research in Pain Management Restoring Joint Health and Function to Reduce Pain (RE-JOIN) NIAMS UNIVERSITY OF FLORIDA ALLEN, KYLE D (contact); ALMARZA, ALEJANDRO JOSE; CAUDLE, ROBERT M Gainesville, FL 2022
NOFO Title: HEAL Initiative: Restoring Joint Health and Function to Reduce Pain Consortium (RE-JOIN) (UC2 Clinical Trial Not Allowed)
NOFO Number: RFA-AR-22-009
Summary:

A complex network of different nerve cell subtypes connects to joints in different ways throughout body regions, such as the knee and the temporomandibular joint (TMJ) that connects the lower jaw and skull. This project aims to identify disease-specific pain symptoms using clinically relevant rat models of TMJ and knee osteoarthritis – and compare findings with disease-specific pain symptoms in human patients with the same conditions. This research may lead to a better understanding of how different nerve cell subtypes contribute to joint pain as well as how these nerve cell subtypes change with age and disease.

1K99AR083486-01
Novel Models to Study Dorsal Root Ganglion Neurons in Knee Osteoarthritis Pain Cross-Cutting Research Training the Next Generation of Researchers in HEAL NIAMS STANFORD UNIVERSITY BREWER, CHELSIE L Stanford, CA 2023
NOFO Title: HEAL Initiative Advanced Postdoctoral-to-Independent Career Transition Award in PAIN and SUD Research (K99/R00 Independent Clinical Trial Not Allowed)
NOFO Number: RFA-NS-22-022
Summary:

Knee osteoarthritis (OA) is a frequent cause of disability and chronic pain. Treatment often relies on analgesics like opioids to manage OA pain, with all the associated risks; other approaches to treat OA are often invasive and inaccessible to patients. Therefore, novel analgesic strategies are needed to reduce the high burden of knee OA-induced pain. This project aims to study in detail and target the sensory neurons that drive OA pain to assist in the development of more effective pain therapeutics.

1R44AR083337-01
Development of a Regional Anesthesia Guidance System to Increase Patient Access to Opioid-Sparing Analgesia for Hip Fracture Pain Cross-Cutting Research Small Business Programs NIAMS RIVANNA MEDICAL, INC. MAULDIN, FRANK WILLIAM Charlottesville, VA 2023
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-23-006
Summary:

Every year, more than 330,000 Americans are hospitalized for hip fractures. Rapid surgical intervention and pain treatment is critical to recover mobility and reduce other health complications. Ultrasound-guided regional anesthesia techniques are an effective alternative to opioid medication, but require specialized training for use in the emergency department. This project will develop and validate an easy-to-use ultrasound-based regional anesthesia guidance system, to ultimately improve access to non-opioid-pain treatment for hip fracture pain.

1K24AR081143-01
Mentorship of Junior Investigators on HEAL-SKOAP Clinical Research in Pain Management NIAMS JOHNS HOPKINS UNIVERSITY Campbell, Claudia Michelle Baltimore, MD 2021
NOFO Title: Midcareer Investigator Award in Patient-Oriented Research (Parent K24 Independent Clinical Trial Required)
NOFO Number: PA-20-193
Summary:

The HEAL-funded Sequenced-strategy for Improving Outcomes in People with Knee Osteoarthritis Pain (SKOAP) clinical trial evaluates behavioral, pharmacologic, and procedural interventions for patients with knee osteoarthritis pain. It is designed to mimic clinical care for these patients by first testing the effectiveness of conservative and nonsurgical interventions before considering surgical interventions. It is a large-scale clinical trial with a novel design that evaluates multidisciplinary treatments. Therefore, it offers a unique training opportunity for junior investigators from various disciplines who are interested in pain research and management. This mentoring award will allow a selected investigator to train junior investigators by providing protected, mentorship-focused time.

1UG3AR076387-01
Fibromyalgia TENS in Physical Therapy Study (TIPS): An embedded pragmatic clinical trial Clinical Research in Pain Management Pragmatic and Implementation Studies for the Management of Pain to Reduce Opioid Prescribing (PRISM) NIAMS UNIVERSITY OF IOWA SLUKA, KATHLEEN A (contact); CROFFORD, LESLIE J Iowa City, IA 2019
NOFO Title: HEAL Initiative: Pragmatic and Implementation Studies for the Management of Pain to Reduce Opioid Prescribing (PRISM)(UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-AT-19-004
Summary:

Fibromyalgia (FM) is a chronic pain condition characterized by widespread musculoskeletal pain, tenderness, and stiffness associated with fatigue and sleep disturbance. The investigators have recently completed a trial that demonstrated efficacy of active transcutaneous electrical nerve stimulation (TENS) compared with placebo TENS or no treatment in women with FM. While physical therapists are trained in using TENS, it is underused in clinical practice. This application proposes a pragmatic clinical trial of TENS for patients with FM to determine if the addition of TENS to physical therapy (PT) reduces pain, increases PT adherence, and helps achieve functional goals with less drug use. This study will address the critical need for strategies to implement effective nonpharmacologic treatments for FM. Successful completion of this trial will provide generalizable effectiveness data for referring providers, physical therapists, and insurers and will inform future pragmatic trials of nonpharmacologic treatments conducted in PT practices.

3U19AR076737-01S2
REACH Participant Diversity Program Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF CALIFORNIA, SAN FRANCISCO LOTZ, JEFFREY C San Francisco, CA 2021
NOFO Title: HEAL Initiative: Notice of Special Interest (NOSI) regarding the Availability of Administrative Supplements to Support Strategies to Increase Participant Diversity, Inclusion and Engagement in Clinical Studies
NOFO Number: NOT-NS-21-025
Summary:

The University of California, San Francisco, as part of the Back Pain Consortium (BACPAC) Research Program, has established a Core Center for Patient-centric Mechanistic Phenotyping in Chronic Low Back Pain (REACH). The main goal of REACH is to define different subtypes (phenotypes) of chronic low back pain as well as to identify underlying pain mechanisms that can lead to effective, personalized treatments for patients across all population subgroups. To achieve this goal, REACH is, or will be, participating in several clinical trials, and it is imperative that the patients participating in these trials reflect the diversity of the U.S. population. Therefore, this project seeks to adapt methods that have successfully improved minority participation in other settings as well as to develop and deploy digital strategies that can promote recruitment and engagement of patients from marginalized populations.

1UC2AR082197-01
Neural Architecture of the Murine and Human Temporomandibular Joint Preclinical and Translational Research in Pain Management Restoring Joint Health and Function to Reduce Pain (RE-JOIN) NIAMS DUKE UNIVERSITY DONNELLY, CHRISTOPHER RYAN; CAI, DAWEN; EMRICK, JOSHUA JAMES Durham, NC 2022
NOFO Title: HEAL Initiative: Restoring Joint Health and Function to Reduce Pain Consortium (RE-JOIN) (UC2 Clinical Trial Not Allowed)
NOFO Number: RFA-AR-22-009
Summary:

Temporomandibular joint (TMJ) disorders are the most common form of chronic pain in the face and mouth area (orofacial pain), but relatively little is known about the biological causes of these conditions. This project will define the properties of sensory neurons that connect to tissues that make up the TMJ which connects the lower jaw and skull. This research aims to lay groundwork for development of new therapeutic approaches to treat these painful conditions.

1R44AR074820-01A1
A phenotypic screen for osteoarthritic pain therapeutics using all-optical electrophysiology Cross-Cutting Research Small Business Programs NIAMS QUELL TX, INC. LIU, PIN; MCMANUS, OWEN B Cambridge, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

 Quell Therapeutics uses the Optopatch platform for making all-optical electrophysiology measurements in neurons at a throughput sufficient for phenotypic screening. Using engineered optogenetic proteins, blue and red light can be used to stimulate and record neuronal activity, respectively. Custom microscopes enable electrophysiology recordings from 100’s of individual neurons in parallel with high sensitivity and temporal resolution, a capability currently not available with any other platform screening technology. Here, researchers combine the Optopatch platform with an in vitro model of chronic pain, where dorsal root ganglion (DRG) sensory neurons are bathed in a mixture of inflammatory mediators found in the joints of osteoarthritis patients. The neurons treated with the inflammatory mixture become hyperexcitable, mimicking the anticipated cellular pain response. Investigators calculate the functional phenotype of arthritis pain, which captures the difference in action potential shape and firing rate in response to diverse stimuli. The team will screen for small molecule compounds that reverse the pain phenotype while minimizing perturbation of neuronal behavior orthogonal to the pain phenotype, the in vitro “side effects.” The highest ranking compounds will be chemically optimized and their pharmacokinetic, drug metabolism, and in vivo efficacy will be characterized. The goal is to advance therapeutic discovery for pain, which may ultimately help relieve the US opioid crisis.

1UH2AR076741-01
Imaging Epigenetic Dysregulation in Patients with Low Back Pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS MASSACHUSETTS GENERAL HOSPITAL WEY, HSIAO-YING Boston, MA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

Inhibitors of the epigenetic enzymes histone deacetylases (HDACs) produce analgesic responses and are therefore therapeutic targets for pain. The research team recently resolved a PET imaging agent, [11C]Martinostat, that selectively binds to a subset of HDAC enzymes. A series of initial proof-of-concept clinical validation studies will be conducted to evaluate whether [11C]Martinostat PET is a sensitive biomarker to detect the typical (axial) chronic low back pain (cLBP). The research team will validate [11C]Martinostat PET’s ability to differentiate subtypes of pain by comparing axial cLBP and other cLBP patients with radiculopathy and longitudinally study subacute LBP patients (sLBP) to investigate whether there is a unique imaging signature that differentiates patients who develop cLBP and those who recover from low back pain. Using [11C]Martinostat to understand HDAC expression changes in chronic pain patients will validate an epigenetic drug target, refine patient selection based on HDAC expression, and facilitate proof of mechanism in developing novel analgesics.

3UH3AR076573-03S1
Improving representation of non-Hispanic Black and Hispanic study participants in a trial of virtual reality for chronic lower back pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS CEDARS-SINAI MEDICAL CENTER SPIEGEL, BRENNAN Los Angeles, CA 2021
NOFO Title: HEAL Initiative: Notice of Special Interest (NOSI) regarding the Availability of Administrative Supplements to Support Strategies to Increase Participant Diversity, Inclusion and Engagement in Clinical Studies
NOFO Number: NOT-NS-21-025
Summary:

Digital health interventions, such as virtual reality (VR) applications, have become available for the treatment and monitoring of numerous health conditions, including pain management. A current HEAL-funded study is evaluating the role of a therapeutic VR approach for chronic low back pain. However, racial and ethnic disparities exist in patient access and response to such VR applications, as well as in the incidence and reporting of pain. For example, non-Hispanic Blacks and Hispanics are more likely to report severe pain than non-Hispanic Whites, yet are less likely to have access to digital health information and interventions. To address these disparities, this project will develop a framework to advance diversity and inclusion in digital health trials and will seek to increase the proportion of non-Hispanic Black and Hispanic participants in the ongoing VR trial by tailoring recruitment materials and using novel artificial intelligence-driven cohort building tools.

1UC2AR082200-01
Neuronal Anatomy, Connectivity, and Phenotypic Innervation of the Knee Joint Preclinical and Translational Research in Pain Management Restoring Joint Health and Function to Reduce Pain (RE-JOIN) NIAMS BAYLOR COLLEGE OF MEDICINE LEE, BRENDAN (contact); ARENKIEL, BENJAMIN R; RAY, RUSSELL S; WYTHE, JOSHUA D Houston, TX 2022
NOFO Title: HEAL Initiative: Restoring Joint Health and Function to Reduce Pain Consortium (RE-JOIN) (UC2 Clinical Trial Not Allowed)
NOFO Number: RFA-AR-22-009
Summary:

Pain caused by degenerative joint diseases such as osteoarthritis (OA) is a major public health challenge that significantly affects quality of life for millions of Americans. There are no therapies available that offer pain relief and reverse the course of OA.  This project will use state-of-the-art technologies to create a neuronal connectivity and molecular map of the mouse knee joint, which will help identify molecular signatures that can be targeted for therapy. The research will include animals of different ages and of both sexes and test joint effects after exercise, in animals with OA, and after gene therapy that delivers an experimental OA medication directly to the joint.

3UH3AR076573-03S2
Randomized-controlled trial of virtual reality for chronic low back pain to improve patient-reported outcomes and physical activity: Understanding Patient Predictors of Response Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS CEDARS-SINAI MEDICAL CENTER SPIEGEL, BRENNAN Los Angeles, LA 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

Although digital health technologies are now widely available for both therapeutic and monitoring applications, there are wide variations in patient knowledge, attitudes, beliefs, and preferences regarding their uptake and effectiveness. There are also sociodemographic variations in willingness to participate in digital health research studies, both for chronic pain and other common disorders. However, few efforts have systematically examined patient-level predictors of digital health uptake and benefit among diverse individuals who experience chronic pain. This research will employ mixed methods to examine variations in engagement and benefit among diverse participants in a large clinical trial examining the benefits of virtual reality for treatment of chronic lower back pain.

1U19AR076725-01
HEALing LB3P: Profiling Biomechanical, Biological and Behavioral phenotypes Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF PITTSBURGH AT PITTSBURGH SOWA, GWENDOLYN A (contact); VO, NAM V Pittsburgh, PA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program: Mechanistic Research Centers (U19 Clinical Trial Optional)
NOFO Number: RFA-AR-19-026
Summary:

The University of Pittsburgh Low Back Pain: Biological, Biomechanical, and Behavioral Phenotypes (LB3P) Mechanistic Research Center (MRC) will to perform in-depth phenotyping of patients with chronic low back pain (cLBP), using a multimodal approach to characterize patients and provide insight into the phenotypes associated with experience of cLBP to direct targeted and improved treatments. The LB3P MRC will be formed of three Research Cores, three support cores, and one research project. This approach will leverage and integrate distinctive resources at the University of Pittsburgh laboratories to deliver quantified biomechanical, biological, and behavioral characteristics; functional assessments; and patient-reported outcomes, coupled with advanced data analytics using a novel Network Phenotyping Strategy (NPS). By eliminating isolated and disconnected approaches to treatment and focusing on personalized patient-centric approaches, this approach will yield improved outcomes and patient satisfaction.

1R43AR074369-01
Development of a fixed-dose combination therapy for the treatment of chronic musculoskeletal pain Cross-Cutting Research Small Business Programs NIAMS NEUROCYCLE THERAPEUTICS, INC. TOCZKO, MATTHEW ALEXANDER Sheridan, WY 2019
NOFO Title: PHS 2017-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-17-302
Summary:

Non-steroidal anti-inflammatory drugs (NSAIDs) are a first line pharmacologic pain therapy for chronic musculoskeletal pain, and rheumatoid arthritis (RA) and moderate to severe osteoarthritis (OA) specifically. However, insufficient pain relief by NSAID monotherapy has encouraged the use of combination therapy. Combinations of NSAIDs plus weak opioids are widely used although objective evidence for efficacy is limited and they have many adverse events.  A growing body of evidence suggests that ?2/?3 subtype-selective positive allosteric modulators (PAM) of the ?- aminobutyric acid A receptor (GABAAR) may effectively restore central pain regulatory mechanisms thus providing effective relief of chronic pain with reduced prevalence and severity of side-effects.  Based on these promising preliminary studies and considerable supporting literature data, the research team will test the hypothesis that combination dosing of TPA-023B with an NSAID will work synergistically to suppress the acute and chronic pain components of chronic musculoskeletal pain. 

1U24AR076730-01
Back Pain Consortium (BACPAC) Research Program Data Integration, Algorithm Development and Operations Management Center Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIV OF NORTH CAROLINA CHAPEL HILL ANSTROM, KEVIN J (contact); IVANOVA, ANASTASIA ; LAVANGE, LISA Chapel Hill, NC 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Data Integration, Algorithm Development and Operations Management Center (U24 Clinical Trial Not Allowed)
NOFO Number: RFA-AR-19-027
Summary:

The BACPAC Research Program’s Data Integration, Algorithm Development, and Operations Management Center (DAC) will bring cohesion to research performed by the participating Mechanistic Research Centers, Technology Research Sites, and Phase 2 Clinical Trials Centers. DAC Investigators will share their vision and provide scientific leadership and organizational support to the BACPAC Consortium. The research plan consists of supporting design and conduct of clinical trials with precision interventions that focus on identifying the best treatments for individual patients. The DAC will enhance collaboration and research progress with experienced leadership, innovative design and analysis methodologies, comprehensive research operations support, a state-of-the-art data management and integration system, and superior administrative support. This integrated structure will set the stage for technology assessments, solicitation of patient input and utilities, and the evaluation of high-impact interventions through the innovative design and sound execution of clinical trials, leading to effective personalized treatment approaches for patients with chronic lower back pain.

3UH3AR076387-02S2
Fibromyalgia TENS in Physical Therapy Study (TIPS): An Embedded Pragmatic Clinical Trial Cross-Cutting Research Increasing Participant Diversity, Inclusion, and Engagement in HEAL Research NIAMS UNIVERSITY OF IOWA SLUKA, KATHLEEN A Iowa City, IA 2022
NOFO Title: HEAL Initiative: Notice of Special Interest (NOSI) regarding the Availability of Administrative Supplements to Support Strategies to Increase Participant Diversity, Inclusion and Engagement in Clinical Studies
NOFO Number: NOT-NS-22-066
Summary:

Fibromyalgia is a chronic pain condition characterized by widespread musculoskeletal pain, tenderness, stiffness, fatigue, and sleep disturbance. The FAST trial (Fibromyalgia Activity Study with transcutaneous electrical nerve stimulation [TENS]) was the first study to conclusively demonstrate the clinical value of TENS for treating musculoskeletal pain. While physical therapists are trained in the use of TENS, it is underused in clinical practice. This project will test TENS in fibromyalgia patients receiving physical therapy in a real-world physical therapy practice setting. This research will determine if adding TENS to physical therapy reduces pain, increases adherence to physical therapy and allows fibromyalgia patients to reach their self-defined functional goals with less use of medication.

1UC2AR082186-01
Mapping the Joint-Nerve Interactome of the Knee Preclinical and Translational Research in Pain Management Restoring Joint Health and Function to Reduce Pain (RE-JOIN) NIAMS RUSH UNIVERSITY MEDICAL CENTER MALFAIT, ANNE-MARIE; LOTZ, MARTIN K; MILLER, RICHARD J Chicago, IL 2022
NOFO Title: HEAL Initiative: Restoring Joint Health and Function to Reduce Pain Consortium (RE-JOIN) (UC2 Clinical Trial Not Allowed)
NOFO Number: RFA-AR-22-009
Summary:

This project will use a variety of technologies to create a comprehensive, 3D map of how sensory neurons activate knee joints in both mice and humans. The research will use imaging techniques and molecular approaches that measure gene expression. The findings will help create a comprehensive gene expression profile map of individual cells in the nerve fibers leading to the knee, as well as describe how nerve cells and joint cells interact at the most fundamental level. This research will generate a rich anatomical and molecular resource to understand the molecular basis of joint pain and guide the development of novel pain-relieving strategies.