Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Sort descending Investigator(s) Location(s) Year Awarded
1R43NS132623-01
Optogenetic Pain Modulator for Non-Opioid Chronic Pain Management Cross-Cutting Research Small Business Programs NINDS OPSIN BIOTHERAPEUTICS, INC. NARCISSE, DARRYL Bedford, TX 2023
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 - Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

Optogenetics is a method of controlling nerve or brain activity using light-sensitive cell receptors (opsins). Optogenetics has been used in brain research for decades, allowing researchers to understand the brain and its associated disorders by selectively turning on and off specific nerve cells. This project will develop and refine use of an opsin and a light-stimulation device to control nerve cells contributing to the sensation of pain. 

2R44DA043288-02
MINDFULNESS MOBILE APP TO REDUCE ADOLESCENT SUBSTANCE USE Cross-Cutting Research Small Business Programs NIDA Oregon Research Behavioral Intervention Strategies Smith, Dana K Eugene, OR 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Required)
NOFO Number: PA-18-573
Summary:

Adolescents in the juvenile justice system demonstrate very high rates of tobacco, alcohol, and other drug use (ATOD), with rates that are estimated to be three times higher than non-justice-involved youth. Substance-abusing youth are at higher risk than nonusers for mental health problems, including depression, conduct problems, personality disorders, suicidal thoughts, attempted suicide, and completed suicide, as well as detrimental effects on neural development related to substance use. This project aims to adapt and test the feasibility and efficacy of a smartphone application (app) intervention prototype that would help adolescent substance users reduce or quit their substance use. The program, entitled Rewire, is based on the primary substance use cessation components tested in previous work with juvenile justice-involved adolescents and on intervention components shown to be central to smoking cessation, and applies a mindfulness approach as the guiding framework for the intervention.

1R41NS127637-01A1
Protease-Activated-Receptor-2 Antagonists for Treatment of Migraine Pain Cross-Cutting Research Small Business Programs NINDS PARMEDICS, INC. DEFEA, KATHRYN (contact); DUSSOR, GREGORY O Temecula, CA 2023
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R41/R42 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-009
Summary:

There is a need for additional effective treatments for migraine, which affects more than 36 million people in the United States. This project will develop an oral medication to disrupt the biological processes that drive migraine pain, which include nerve inflammation in response to pain signals. 

1R44DA049493-01
A Prescription Digital Therapeutic to Promote Adherence to Buprenorphine Pharmacotherapy for Patients with Opioid Use Disorder Cross-Cutting Research Small Business Programs NIDA PEAR THERAPEUTICS, INC. KERN, AUDREY; PALLONE, DAVINA Boston, MA 2019
NOFO Title: Loyalty and Reward-Based Technologies to Increase Adherence to Substance Use Disorder Pharmacotherapies (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-014
Summary:

Opioid use disorder (OUD) is a key driver of the current opioid epidemic in the United States, but nearly 80% of individuals with OUD do not receive treatment. Buprenorphine medication-assisted treatment (MAT) is an effective form of care for OUD. This project will develop a state-of-the-art, digital therapeutic tool that effectively promotes buprenorphine adherence by providing contingency management rewards and educational content and enables home induction using a new self-monitoring support tool. This tool, named reSET-O+, will be integrated with Pear Therapeutics’ reSET-O, an FDA market-authorized mobile application delivering validated behavioral therapy and intended for use in conjunction with buprenorphine and standard outpatient treatment for OUD.

1R43DA047722-01
PERIPHERALLY-RESTRICTED AND LONG-ACTING MAS1(LA-MAS1) AGONISTS FOR PAIN Cross-Cutting Research Small Business Programs NIDA Peptide Logic, LLC Riviere, Pierre SAN DIEGO, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

This project seeks to develop a first-in-class (FIC), peripherally restricted and long-acting drug with potential to reduce or replace opioid for moderate to severe pain, and that will be non-addictive, safe, and convenient to use. The program is based on strong scientific evidence showing that activation of a receptor called MAS1 produces opioid-independent and peripheral pain relieving activity in a wide range of animal models of chronic pain, including inflammatory, neuropathic, and bone cancer pain. This project focuses on the development of potent, stable, and specific molecules that stimulate MAS1. Researchers will then attach peptides that stimulate MAS to antibody carriers that make them last longer and selectively affect only the peripheral nervous system, which could allow for once a week or twice a month dosing while maintaining the drug’s efficacy and reducing potential side effects, and test the resulting molecule in animal models.

2R44DA045410-02
Peripherally-Restricted Long-Acting Somatostatin Receptor 4 (LA-SSTR4) Agonists for Pain Cross-Cutting Research Small Business Programs NIDA PEPTIDE LOGIC, LLC RIVIERE, PIERRE San Diego, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

The proposed SBIR Phase II program seeks to select a first-in-class, peripherally-restricted, and long-acting somatostatin receptor 4 (LA-SSTR4) agonist clinical candidate for development as a novel non-addictive analgesic able to replace opioids for the treatment of moderate-to-severe chronic pain. The program is based on strong scientific evidence showing that activation of peripheral SSTR4 produces broad spectrum analgesic activity and pursues a unique therapeutic strategy.   Unlike opioids, SSTR4 agonists do not induce constipation, respiratory depression, dependence, addiction, or abuse. Finally, unlike SSTR2 and SSTR5, SSTR4 expression in the pituitary and pancreas is very low, supporting that selective SSTR4 agonists are unlikely to perturb peripheral endocrine functions. The preceding SBIR Phase I program has already established the feasibility of conjugating a short-acting, potent, and selective peptide SSTR4 agonist to the antibody carrier. The resulting LA-SSTR4 agonist lead series has high agonist potency and selectivity for SSTR4 and has demonstrated antinociceptive activity in an animal pain model. The proposed SBIR Phase II program seeks to: optimize the existing lead series and select a clinical candidate for development,  validate and prioritize the indication(s) for clinical development using disease-relevant mouse pain models, and characterize the pharmacokinetics and safety/toxicology profile of the clinical candidate in rat and non-human primates to help design subsequent investigational new drug (IND)-enabling studies.

1R44DA049629-01
Connected Pharmacy Platform to Improve Adherence to Buprenorphine-Naloxone Prescription Treatment of Opioid Use Disorder Cross-Cutting Research Small Business Programs NIDA PILLSY INC. LEBRUN, JEFFREY (contact); MCPHERSON, STERLING M Seattle, WA 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

Opioid agonist therapy (OAT), such as buprenorphine/naloxone (BUP/NAL), is proven effective against opioid use disorder (OUD), but poor medication adherence is a major barrier. This project aims to substantially increase adherence to oral BUP/NAL with Pillsy, a smart technology platform, which acts like a digital medication coach, providing education and reminders using a mobile app, text messages, and automated phone calls. The platform is built around a Bluetooth-based smart pill bottle cap that automatically tracks doses and timing, and sends intelligent reminders to create a unique feedback loop, which allows constant optimization of the incentive/reminder messages to meet user needs to increase adherence. A dashboard enables providers to easily track medication use and patient engagement. The Pillsy platform only nominally increases the cost of oral BUP/NAL treatment, and physicians can bill for monitoring time (CPT code 99091). The project team will adapt the current Pillsy platform and perform a randomized efficacy trial of BUP/NAL adherence.

1R43NS120617-01A1
Chemokine-receptor profiling for painful diabetic neuropathy in biological samples from human clinical trials Cross-Cutting Research Small Business Programs NINDS PLUMERIA THERAPEUTICS, INC. RICHARDSON, THOMAS P (contact); WANG, YIPING Plainsboro, NJ 2021
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 - Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

Chronic pain is a major healthcare burden. However, the types and underlying mechanisms of pain vary greatly, as do patient responses to currently available pain medications. Inflammation in the nervous system (neuroinflammation) is involved in several types of pain, and targeting key molecules involved in neuroinflammation is therefore a promising treatment approach. The chemokine receptor system, a complex network of more than 20 different receptors and more than 80 molecules that bind to these receptors, has a central role in neuroinflammation. Researchers do not yet fully understand the functioning of this network and how specific receptors vary in different chronic pain conditions. Therefore, this project aims to further characterize the expression of one specific receptor, using samples collected from participants in clinical trials evaluating a compound that interferes with the receptor’s function. This information should allow researchers to classify pain patients and identify those most likely to benefit from a treatment with compounds targeting the receptor.

1R43DA049300-01A1
PRAPELA™ SVS: A COST-EFFECTIVE STOCHASTIC VIBROTACTILE STIMULATION DEVICE TO IMPROVE THE CLINICAL COURSE OF INFANTS WITH NEONATAL ABSTINENCE SYNDROME Cross-Cutting Research Small Business Programs NIDA PRAPELA, Inc. KONSIN, JOHN PHILLIP (contact); SINGH, RACHANA Concord, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

Maternal use and addiction to opioids or other drugs has resulted in an unprecedented rise in drug withdrawal complications in newborns known as neonatal abstinence syndrome (NAS). While there is no accepted standard for treating NAS, non-pharmacological bundles are recommended as an initial course of treatment. Unfortunately, non-pharmacological care (swaddling, rocking, frequent feedings, and skin contact) require significant use of human resources. This project studies the technical feasibility of a stochastic vibrotactile stimulation (SVS) technology incorporated into the hospital bassinet pad, which provides gentle vibrating sensory stimulation to soothe infants with NAS. Building on preliminary evidence that this type of stimulation calms NAS infants without altering their sleep, this study aims to develop a commercially viable bassinet pad that could be used in a hospital setting.

2R44DA049300-02
Prapela™ SVS: A cost-effective stochastic vibrotactile stimulation device to improve the clinical course of infants with neonatal abstinence syndrome Cross-Cutting Research Small Business Programs NIDA PRAPELA, INC. KONSIN, JOHN PHILLIP Biddeford, ME 2021
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

Infants exposed to opioids in the womb may suffer from neonatal opioid withdrawal syndrome (NOWS). They experience symptoms such as excessive crying, irritability, rapid breathing, elevated heart rates, tremors, and sometimes seizures. There is no accepted standard treatment for NOWS; infants are treated with pharmacological (opioid administration and gradual weaning) and nonpharmacological measures. Nonpharmacological care such as swaddling, rocking, frequent feedings, and skin contact, are time consuming, placing a substantial burden on hospitals with limited resources. Prapela, Inc. previously developed a hospital bassinette pad that, using stochastic vibrotactile stimulation (SVS) technology, very gently rocks infants with NOWS to reduce irritability and other symptoms without disturbing sleep patterns. This project will conduct an additional clinical study to determine the SVS bassinette pad’s efficacy in reducing breathing and heart rate, its safety, and its acceptability with clinical staff and parents caring for infants with NOWS.

1R43DA049650-01
Patient-level Risk Identifier Models for a Multifactor Opioid Abuse Risk Assessment Strategy Cross-Cutting Research Small Business Programs NIDA PRINCIPLED STRATEGIES, INC. DuBose, Paul ENCINITAS, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

This project, a partnership with Principled Strategies, will develop innovative, patient-level models for opioid risk identification and integrate them into the SafeUseNow managed care system—an actionable solution for combating prescription drug abuse that currently operates at the prescriber level only. Incorporating patient-level risk identifier models will strengthen an already powerful and demonstrably effective program and constitutes a critical step in generating a first-in-class, multifactor risk assessment strategy that is truly holistic. Using a variety of data sources, advanced analytics, and multiple empirically validated risk identification models, the groundbreaking advancement in SafeUseNow technology will enable health care stakeholders to identify combinations of prescribers, patients, and pharmacies whose behaviors may contribute to prescription drug abuse. This project will work to obtain new datasets for analysis, assess them, and use them to build national patient-level risk models for relevant outcomes, which will enable the development and evaluation of a next-generation prototype for a patient-level version of SafeUseNow.

R44DA053845-01A1
Fast-track: Scalable Digital Delivery of Evidence-Based Training for Addiction Professionals to Maximize Treatment Admission and Retention Rates of Opioid Use Disorder in Affected Families Cross-Cutting Research Small Business Programs NIDA Public Health Management Corporation; We the Village, Inc MACKY, JANE Philadelphia, PA; New York, NY 2022
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

Effective medication-based treatment could prevent overdose deaths and help individuals recover from opioid use disorder, but only a fraction of those in need access treatment or receive a medication approved by the U.S. Food and Drug Administration. One way to improve people’s choice to seek and stay in treatment is to improve training for addiction treatment counselors beyond current methods that rely on brief online or in-person workshops. The goal of this research project is to develop and evaluate the technical feasibility and commercial viability of a scalable digital program to train behavioral addiction professionals in Community Reinforcement and Family Training (CRAFT), an evidence-based approach to increase treatment entry, using ongoing counselor training with feedback and coaching.

1R42DA049448-01
Reward-based technology to improve opioid use disorder treatment initiation after an ED visit Cross-Cutting Research Small Business Programs NIDA Q2I, LLC BOUDREAUX, EDWIN D Rindge, NH 2019
NOFO Title: Loyalty and Reward-Based Technologies to Increase Adherence to Substance Use Disorder Pharmacotherapies (R41/R42 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-015
Summary:

Medication-assisted treatment (MAT) for opioid use disorder (OUD) is highly efficacious, but only a fraction of people with OUD access MAT, and treatment non-adherence is common and associated with poor outcomes. This project aims to increase rates of Suboxone (buprenorphine/naloxone) treatment initiation and adherence among OUD patients recruited from emergency and inpatient acute care by enhancing the Opioid Addiction Recovery Support (OARS)—an existing Q2i company technology—with a new evidence-based reward, contingency management (CM) function that allows for the automatic calculation, delivery, and redemption of rewards contingent on objective evidence of Suboxone initiation and adherence.

1R43NS120335-01
Closed-Loop Micromagnetic Neuromodulation as a Non-Opioid Treatment for Neuropathic Pain Cross-Cutting Research Small Business Programs NINDS QUANTUM NANOSTIM REILLY, THOMAS Treasure Island, FL 2021
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

Spinal cord stimulation (SCS) has been shown to provide effective relief for most people with chronic pain and eliminated the need for opioid therapy in more than half of those treated. However, traditional SCS approaches have encountered problems when glial cells coat the stimulation electrodes that distance the device from targeted neurons. This project will develop a novel hybrid Closed Loop Omnidirectional Neuromodulation with Electromagnetic fields (CLONE) system that is combined with magnetic-based stimulation to overcome glial coating of SCS electrodes, better target neurons in dorsal spine tissue, which may lead to better treatment of chronic neuropathic neck and low back pain.

1R43DA050380-01
Neurofeedback-EEG-VR (NEVR) System for Non-opioid Pain Therapy Cross-Cutting Research Small Business Programs NIDA QUASAR, INC. ROBERTS, BROOKE San Diego, CA 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

Pain is one of the most common and debilitating symptoms of a wide range of injuries and diseases. Safe and effective alternatives for treating pain that reduce dependence on opioids are, therefore, a primary goal of the NIH. This project proposes a non-invasive, non-pharmacological alternative to treat pain by combining an innovative electroencephalography (EEG)-based Neurofeedback (NF) solution in an immersive virtual reality (VR) environment. NF and VR have been shown to independently produce ameliorative effects on pain, and it is hypothesized that an NF training in VR would have synergistic effects, as VR would distract from pain perception to improve patient compliance in more engaging NF protocols that improve their ability to control pain perception. In the scope of this project, we will initially focus our work on chronic low back pain (cLBP), as this is a growing segment of chronic pain sufferers with a 39 percent worldwide lifetime prevalence, and whose sufferers have historically been heavy users of opiates; later stages of this project will expand this application to address other forms of pain.

1R44AR074820-01A1
A phenotypic screen for osteoarthritic pain therapeutics using all-optical electrophysiology Cross-Cutting Research Small Business Programs NIAMS QUELL TX, INC. LIU, PIN; MCMANUS, OWEN B Cambridge, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

 Quell Therapeutics uses the Optopatch platform for making all-optical electrophysiology measurements in neurons at a throughput sufficient for phenotypic screening. Using engineered optogenetic proteins, blue and red light can be used to stimulate and record neuronal activity, respectively. Custom microscopes enable electrophysiology recordings from 100’s of individual neurons in parallel with high sensitivity and temporal resolution, a capability currently not available with any other platform screening technology. Here, researchers combine the Optopatch platform with an in vitro model of chronic pain, where dorsal root ganglion (DRG) sensory neurons are bathed in a mixture of inflammatory mediators found in the joints of osteoarthritis patients. The neurons treated with the inflammatory mixture become hyperexcitable, mimicking the anticipated cellular pain response. Investigators calculate the functional phenotype of arthritis pain, which captures the difference in action potential shape and firing rate in response to diverse stimuli. The team will screen for small molecule compounds that reverse the pain phenotype while minimizing perturbation of neuronal behavior orthogonal to the pain phenotype, the in vitro “side effects.” The highest ranking compounds will be chemically optimized and their pharmacokinetic, drug metabolism, and in vivo efficacy will be characterized. The goal is to advance therapeutic discovery for pain, which may ultimately help relieve the US opioid crisis.

1R42NS132622-01
Targeting TLR4-lipid rafts to prevent postoperative pain Cross-Cutting Research Small Business Programs NINDS RAFT PHARMACEUTICALS, LLC DOUGHERTY, PATRICK M (contact); KOGAN, YAKOV San Diego, CA 2023
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R41/R42 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-009
1R44CA271904-01A1
Novel Biologic to Treat Chemotherapy-Induced Neuropathic Pain Cross-Cutting Research Small Business Programs NCI RAFT PHARMACEUTICALS, LLC KOGAN, YAKOV San Diego, CA 2022
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

Some chemotherapy treatments damage nerves outside the brain and spinal cord. This condition, chemotherapy-induced peripheral neuropathy, involves tingling, burning, weakness, or numbness in hands and/or feet and affects nearly 70% of cancer patients receiving chemotherapy. Common pain medications, including opioids, can relieve pain for short intervals but are not suitable for long-term therapy. This project will conduct studies to investigate the safety and tolerability of a novel strategy to treat neuropathic pain: modifying the activity of the dorsal root ganglia, which are nerve cells in the spinal cord that communicate pain signals to and from the brain.

2R44DA053078-02
Developing and Testing the Opioid Rapid Response System Cross-Cutting Research Small Business Programs NIDA REAL PREVENTION, LLC HECHT, MICHAEL (contact); CHOI, HYE JEONG Clifton, NJ 2023
NOFO Title: PHS 2022-2 Omnibus Solicitation of the NIH and CDC for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Required)
NOFO Number: PA-22-177
Summary:

Reversing an opioid overdose requires a rapid response not available through standard emergency procedures. The Opioid Rapid Response System recruits and trains citizen responders to reverse overdoses with naloxone. It uses widely disseminated smart phone apps linking responders to an overdose through the 911 system. This project will complete the development of this system, test how well it works to reverse an opioid overdose, and prepare to share it widely. 

1R41DA050364-01
Optimization of Betulinic Acid analogs for T-type calcium channel inhibition for non-addictive relief of chronic pain Cross-Cutting Research Small Business Programs NIDA REGULONIX, LLC KHANNA Tucson, AZ 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

The increase in prevalence of cancer coupled with an increase in the cancer survival rates due to chemotherapy regimens is transforming cancer pain into a large, unmet medical problem. Chemotherapy-induced peripheral neuropathy (CIPN) is a common and potentially dose-limiting side effect of many cancer drug treatment regimens and is caused in part by alterations in ion channels; blocking or depleting Cav3.2 channels in dorsal root ganglion (DRG) neurons should thus mediate analgesic effects. This proposal aims to develop and test potent, orally available, and selective Cav3.2 channel antagonists, building on the structure of a medicinal plant product—betulinic acid (BA)—that has been identified to be Cav3.2-selective and antinociceptive in CIPN. Such compounds could reduce the reliance on opioids in cancer patients.

1R41NS116784-01
Discovery of T-type Calcium Channel Antagonists from Multicomponent Reactions and Their Application in Paclitaxel-induced Peripheral Neuropathy Cross-Cutting Research Small Business Programs NINDS REGULONIX, LLC KHANNA, RAJESH Tucson, AZ 2019
NOFO Title: PHS 2017-02 Omnibus Solicitation of the NIH for Small Business Technology Transfer Grant Applications (Parent STTR [R41/R42])
NOFO Number: PA-17-303
Summary:

Chemotherapy-induced peripheral neuropathy (CIPN) is detected in 64% of cancer patients during all phases of cancer. CIPN can result in chemotherapy dose reduction or discontinuation, and can also have long-term effects on the quality of life. Taxanes (like Paclitaxel) may cause structural damage to peripheral nerves, resulting in aberrant somatosensory processing in the peripheral and/or central nervous system. Dorsal root ganglia (DRG) sensory neurons as well as neuronal cells in the spinal cord are key sites in which chemotherapy induced neurotoxicity occurs. T-type Ca2+ channels are critical determinants of increased neuronal excitability and neurotransmission accompanying persistent neuropathic pain. Though Cav3.2 has been targeted clinically with small molecule antagonists, no drugs targeting these channels have advanced to phase II human clinical trials. This proposal aims to explore multicomponent reaction products, for the rapid identification of potent and selective T-type Ca2+ channel antagonists. The work proposed here is the first step in developing non-opioid pain treatments for CIPN. The team anticipates success against paclitaxel-induced chronic pain will translate into other chronic pain types as well, but CIPN provides focus for early stage proof-of-concept.

R41DA055405-01
Virtual Reality Facilitation of Recovery from Opioid Use Disorder Cross-Cutting Research Small Business Programs NIDA Relate XR LLC OBERLIN, BRANDON G (contact); NELSON, ANDREW Indianapolis, IN 2022
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-020
Summary:

Relapse is common in people with opioid use disorder, and recovery attempts often fail within 6 months. This research project will test a novel virtual reality intervention to improve recovery outcomes for people recovering from opioid use disorder. By increasing future orientation and delay-of-reward behavior with a precision medicine personalized experience, the intervention is designed to enhance advantageous decision-making and increase positive future outcomes. The results of this study will provide critical data for creating a commercially viable software product for facilitating relapse prevention and improving opioid use disorder recovery outcomes.

2R44DE029369-02
A Novel Opioid-Free Targeted Pain Control Method for Acute Post-Operative Localized Pain Related to Oral Surgical Procedures Cross-Cutting Research Small Business Programs NINDS REVBIO, INC. JADIA, RAHUL (contact); KAY, GEORGE Lowell, MA 2023
NOFO Title: PHS 2022-2 Omnibus Solicitation of the NIH, CDC and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-22-176
1R44NS113749-01
Micronized salsalate in a parenteral formulation is a safe and effective analgesic for acute postoperative pain management Cross-Cutting Research Small Business Programs NINDS RH NANOPHARMACUETICALS L.L.C. ROSS, JOEL STEVEN Monmouth Beach, NJ 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

There is an unmet need for an effective parenteral/oral analgesic for acute post- operative pain management without the risks of opioid addiction. Salsalate, a dimer or salicylic acid, is currently available in oral dosage for the treatment of osteoarthritis and rheumatoid arthritis. Salsalate works at multiple levels to target multiple steps along the surgical pain pathway. Salsalate through its active metabolite, salicylic acid (SA), reduces NF-?B activation via IKK-kinase beta inhibition, and has no direct binding to cyclooxygenase 1 (Cox-1); therefore, does not affect function of platelets, resulting in a safer hematological and gastrointestinal safety profile. RH Nano proposes a plan for manufacturing and pre- clinical testing of parenteral M-salsalate in two animal models to assess the efficacy and safety in the treatment of acute postoperative pain management. In this proposal, the team will develop the optimal formulation under strict Chemistry Manufacturing and Control guidelines. In Phase II, the team proposes to conduct the pharmacokinetics and toxicology studies of M-salsalate in two species of animals (rodent and non-rodent). Additionally, the project will use an animal pain model for preclinical efficacy studies, and an in vivo Receptor Occupancy assay in animal brain tissues to assess the opioid sparing properties of M-salsalate. 

1R44AR083337-01
Development of a Regional Anesthesia Guidance System to Increase Patient Access to Opioid-Sparing Analgesia for Hip Fracture Pain Cross-Cutting Research Small Business Programs NIAMS RIVANNA MEDICAL, INC. MAULDIN, FRANK WILLIAM Charlottesville, VA 2023
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-23-006
Summary:

Every year, more than 330,000 Americans are hospitalized for hip fractures. Rapid surgical intervention and pain treatment is critical to recover mobility and reduce other health complications. Ultrasound-guided regional anesthesia techniques are an effective alternative to opioid medication, but require specialized training for use in the emergency department. This project will develop and validate an easy-to-use ultrasound-based regional anesthesia guidance system, to ultimately improve access to non-opioid-pain treatment for hip fracture pain.