Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Sort descending Investigator(s) Location(s) Year Awarded
1R61NS133704-01
Development of Adrb3 Antagonists for the Treatment of Pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS DUKE UNIVERSITY NACKLEY, ANDREA G (contact); JIN, CHUNYANG Durham, NC 2023
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-21-029
Summary:

Common chronic pain syndromes such as fibromyalgia, temporomandibular disorder, and low back pain, are significant health conditions for which safe and effective treatments are needed. Previous studies have identified the adrenergic receptor beta-3 (Adrb3) as a novel target for chronic pain, but past attempts to block this receptor have not worked. This project aims to identify and develop new molecules to attach selectively and block Adrb3 without entering the brain and spinal cord. The research will test these molecules in rodent animal models to determine their ability to block pain without significant side effects.

1RF1NS135504-01
Development and Validation of a Porcine Model of Spinal Cord Injury-Induced Neuropathic Pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS EMORY UNIVERSITY FLOYD, CANDACE L (contact); DATTA, SANDEEP R; GENSEL, JOHN C Atlanta, GA 2023
NOFO Title: HEAL Initiative: Development and Validation of Non-Rodent Mammalian Models of Pain (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-22-070
Summary:

One of the most debilitating consequences of spinal cord injury is the development of chronic neuropathic pain, which is difficult to manage with existing pain treatments. Animal models and behavioral assays that better reflect the conditions in humans are urgently needed to help in identification of novel pain treatments. This project aims to develop a new model of spinal cord injury-related neuropathic pain using pigs, because they are similar to humans in anatomy, size, metabolism, physiology, and the way their bodies process drugs.

3U19TW007401-14S1
EXPLORATION, CONSERVATION, & DEVELOPMENT OF MARINE BIODIVERSITY IN FIJI AND THE SOLOMON ISLANDS Preclinical and Translational Research in Pain Management FIC GEORGIA INSTITUTE OF TECHNOLOGY HAY, MARK E ATLANTA, GA 2018
NOFO Title: Limited Competition: International Cooperative Biodiversity Groups (U19)
NOFO Number: RFA-TW-13-001
Summary:

This International Cooperative Biodiversity Group application aims to discover and develop small molecule drug leads from cultured marine microbes and diverse coral reef organisms collected from Fiji and the Solomon Islands. Drug discovery efforts will focus on four major disease areas of relevance to the United States and low- and middle-income countries: infectious disease, including tuberculosis and drug-resistant pathogens; neglected tropical diseases, including hookworms and roundworms; cancer; and neurodegenerative and central nervous system disorders. Screening in these therapeutic areas will be performed in collaboration with two major pharmaceutical companies, two highly respected academic groups, and various testing centers and government resources that are available to facilitate drug discovery and development. The acquisition of source material for this program will be linked to biotic surveys, informed by ecological investigations addressing the chemical mediation of biotic interactions, and enriched using ecology-based strategies designed to maximize secondary metabolite production and detection.

3U19TW009872-05S1
NOVEL THERAPEUTIC AGENTS FROM THE BACTERIAL SYMBIONTS OF BRAZILIAN INVERTEBRATES Preclinical and Translational Research in Pain Management FIC HARVARD MEDICAL SCHOOL CLARDY, JON; PUPO, MONICA T Boston, MA 2018
NOFO Title: Limited Competition: International Cooperative Biodiversity Groups (U19)
NOFO Number: RFA-TW-13-001
Summary:

An International Cooperative Biodiversity Group with an interdisciplinary leadership team of physicians, pharmacologists, evolutionary biologists, and chemists will discover and develop therapeutic agents produced by Brazilian symbiotic bacteria. The team will target three therapeutic areas: 1) infectious fungal pathogens, 2) Chagas disease and leishmaniasis, and 3) cancers of the blood. All three areas represent major threats to human health that need to be addressed with new therapeutic agents. Internationally, invasive fungal diseases kill more people than malaria or TB, while Chagas disease imposes a special burden on Brazil, killing as many Brazilians as TB. Leishmaniasis has now passed Chagas disease in the Brazilian population. Despite major improvements in cancer chemotherapy, cancer is projected to result in 8 million deaths internationally this year (13% of all deaths, WHO) and an estimated 13 million per year by 2030.

1UG3NS127943-01
Oral N2O Therapy in Treating Acute Vaso-Occlusive Pain in Sickle Cell Disease Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS Hillhurst Biopharmaceuticals, Inc. GOMPERTS, EDWARD (contact); BELCHER, JOHN D; SIMONE, DONALD Montrose, CA 2022
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Inhaled nitrous oxide, N2O, is used in emergency departments in Europe to treat pain associated with sickle cell disease as well as for labor, painful fractures, and to manage serious gynecological pain. It is not a viable therapeutic option for home use for reasons such as poor dosing control, potential inhalation equipment issues, and variability in patient ventilation and lung absorption. This project seeks to optimize, characterize, and develop an oral formulation of N2O that could be used by patients at home for unpredictable and severe episodes of pain associated sickle cell disease. Once developed, the new oral formulation of N2O will be evaluated to determine whether it or an optimized version is ready for more clinical testing.

1R34NS126030-01
Profiling the human gut microbiome for potential analgesic bacterial therapies Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS HOLOBIOME, INC. STRANDWITZ, PHILIP PETER (contact); GILBERT, JACK ANTHONY Cambridge, MA 2021
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development Initial Translational Efforts [Small Molecules and Biologics] (R34 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-21-016
Summary:

Disruptions in make-up of the microbiome are associated with disorders characterized by chronic pain and inflammation, such as rheumatoid arthritis and fibromyalgia. The gut microbiome has immune and metabolic effects, and human gut-derived bacteria may be a source of novel, safe, and non-addictive pain treatments. However, connections between gut and pain signals, known as the “gut–pain axis,” are still poorly understood. This study aims to identify human-gut-native bacteria that i) interact with known pain targets in lab studies, ii) test their activity and analgesic/anti-inflammatory potential in an animal model, and iii) develop a computational approach to predict microbial-genetic effects on pain signals.

3R37DA020686-13S1
Role for Tas2Rs in opioid addiction Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDA ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI KENNY, PAUL J. New York, NY 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

Opioids and other addictive substances have powerful rewarding properties that drive the development of addiction. They also have aversive properties that motivate their avoidance and protect against addiction. This project will explore the role of Type 2 Taste Receptor proteins (Tas2Rs or T2Rs) in regulating the aversive properties of opioids, potentially establishing an entirely new class of receptors that can be targeted for the development of novel addiction therapeutics.

1UG3NS134781-01
A novel glycan-based selectin and complement inhibitor for at-home disease-modifying rescue of pain crisis in sickle cell disease Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS IHP THERAPEUTICS, INC. PADERI, JOHN San Carlos, CA 2023
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
1R21NS130417-01
The Role of Lysosomal Mechano-Sensitive Ion Channel in Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS INDIANA UNIVERSITY PURDUE AT INDIANAPOLIS TAN, ZHIYONG Indianapolis, IN 2022
NOFO Title: Emergency Awards: HEAL Initiative-Early-Stage Discovery of New Pain and Opioid Use Disorder Targets Within the Understudied Druggable Proteome (R21 Clinical Trial Not Allowed)
NOFO Number: TR22-011
Summary:

Chronic pain severely reduces the quality of life and ability to work for millions of Americans. Because misuse of opioids for chronic pain treatment contributes to opioid addiction and opioid overdose, there is an urgent need to study novel non-opioid mechanisms, targets, and treatment strategies for chronic pain. Many ion channels control the flow of electrical signals in peripheral sensory neurons and are thus key targets for understanding and treating chronic pain. This project will conduct detailed studies to identify major ion channel-related molecular activities, targets, and treatment strategies for chronic pain. In particular, this research will explore the role of a specific ion channel (lysosomal mechanosensitive ion channel, orTmem63A) in neuropathic pain resulting from nerve injury.

1RF1NS134549-01
Validation of a New Large-Pore Channel as a Novel Target for Neuropathic Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS JOHNS HOPKINS UNIVERSITY QIU, ZHAOZHU (contact); GUAN, YUN Baltimore, MD 2023
NOFO Title: HEAL Initiative: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-22-034
Summary:

Activation of immune cells (microglia) in the central nervous system and neuroinflammation have emerged as key drivers of neuropathic pain. These processes can be triggered by release of ATP, the compound that provides energy to many biochemical reactions. The source and mechanism of ATP release are poorly understood but could be targets of novel treatment approaches for neuropathic pain. This project will use genetic, pharmacological, and electrophysiological approaches to determine whether a large pore channel called Swell 1 that spans the cell membrane is the source of ATP release and resulting neuropathic pain and thus could be a treatment target.

1RF1AG068997-01
Subchondral Bone Cavities in Osteoarthritis Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS JOHNS HOPKINS UNIVERSITY CAO, XU; GUAN, YUN Baltimore, MD 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

A key marker of inflammation in Osteoarthritis (OA) is accompanied by significantly increased sensory innervation within the diseased joint. This study aims to validate the hypothesis that defective bone resorbing cells are responsible for the enlarged bone cavity, giving rise to the inflammatory marker causing further increases in levels sensory innervation and resulting in increased OA pain perception.

1R01DK123138-01
Validation of peripheral CGRP signaling as a target for the treatment of pain in chronic pancreatitis Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDDK JOHNS HOPKINS UNIVERSITY PASRICHA, PANKAJ J Baltimore, MD 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Chronic pancreatitis (CP) and the debilitating pain associated with it remains a common and challenging clinical syndrome that is difficult to treat effectively. Using rodent models of CP, preliminary studies have found that nerve growth factor (NGF) and transforming growth factor beta (TGFb) appear to be acting by the common effector, calcitonin-gene related peptide (CGRP), to induce pain in CP. CGRP is known to mediate pain as a neurotransmitter in the central nervous system, specifically as a potent vasodilator involved in migraine. This project will test the hypothesis that peripheral CGRP is a major mediator of peripheral nociceptive sensitization in CP, and that peripherally restricted anti-CGRP treatment could provide an efficient and sufficient approach for the treatment of pain in pancreatitis

1UG3NS115718-01
Development of MRGPRX1 positive allosteric modulators as non-addictive therapies for neuropathic pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS JOHNS HOPKINS UNIVERSITY TSUKAMOTO, TAKASHI Baltimore, NC 2019
NOFO Title: Optimization of Non-addictive Therapies [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-010
Summary:

Although opioid-based analgesics have been proven effective in reducing the intensity of pain for many neuropathic pain conditions, their clinical utility is grossly limited due to the substantial risks involved in such therapy, including nausea, constipation, physical dependence, tolerance, and respiratory depression. Cumulative evidence suggests that human Mas-related G protein-coupled receptor X1 (MRGPRX1) is a promising target for pain with limited side effects due to its restricted expression in nociceptors within the peripheral nervous system; however, direct activation of MRGPRX1 at peripheral terminals is expected to induce itch side effects, limiting the therapeutic utility of orthosteric MRGPRX1 agonists. This finding led to the exploration of positive allosteric modulators (PAMs) of MRGPRX1 to potentiate the effects of the endogenous agonists at the central terminals of sensory neurons without activating peripheral MRGPRX1. An intrathecal injection of a prototype MRGPRX1 PAM, ML382, effectively attenuated evoked, persistent, and spontaneous pain without causing itch side effects. The goal of this study is to develop a CNS-penetrant small-molecule MRGPRX1 PAM that can be given orally to treat neuropathic pain conditions.

1UG3NS115108-01A1
Home-based transcutaneous electrical acustimulation for abdominal pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS JOHNS HOPKINS UNIVERSITY CHEN, JIANDE Baltimore, MD 2020
NOFO Title: HEAL Initiative: Translational Devices to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-19-016
Summary:

Currently, there are no adequate therapies for abdominal pain in patients with Irritable Bowel Syndrome (IBS), a gastrointestinal disorder affecting 14-20% of the US population. More than 40% of IBS patients regularly use opioid narcotics. An alternative treatment for IBS that has been shown to be an effective pain management strategy is electroacupuncture. However its drawbacks include infrequent administration, unclear mechanistic understanding, and lack of methodology optimization. This study will use a noninvasive method of transcutaneous electrical acustimulation (TEA) by replacing needles with surface electrodes and testing acupoints that target peripheral nerves. Based on prior mechanistic and clinical studies, two stimulation parameters and effective acupoints will be tested. In the UG3 phase, the TEA device and a cell phone app will be optimized for use in IBS abdominal pain, and an acute clinical study will determine the best stimulation locations and parameters. During the UH3 phase, an early feasibility clinical study will be performed in 160 IBS patients in treating abdominal pain. Participants will self-administer the therapy at home/work and will be randomized across four treatment groups to determine the therapeutic potential of the TEA system.

1RF1NS113883-01
Sympathetic-mediated sensory neuron cluster firing as a novel therapeutic target for neuropathic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS JOHNS HOPKINS UNIVERSITY DONG, XINZHONG Baltimore, MD 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

An important component of neuropathic pain is spontaneous or ongoing pain, such as burning pain or intermittent paroxysms of sharp and shooting pain, which may result from abnormal spontaneous activity in sensory nerves. However, due to technical limitations, spontaneous activity in sensory neurons in vivo has not been well studied. Using in vivo imaging in genetically-modified mice, preliminary findings identified spontaneously-firing clusters of neurons formed within the dorsal root ganglia (DRG) after traumatic nerve injury that exhibits increased spontaneous pain behaviors. Furthermore, preliminary evidence has been collected that cluster firing may be related to abnormal sympathetic sprouting in the sensory ganglia. This project will test the hypothesis that cluster firing is triggered by abnormal sympathetic inputs to sensory neurons, and that it underpins spontaneous paroxysmal pain in neuropathic pain models. Findings from this project will identify potential novel therapeutic targets for the treatment of neuropathic pain.

1U44NS115732-01
Selective Kv7.2/3 activators for the treatment of neuropathic pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS KNOPP BIOSCIENCES, LLC SIGNORE, ARMANDO (contact); RESNICK, LYNN Pittsburgh, PA 2019
NOFO Title: HEAL Initiative: Optimization of Non-addictive Therapies [Small Molecules and Biologics] to Treat Pain
NOFO Number: RFA-NS-19-020
Summary:

The development of non-addictive pain therapeutics can help counter opioid addiction and benefit patients, including those who suffer from neuropathic pain, in particular diabetic neuropathic pain (DNP). This project’s goal is to develop a safe, efficacious, and non-addictive small-molecule drug that activates Kv7 voltage-gated potassium channels to address overactive neuronal activity in DNP. Researchers will discover Kv7 activators that favor Kv7 isoforms altered in DNP and found in dorsal root ganglia, decrease off-target side effects observed with the use of earlier non-biased Kv7 activators, and optimize the absorption, distribution, metabolism, excretion, and toxicity profiles of these activators. This screening paradigm is intended to establish a clinic-ready, well-tolerated, and widely effective product to treat neuropathic pain.

1U19NS126038-01
Site-directed RNA editing of Nav1.7 as a novel analgesic Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS MARINE BIOLOGICAL LABORATORY, WOODS HOLE ROSENTHAL, JOSHUA J C (contact); DIB-HAJJ, SULAYMAN D; DUSSOR, GREGORY O; EISENBERG, ELI New Haven, CT 2021
NOFO Title: HEAL Initiative: Team Research for Initial Translational Efforts in Non-addictive Analgesic Therapeutics Development (U19 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-21-015
Summary:

Opioids are widely used pain treatments, despite their relative ineffectiveness for chronic pain and their high potential for misuse and addiction. There is thus an urgent need for alternative, non-addictive pain treatments. Genetic and functional studies of human pain disorders and animal models of pain have validated Nav1.7, a voltage-gated sodium channel as an attractive target for new pain treatments. Currently available blockers of these channels can sometimes provide symptomatic relief for patients but have worrisome side effects affecting the brain and heart. This study aims to develop and validate an innovative site-directed RNA editing strategy that will offer the ability to create new versions of molecules to block Nav1.7, toward establishing a novel, non-addictive approach to treat chronic pain.

1R61NS126029-01A1
Inhibiting RIPK1 with Necrostatin-1 for Safe and Effective Pain Treatment Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS Massachusetts General Hospital SHEN, SHIQIAN (contact); HOULE, TIMOTHY T; WANG, CHANGNING ; ZHANG, CAN MARTIN Boston, MA 2022
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: NS21-029
Summary:

Recent studies have reported that neuropathic pain involves changes in the central nervous system that are linked to necroptosis (programmed necrotic cell death) and release of cellular components that create neuroinflammation. Necroptosis is a type of necrotic cell death affected by the protein receptor-interacting serine/threonine-protein kinase 1 (RIPK1 or RIP1). Preliminary studies also indicate that pain increases levels of RIPK1 in key brain regions implicated in pain processing. This project aims to further validate RIPK1 as a target for neuropathic pain using a newly developed positron emission tomography imaging approach. The work will pave the way for new brain-penetrant RIPK1 inhibitors as a safe, effective, and nonaddictive treatment approach for neuropathic pain.

1RM1NS128741-01
From Nerve to Brain: Toward a Mechanistic Understanding of Spinal Cord Stimulation in Human Subjects Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS Massachusetts General Hospital WAINGER, BRIAN JASON (contact); FREEMAN, ROY ; LOGGIA, MARCO LUCIANO Boston, MA 2022
NOFO Title: HEAL Initiative: Interdisciplinary Teams to Elucidate the Mechanisms of Device-Based Pain Relief (RM1 Clinical Trial Optional)
NOFO Number: NS22-016
Summary:

Spinal cord stimulators (SCS) and related devices are commonly used for hard-to-treat pain conditions, but how they work remains unclear. This knowledge is important for improving device design and stimulation patterns, as well as for determining which patients will benefit. Through a series of clinical studies in patients with SCS devices, this project will explore the hypothesis that SCS devices reduce pain by changing the excitability of peripheral sensory nerve fibers in the spinal cord. The results should guide development of biomarkers to advance research further.

1R61NS113315-01
Biomarker Signature to Predict the Persistence of Post-Traumatic Headache Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS MAYO CLINIC ARIZONA CHONG, CATHERINE DANIELA Scottsdale, AZ 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

There is currently no recognized way of accurately predicting who will recover from post-traumatic headache (PTH) during the acute phase following concussion and who will go on to develop persistent post-traumatic headache (PPTH), a condition that is difficult to treat effectively. Clinical experience suggests that early treatment is most effective, before headache patterns become persistent, but treating all patients with PTH would expose some patients to unnecessary treatment. Clinicians lack the information needed to make informed treatment decisions. Therefore, the study goals are to develop a prognostic biomarker signature for PPTH using clinical data and structural and functional brain neuroimaging and to assess the predictive accuracy of an ensemble biomarker signature for the early identification of patients at high risk for PPTH. This study can be translated into clinical practice and integrated into PTH clinical trials for early identification of those individuals who are at high risk for PPTH.

1R61NS114954-01
The Inflammatory Index as a Biomarker for Pain in Patients with Sickle Cell Disease Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS MEDICAL COLLEGE OF WISCONSIN BRANDOW, AMANDA M Milwaukee, WI 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Debilitating pain is the most common complication of sickle cell disease (SCD), but there is significant variability in pain expression in these patients. Currently, there is no plasma biomarker that can prognosticate which patients are likely to experience pain. The overall goal of this proposed research is to develop a biomarker that prognosticates the clinical expression of pain in SCD. Project aims are to (1) derive the inflammatory index for pain by identifying inflammatory and immune regulatory gene probe sets that will distinguish healthy controls, patients with SCD in baseline health, and patients with SCD in acute pain and (2) determine whether co-expressed genes from patients with SCD correlate with clinical pain data. Subsequent aims are to (1) determine the clinically meaningful changes of the index in patients with SCD and (2) investigate the preliminary clinical validity of the index as a prognostic biomarker for pain in patients with SCD.

1U44NS115111-01
High-Resolution, Spinal Cord Stimulation for Non-Opioid Treatment of Neuropathic Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS MICRO-LEADS, INC. MCLAUGHLIN, BRYAN L Somerville, MA 2019
NOFO Title: HEAL Initiative: Translational Devices to Treat Pain (U44 Clinical Trial Optional)
NOFO Number: RFA-NS-19-017
Summary:

The research team will develop HD64—a high-resolution, 64-channel spinal cord stimulation therapy to provide more pain relief for those suffering from chronic neuropathic pain and opioid dependence. HD64 provides an ultra-thin conformal blanket of stimulation contacts across the width of the spinal cord and enables more precise targeting of the lateral structures of the spinal cord to enhance pain relief. A cadaveric pilot run followed by a non-significant risk intraoperative study will be performed to inform the design parameters of HD64 arrays. The study will evaluate activation of medial and lateral spinal targets. At the end of Phase 1, the clinical feasibility of HD64 surgical leads will be established. In Phase 2, researchers will develop an external active lead pulse generator and charger. They will perform an early feasibility study human trial using active HD64 and mechanical and electrical design verification testing and chronic safety studies in large animals.

3U44NS115111-02S1
High-Resolution, Spinal Cord Stimulation for Non-Opioid Treatment of Neuropathic Pain Preclinical and Translational Research in Pain Management NINDS MICRO-LEADS, INC. MCLAUGHLIN, BRYAN L Somerville, MA 2020
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA18-591
Summary:

This project aims to develop and clinically validate a 64-channel spinal cord stimulation therapy for treating chronic neuropathic pain of the lower extremities, groin, and lower back. With an increased channel count and the ability to precisely target medial and lateral structures of the spinal cord, the system will treat chronic pain with greater efficacy and reduced side effects. This project will pursue a safe, effective, and non-addictive treatment for neuropathic pain through the testing of enhanced HD64 active leads to be manufactured under GMP regulations. The leads will then undergo electrical, mechanical, biocompatibility, and sterilization testing before being tested in a 10-subject early feasibility study.

3U44NS115111-03S1
High-Resolution, Spinal Cord Stimulation for Non-Opioid Treatment of Neuropathic Pain Preclinical and Translational Research in Pain Management NINDS MICRO-LEADS, INC. MCLAUGHLIN, BRYAN L Somerville, MA 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

This research seeks to develop a high-resolution spinal cord stimulation therapy for treating chronic neuropathic pain of the lower extremities, groin, and lower back. Systems that use wireless communication methods require robust strategies to prevent various forms of cyberattacks on implantable devices. The focus of this project's research will be to develop a new cybersecurity risk-reduced architecture for Bluetooth low-energy implant communication.

1RM1DE033491-01
Endosomal Mechanisms Signaling Oral Cancer Pain Preclinical and Translational Research in Pain Management Integrated Basic and Clinical Team-Based Research in Pain NIDCR NEW YORK UNIVERSITY SCHMIDT, BRIAN L (contact); BUNNETT, NIGEL W; KHANNA, RAJESH; LEONG, KAM W; YE, YI New York, NY 2023
NOFO Title: HEAL Initiative Integrated Basic and Clinical Team-based Research in Pain (RM1 Clinical Trial Optional)
NOFO Number: RFA-NS-22-069
Summary:

Human oral cancer is associated with significant chronic pain, and a comprehensive understanding of the biology and mechanisms underlying this chronic pain is critical for developing better pain management strategies. This project will determine molecular characteristics, including a specific signaling system (endosomal GPCR kinase), associated with chronic oral cancer pain, using tissue samples obtained from patients with this condition. The findings will then be used to inform studies in animal models of human oral cancer pain to enhance understanding how endosomal GPCR kinase contributes to human oral cancer pain.