Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Sort descending Institution(s) Investigator(s) Location(s) Year Awarded
1UG3AR083838-01
Improving Function and Reducing Opioid Use for Patients with Chronic Low Back Pain in Rural Communities Through Improved Access to Physical Therapy Using Telerehabilitation Clinical Research in Pain Management Prevention and Management of Chronic Pain in Rural Populations NIAMS JOHNS HOPKINS UNIVERSITY SKOLASKY, RICHARD L (contact); MCLAUGHLIN, KEVIN Baltimore, MD 2023
NOFO Title: HEAL Initiative: Prevention and Management of Chronic Pain in Rural Populations (UG3/UH3, Clinical Trials Required)
NOFO Number: RFA-NR-23-001
Summary:

Physical therapy is the recommended treatment for patients with low back pain and is a cost-effective method for improving pain and reducing disability. However, only 7-13% of patients receive physical therapy services. Access is particularly limited in rural communities due to lack of provider availability, transportation, and missed work time. These factors have contributed to more low back pain-related disability and opioid use among rural populations. Physical therapy delivered through telemedicine may improve access by reducing patient-reported barriers. This randomized clinical trial will compare an innovative, patient-centered telemedicine version of physical therapy to a currently used psychologically based educational approach for rural patients with chronic low back pain. The research will match individual patients to a treatment approach based on their psychosocial risk of poor outcomes.

3UH3AR076724-04S1
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC Cross-Cutting Research Training the Next Generation of Researchers in HEAL NIAMS UNIVERSITY OF CALIFORNIA, SAN FRANCISCO MAJUMDAR, SHARMILA San Francisco, CA 2022
NOFO Title: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: PA-20-222
Summary:

Despite the significance of spine disorders, there are few reliable methods to determine appropriate patient care and evaluate intervention effectiveness. The Back Pain Consortium Research Program
(BACPAC) is developing machine learning-based methods to obtain disease-related features from biological images. This project supports a scientist from a group underrepresented in biomedicine to expand ongoing research to improve ways to interpret medical data about spine disorders and associated pain.

1U19AR076737-01
UCSF Core Center for Patient-centric Mechanistic Phenotyping in Chronic Low Back Pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF CALIFORNIA, SAN FRANCISCO LOTZ, JEFFREY C San Francisco, CA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program: Mechanistic Research Centers (U19 Clinical Trial Optional)
NOFO Number: RFA-AR-19-026
Summary:

The UCSF Core Center for Patient-centric Mechanistic Phenotyping in Chronic Low Back Pain (UCSF REACH) is an interdisciplinary consortium of basic and clinical scientists dedicated to understanding and clarifying the biopsychosocial mechanisms of chronic low back pain (cLBP). The goal of REACH is to define cLBP phenotypes and pain mechanisms that can lead to effective, personalized treatments for patients across the population. UCSF REACH has six cores that will support a single research project that is focused on the challenge of developing validated and adoptable tools that enable comprehensive yet routine clinical assessment and treatment of cLBP patients. Overall, the object of REACH is to make optimum use of all available resources to catalyze discovery and translation of novel diagnostics and therapeutics that improve outcomes of cLBP patients.

1UH2AR076729-01
The Spine Phenome Project: Enabling Technology for Personalized Medicine Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS OHIO STATE UNIVERSITY MARRAS, WILLIAM STEVEN (contact); KHAN, SAFDAR N; WEAVER, TRISTAN E Columbus, OH 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

Current diagnostics and treatments of chronic low back pain (cLBP) rely primarily on subjective metrics and do not target all the multidimensional biopsychosocial mechanisms. This multidisciplinary effort will develop and validate a digital health platform and provide meaningful data-driven metrics that enable an integrated approach to clinical evaluation and treatment of cLBP. This platform will facilitate the use of quantitative spinal motion metrics (function), patient-reported outcomes, and patient preference information to enable deep patient phenotyping and inform clinical decision making on personalized treatments in order to improve outcomes. This effort will involve software and hardware development to enable data collection, analysis, and visualization in clinical settings. The outcome of this project will be a digital health platform with data to support regulatory submission for clinical use. At the end of this effort, the researchers will have a validated tool for integration in clinical research studies supported by the BACPAC Consortium.

1UH2AR076736-01
Focused Ultrasound Neuromodulation of Dorsal Root Ganglion for Noninvasive Mitigation of Low Back Pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF UTAH RIEKE, VIOLA (contact); SHAH, LUBDHA Salt Lake City, UT 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

This project's goal is to develop a completely noninvasive, precise, and durable treatment option for low back pain (LBP). Focused ultrasound (FUS) is a lower-risk, completely noninvasive modality that enables the delivery of spatially confined acoustic energy to a small tissue region (dorsal root ganglion [DRG]) under magnetic resonance (MR) imaging guidance to treat axial low back pain by neuromodulation. The central goal of this study is to demonstrate neuromodulation of the DRG with FUS to decrease nerve conduction; this treatment can be used to attenuate pain sensation. This exploratory study will demonstrate FUS neuromodulation of the DRG in pigs as assessed by somatosensory evoked potential and perform unique behavioral assessments indicative of supraspinal pain sensation, with the ultimate goal of translating this technology to patients with LBP. FUS could potentially replace current invasive or systemically detrimental treatment modalities.

3U19AR076734-01S4
University of Michigan BACPAC Mechanistic Research Center Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF MICHIGAN AT ANN ARBOR CLAUW, DANIEL J Ann Arbor, MI 2021
NOFO Title: HEAL Initiative: Notice of Special Interest (NOSI) regarding the Availability of Administrative Supplements to Support Strategies to Increase Participant Diversity, Inclusion and Engagement in Clinical Studies
NOFO Number: NOT-NS-21-025
Summary:

Chronic overlapping pain conditions represent up to half of all chronic pain cases and can be more debilitating than other forms of chronic pain. These conditions include but are not limited to the following: temporomandibular disorders, fibromyalgia, irritable bowel syndrome, vulvodynia, interstitial cystitis/painful bladder syndrome, painful endometriosis, chronic tension type headache, migraine headache, chronic low back pain, and chronic fatigue syndrome. Common neurobiological mechanisms have been suspected to account for the overlap between these conditions, but until recently it has been difficult to efficiently classify each condition within individual patients. A digital classification tool for clinicians has been developed for this purpose, but access to the tool remains limited. Here we propose converting this chronic overlapping pain conditions classification tool into a common web-based application format.

3R01AR069557-03S1
USE AND SAFETY OF OPIOIDS IN PATIENTS UNDERGOING TOTAL JOINT REPLACEMENT New Strategies to Prevent and Treat Opioid Addiction NIAMS Brigham And Women's Hospital KIM, SEOYOUNG CATHERINE Boston, MA 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Over 30% of adults aged 65 years and older in the United States suffer from osteoarthritis (OA). Opioid analgesics are often used for patients with moderate to severe symptomatic OA. When non-pharmacologic and pharmacologic treatments are not effective, patients with severe OA may undergo total joint replacement (TJR). Our primary objectives are to evaluate patterns of opioid use before and after TJR and to assess the effect of opioid use patterns on clinical outcomes and safety events in a large U.S. population–based cohort of OA patients. The specific aims are to: 1) identify predictors of persistent opioid use and opioid dose escalation in patients after TJR for hip or knee OA and 2) evaluate effects of opioid use patterns on short- and long-term clinical outcomes and safety following TJR. The results of this study will provide guidance on surgical risk stratification and pain management of patients before and after TJR.

3U24AR076730-01S1
Back Pain Consortium (BACPAC) Research Program Data Integration, Algorithm Development and Operations Management Center Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIV OF NORTH CAROLINA CHAPEL HILL LAVANGE, LISA Chapel Hill, NC 2021
NOFO Title: HEAL Initiative: Notice of Special Interest (NOSI) regarding the Availability of Administrative Supplements to Support Strategies to Increase Participant Diversity, Inclusion and Engagement in Clinical Studies
NOFO Number: NOT-NS-21-025
Summary:

The NIH Back Pain Consortium (BACPAC) Research Program brings together leading centers with expertise in studying and treating chronic low back pain to advance understanding of the mechanisms that underlie the condition and to identify novel treatment strategies. BACPAC is undertaking a multisite precision medicine clinical trial taking into account patient-specific information to understand which patients with chronic low back pain respond best to various nonopioid, evidence-based treatments. The trial seeks to enroll a racially, ethnically, and socioeconomically diverse patient population to ensure that the results are applicable to all Americans with chronic low back pain. This project aims to develop comprehensive recruitment and retention plans for study sites that can recruit from historically underrepresented populations in clinical research (e.g., Black and Hispanic populations) and to provide dedicated financial resources to engage patients from these populations using tailored, culturally appropriate strategies.

3UH3AR077360-04S1
A sequenced-strategy for improving outcomes in patients with knee osteoarthritis pain Cross-Cutting Research Training the Next Generation of Researchers in HEAL NIAMS JOHNS HOPKINS UNIVERSITY CAMPBELL, CLAUDIA MICHELLE (contact); CASTILLO, RENAN C; COHEN, STEVEN P Baltimore, MD 2022
NOFO Title: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: PA-21-071
Summary:

Knee osteoarthritis is one of the leading causes of chronic pain and disability worldwide, affecting more than 30% of older adults. Rates of this condition have more than doubled in the past 70 years and continue to grow sharply, given increases in life expectancy and body mass index among the U.S. population. This project supports a scientist from a group underrepresented in biomedicine to expand ongoing clinical research comparing various non-medication-based treatments for knee osteoarthritis.

3UH3AR076387-02S1
Fibromyalgia TENS in Physical Therapy Study (TIPS): An Embedded Pragmatic Clinical Trial: Administrative Supplement Cross-Cutting Research Training the Next Generation of Researchers in HEAL NIAMS UNIVERSITY OF IOWA SLUKA, KATHLEEN A; CROFFORD, LESLIE J Iowa City, IA 2022
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for Administrative Supplements to Support Career Enhancement Related to Clinical Research on Pain (Admin Supp – Clinical Trial Not Allowed)
NOFO Number: NOT-NS-22-087
Summary:

This research is using a pragmatic clinical trial to test transcutaneous electrical nerve stimulation in patients with widespread muscle pain and tenderness (fibromyalgia). The research will determine if the addition of TENS to physical therapy reduces pain, increases physical therapy adherence, and helps achieve functional goals with less medication use. This project will involve early career scientists who will gain access to pragmatic research tools as well as develop the skills needed to pursue a career in clinical pain research focused on fibromyalgia.

1U19AR076734-01
University of Michigan BACPAC Mechanistic Research Center Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF MICHIGAN AT ANN ARBOR CLAUW, DANIEL J (contact); HASSETT, AFTON L Ann Arbor, MI 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program: Mechanistic Research Centers (U19 Clinical Trial Optional)
NOFO Number: RFA-AR-19-026
Summary:

The University of Michigan (UM) will lead a Mechanistic Research Center (MRC) as part of the broader BACPAC initiative that will take patients with chronic low back pain (cLBP) and use a patient-centric, SMART design study to follow these individuals longitudinally as they try several different evidence-based therapies while mechanistic studies are overlaid to draw crucial inferences about what treatments will work in what patient endotypes. Interventional Response Phenotyping describes the need in any precision medicine initiative to phenotype participants based on what therapies they do and do not respond to so that one can later link mechanistically distinct disease endophenotypes with those who preferentially respond to therapies targeting those mechanisms.

1R41AR080620-01A1
Injectable Ice Slurry Cooling Technology for Treatment of Postoperative Pain Cross-Cutting Research Small Business Programs NIAMS BRIXTON BIOSCIENCES, INC. SIDOTI, CHARLES Cambridge, MA 2022
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R41/R42 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-009
Summary:

More than 700,000 total knee replacement surgeries are performed each year in the United States to relieve joint pain in patients with end-stage osteoarthritis or rheumatic arthritis. However, many patients still experience significant pain after this procedure, calling for additional long-lasting, drug-free pain management strategies. This project will develop and test a commercial prototype device for persistent knee pain after total knee replacement. The injection-based method freezes peripheral nerves to reduce pain sensation.

1UC2AR082195-01
Comprehensive Functional Phenotyping of Trigeminal Neurons Innervating Temporomandibular Joint (TMJ) Tissues in Male, Female and Aged Mice, Primates, and Humans With and Without TMJ Disorders (TMJD) Preclinical and Translational Research in Pain Management Restoring Joint Health and Function to Reduce Pain (RE-JOIN) NIAMS UNIVERSITY OF TEXAS HLTH SCIENCE CENTER AKOPIAN, ARMEN N; BOADA, MARIO DANILO; ERNBERG, MALIN; MACPHERSON, LINDSEY J San Antonio, TX 2022
NOFO Title: HEAL Initiative: Restoring Joint Health and Function to Reduce Pain Consortium (RE-JOIN) (UC2 Clinical Trial Not Allowed)
NOFO Number: RFA-AR-22-009
Summary:

Scientists do not know the details of how the nervous system interacts with the temporomandibular joint (TMJ) that connects the lower jaw with the skull. This project aims to comprehensively explain the functions, types, neuroanatomical distributions, and adaptability (plasticity) of specific nerve cells in the brain (trigeminal neurons) that connect with the TMJ. The research will analyze nerve-TMJ connections associated with chewing muscles and other structures that form the TMJ such as cartilage and ligaments. The project will analyze samples from both sexes of aged mice, primates, and humans with and without painful TMJ disorders. This research aims to uncover potential treatment and prevention targets for managing TMJ pain.

3UH3AR077360-03S2
Increasing Participant Diversity in a 'Sequenced-Strategy to Improve Outcomes in People with Knee Osteoarthritis Pain (SKOAP) Clinical Research in Pain Management Pain Management Effectiveness Research Network (ERN) NIAMS JOHNS HOPKINS UNIVERSITY COHEN, STEVEN P Baltimore, MD 2021
NOFO Title: HEAL Initiative: Notice of Special Interest (NOSI) regarding the Availability of Administrative Supplements to Support Strategies to Increase Participant Diversity, Inclusion and Engagement in Clinical Studies
NOFO Number: NOT-NS-21-025
Summary:

Knee osteoarthritis is one of the leading causes of disability worldwide, particularly among older adults. Despite multiple guidelines for care, most patients do not receive adequate treatment, and about 30% are prescribed long-term opioids. This award will be used to recruit and support an early career faculty member from a group underrepresented in biomedicine. This research, part of the Pain Management Effectiveness Research Network will evaluate conservative and more aggressive treatments for knee osteoarthritis and determine which individual-level factors contribute to treatment outcomes.

3U19AR076734-01S5
University of Michigan BACPAC Mechanistic Research Center Cross-Cutting Research Training the Next Generation of Researchers in HEAL NIAMS UNIVERSITY OF MICHIGAN CLAUW, DANIEL J; HASSETT, AFTON L Ann Arbor, MI 2022
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for Administrative Supplements to Support Career Enhancement Related to Clinical Research on Pain (Admin Supp – Clinical Trial Not Allowed)
NOFO Number: NOT-NS-22-087
Summary:

Many medication-based and complementary/integrative interventions are available to treat chronic low back pain, yet no treatment works for all patients. This clinical research strives to understand patient characteristics that predict differential responses to chronic low back pain interventions such as acupressure. This knowledge will enable early career researchers and clinicians to develop tailored treatments for individual patients.

1UC2AR082196-01
Innervation of the Knee and TMJ  Preclinical and Translational Research in Pain Management Restoring Joint Health and Function to Reduce Pain (RE-JOIN) NIAMS UNIVERSITY OF FLORIDA ALLEN, KYLE D (contact); ALMARZA, ALEJANDRO JOSE; CAUDLE, ROBERT M Gainesville, FL 2022
NOFO Title: HEAL Initiative: Restoring Joint Health and Function to Reduce Pain Consortium (RE-JOIN) (UC2 Clinical Trial Not Allowed)
NOFO Number: RFA-AR-22-009
Summary:

A complex network of different nerve cell subtypes connects to joints in different ways throughout body regions, such as the knee and the temporomandibular joint (TMJ) that connects the lower jaw and skull. This project aims to identify disease-specific pain symptoms using clinically relevant rat models of TMJ and knee osteoarthritis – and compare findings with disease-specific pain symptoms in human patients with the same conditions. This research may lead to a better understanding of how different nerve cell subtypes contribute to joint pain as well as how these nerve cell subtypes change with age and disease.

1K99AR083486-01
Novel Models to Study Dorsal Root Ganglion Neurons in Knee Osteoarthritis Pain Cross-Cutting Research Training the Next Generation of Researchers in HEAL NIAMS STANFORD UNIVERSITY BREWER, CHELSIE L Stanford, CA 2023
NOFO Title: HEAL Initiative Advanced Postdoctoral-to-Independent Career Transition Award in PAIN and SUD Research (K99/R00 Independent Clinical Trial Not Allowed)
NOFO Number: RFA-NS-22-022
Summary:

Knee osteoarthritis (OA) is a frequent cause of disability and chronic pain. Treatment often relies on analgesics like opioids to manage OA pain, with all the associated risks; other approaches to treat OA are often invasive and inaccessible to patients. Therefore, novel analgesic strategies are needed to reduce the high burden of knee OA-induced pain. This project aims to study in detail and target the sensory neurons that drive OA pain to assist in the development of more effective pain therapeutics.

1R44AR083337-01
Development of a Regional Anesthesia Guidance System to Increase Patient Access to Opioid-Sparing Analgesia for Hip Fracture Pain Cross-Cutting Research Small Business Programs NIAMS RIVANNA MEDICAL, INC. MAULDIN, FRANK WILLIAM Charlottesville, VA 2023
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-23-006
Summary:

Every year, more than 330,000 Americans are hospitalized for hip fractures. Rapid surgical intervention and pain treatment is critical to recover mobility and reduce other health complications. Ultrasound-guided regional anesthesia techniques are an effective alternative to opioid medication, but require specialized training for use in the emergency department. This project will develop and validate an easy-to-use ultrasound-based regional anesthesia guidance system, to ultimately improve access to non-opioid-pain treatment for hip fracture pain.

3UH3AR076573-04S1
Randomized-Controlled Trial of Virtual Reality for Chronic Low-Back Pain to Improve Patient-Reported Outcomes and Physical Activity (HEAL Supplement) Cross-Cutting Research Training the Next Generation of Researchers in HEAL NIAMS CEDARS-SINAI MEDICAL CENTER SPIEGEL, BRENNAN Los Angeles, CA 2022
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for Administrative Supplements to Support Career Enhancement Related to Clinical Research on Pain (Admin Supp – Clinical Trial Not Allowed)
NOFO Number: NOT-NS-22-087
Summary:

This research is measuring patient-reported outcomes, unique physical and behavioral characteristics, and opioid use in individuals with chronic low back pain who are using virtual reality (VR) therapy. This project expands the clinical pain workforce by enhancing the ability of an early career clinician to conduct mixed-methods research involving patients using VR technology. This research will contribute new information about barriers to implementing VR technologies across diverse populations, patient preferences for using VR for relief of chronic low back pain.

1U18EB029257-01
Temporal Patterns of Spinal Cord Stimulation Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB DUKE UNIVERSITY GRILL, WARREN M Durham, NC 2019
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

This project will design and test optimized temporal patterns of stimulation to improve the efficacy of commercially available spinal cord stimulation (SCS) systems to treat chronic neuropathic pain. Researchers will build upon a validated biophysical model of the effects of SCS on sensory signal processing in neurons within the dorsal horn of the spinal cord to better understand how to improve the electrical stimulus patterns applied to the spinal cord. They will use sensitivity analyses to determine the robustness of stimulation patterns to variations in electrode positioning, selectivity of stimulation, and biophysical properties of the dorsal horn neural network. Researchers will demonstrate improvements from these new stimulus patterns by 1) measuring their effects on pain-related behavioral outcomes in a rat model of chronic neuropathic pain and by 2) quantifying the effects of optimized temporal patterns on spinal cord neuron activity. The outcome will be mechanistically derived and validated stimulus patterns that are significantly more efficacious than the phenomenologically derived standard of care patterns; these patterns could be implemented with either a software update or minor hardware modifications to existing SCS products.

1U18EB029351-01
Development of an MRgFUS system for precision-targeted neuromodulation of pain circuits with simultaneous functional MRI Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB VANDERBILT UNIVERSITY MEDICAL CENTER CASKEY, CHARLES F (contact); CHEN, LI MIN ; GRISSOM, WILLIAM A Nashville, Tennessee 2019
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

This project aims to develop a next-generation noninvasive neuromodulation system for non-addictive pain treatments. The research team will build an integrated system that uses magnetic resonance image-guided focused ultrasound (MRgFUS) stimulation to target pain regions and circuits in the brain with high precision. The system will use MR imaging to locate three pain targets commonly used in clinical pain treatments, to stimulate those targets with ultrasound, and to monitor responses of nociceptive pain circuits using a functional MRI readout. Three collaborating laboratories will tackle the goals of this project: (Aim 1) Develop focused ultrasound technology for neuromodulation in humans, compatible with the high magnetic fields in an MRI scanner. (Aim 2) Develop MRI technology to find neuromodulation targets, compatible with focused ultrasound transducers. (Aim 3) Validate the complete MRgFUS neuromodulation system in brain pain regions in nonhuman primates. By the end of the project, the research team will have a fully developed and validated MRgFUS system that is ready for pilot clinical trials in pain management.

1R18EB035004-01
Point of Care Diagnostic for Sickle Cell Disease Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB DUKE UNIVERSITY WAX, ADAM Durham, NC 2023
NOFO Title: HEAL Initiative: Translational Development of Diagnostic and Therapeutic Devices (R18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-22-002
Summary:

People with sickle cell disease often experience episodes of severe pain (vaso-occlusive crisis) that are caused by the abnormal red blood cells and frequently result in opioid use. Tools that can identify and measure the degree of such a crisis early on could allow clinicians to pre-emptively disrupt this process. This project aims to develop a rapid, automated screening technology for evaluating red blood cells that allows assessment of patients at risk of pain crisis right in their health care provider’s office.

1R18EB035019-01
POWS for NOWS: Using Physiomarkers as an Objective Tool for Assessing the Withdrawing Infant Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB UNIVERSITY OF VIRGINIA SULLIVAN, BRYNNE ARCHER (contact); VESOULIS, ZACHARY ANDREW Charlottesville, VA 2023
NOFO Title: HEAL Initiative: Translational Development of Diagnostic and Therapeutic Devices (R18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-22-002
Summary:

Infants exposed to opioids during pregnancy can develop neonatal opioid withdrawal syndrome (NOWS). To date, clinicians generally use subjective evaluation to determine if an infant has NOWS, how severe the condition is, and if the infant needs treatment with or without medications. This project will evaluate whether an objective physiologic measure—continuous measurement of oxygen levels in the infant’s blood—can be used to develop a scoring system for assessing NOWS severity. The project will also develop and test a device to continuously monitor blood oxygen levels in the infants.

3U54EB020404-05S1
CENTER OF EXCELLENCE FOR MOBILE SENSOR DATA-TO-KNOWLEDGE (MD2K) - OVERALL New Strategies to Prevent and Treat Opioid Addiction NIBIB University of Memphis KUMAR, SANTOSH MEMPHIS, TN 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Rapid technological advances are leading to field-deployable mobile sensing devices that can quantify complex dynamics of key physical, biological, behavioral, social, and environmental factors, enabling us to understand causation in complex disorders. Significant new investment is needed to develop and disseminate data analytics tools. The Center of Excellence for Mobile Sensor Data-to-Knowledge (MD2K) will generate generalizable theory, methods, tools, and software to address major barriers to processing complex mobile sensor data and its use in biomedical knowledge discovery and just-in-time care delivery. We will develop and implement a standards-based, interoperable, extensible, and open-source big data software platform for efficient implementation of MD2K data analytics. MD2K will demonstrate the feasibility, utility, and generalizability of this approach by implementing the entire MD2K data analytics system in the context of two biomedical applications: reducing relapse among abstinent daily smokers and reducing readmission among congestive heart failure patients

1U18EB030609-01
Novel Implantable Device to Negate Post-Amputation Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB NOVAFLUX, INC. LABIB, MOHAMED E (contact); KATHJU, SANDEEP Princeton, NJ 2021
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

Approximately 3.6 million Americans live with an amputated extremity, and the majority of these individuals are likely to suffer from chronic post-amputation pain. There is no consensus as to a recommended therapy for such pain, and many treatments do not provide sufficient pain control. Some studies have shown effective pain suppression from delivering an anesthetic agent directly to an injured nerve. This research aims to develop a device that can be implanted near the injured nerves of an amputated limb to deliver an anesthetic. Findings from this preclinical study will optimize design and delivery features to maximize its effect on pain control for as long as possible without needing a drug refill. The research is expected to advance eligibility for further testing in large animals and humans.