Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Sort ascending Location(s) Year Awarded
5R24DA051950-02
Building a Lasting Foundation to Advance Actionable Research on Recovery Support Services for High Risk Individuals with Opioid Use Disorder: The Initiative for Justice and Emerging Adult Populations Translation of Research to Practice for the Treatment of Opioid Addiction Recovery Research Networks NIDA OREGON SOCIAL LEARNING CENTER, INC. SHEIDOW, ASHLI J Eugene, OR 2021
NOFO Title: Building a Lasting Foundation to Advance Actionable Research on Recovery Support Services for High Risk Individuals with Opioid Use Disorder: The Initiative for Justice and Emerging Adult Populations
NOFO Number: RFA-DA-20-014
Summary:

Emerging adults (ages 16-25) involved with public systems and individuals involved with the justice system (including emerging adults) are at the highest risk for problems stemming from opioid use disorder. Emerging adults report the highest rates of drug use, including opiates, and those involved with public systems are more likely to have poor outcomes. For adults of all ages, opioid use increases the likelihood of justice system involvement. Peer recovery support services and recovery residences are growing nationally and may benefit these two groups tremendously, but research on them is limited. This project will establish the Initiative for Justice and Emerging Adult Populations to advance recovery support services research through a partnership between researchers, people in recovery from these two populations, recovery support service providers, and payors.

3R01DA041434-03S1
IMPROVING ACCESS TO SUBSTANCE ABUSE EVIDENCE-BASED PRACTICES FOR YOUTH IN THE JUSTICE SYSTEM: STRATEGIES USED BY JPOS New Strategies to Prevent and Treat Opioid Addiction Preventing Opioid Use Disorder NIDA Oregon Social Learning Center, Inc. SHEIDOW, ASHLI J Eugene, OR 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Justice-involved young adults are one of the highest-risk populations for the development of opioid use disorder (OUD) and other significant public health problems, but they usually lack access to evidence-based practices that could potentially prevent this trajectory. The risk of unintentional death and other deleterious outcomes and long-term costs for opioid misuse for young adults, their communities and society (costs estimated at more than $115 billion annually) make this a priority, with rural areas in need of the most attention and assistance. The overriding purpose of the proposed pilot study is to prevent the onset of OUD by improving young adult offenders’ access to evidence-based risk reduction interventions, like contingency management (CM), by testing whether officers in the adult probation and parole setting can deliver such an intervention to their young adult substance using probationers who have not yet developed OUD. The primary motivation for this pilot is the clear public health need for improving and expanding delivery of substance use risk reduction interventions for young adults in the justice system. The ultimate outcome would be prevention of OUD in this high-risk population.

5R01NS094461-04
Clustering of individual and diverse ion channels together into complexes, and their functional coupling, mediated by A-kinase anchoring protein 79/150 in neurons Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TEXAS HLTH SCI CTR SAN ANTONIO SHAPIRO, MARK S San Antonio, TX 2018
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Multi-protein complexes have emerged as a mechanism for spatiotemporal specificity and efficiency in the function and regulation of cellular signals. Many ion channels are clustered either with the receptors that modulate them or with other ion channels whose activities are linked. Often, the clustering is mediated by scaffolding proteins, such as AKAP79/150. We will probe complexes containing AKAP79/150 and three different channels critical to nervous function: KCNQ/Kv7, TRPV1, and CaV1.2. We will use"super-resolution" STORM imaging of primary sensory neurons and heterologously expressed tissue-culture cells, in which individual complexes can be visualized at 10–20 nm resolution with visible light. We hypothesize that AKAP79/150 brings several of these channels together to enable functional coupling, which we will examine by patch-clamp electrophysiology of the neurons. Since all three of these channels bind to AKAP79/150, we hypothesize that they co-assemble into complexes in neurons and that they are dynamically regulated by other cellular signals.

3R01NS094461-04S2
TARGETING SPECIFIC INTERACTIONS BETWEEN A-KINASE ANCHORING PROTEINS (AKAPS) AND ION CHANNELS WITH CELL-PERMEANT PEPTIDES AS A NOVEL MODE OF THERAPEUTIC INTERVENTION AGAINST PAIN DISORDERS Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TEXAS HLTH SCIENCE CENTER SHAPIRO, MARK S SAN ANTONIO, TX 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Multi-protein complexes have emerged as a mechanism for spatiotemporal specificity and efficiency in the function and regulation of myriad cellular signals. In particular, many ion channels are clustered either with the receptors that modulate them, or with other ion channels whose activities are linked. Often the clustering is mediated by scaffolding proteins, such as the AKAP79/150 protein that is a focus of this research. This research will focus on three different channels critical to nervous function. One is the"M-type" (KCNQ, Kv7) K+ channel that plays fundamental roles in the regulation of excitability in nerve and muscle. It is thought to associate with Gq/11- coupled receptors, protein kinases, calcineurin (CaN), calmodulin (CaM) and phosphoinositides via AKAP79/150. Another channel of focus is TRPV1, a nociceptive channel in sensory neurons that is also thought to be regulated by signaling proteins recruited by AKAP79/150. The third are L-type Ca2+ (CaV1.2) channels that are critical to synaptic plasticity, gene regulation and neuronal firing. This research will probe complexes containing AKAP79/150 and these three channels using"super-resolution" STORM imaging of primary sensory neurons and heterologously-expressed tissue-culture cells, in which individual complexes can be visualized at 10-20 nm resolution with visible light, breaking the diffraction barrier of physics. The researchers hypothesize that AKAP79/150 brings several of these channels together to enable functional coupling, which the researchers will examine by patch-clamp electrophysiology of the neurons. Förster resonance energy transfer (FRET) will also be performed under total internal reflection fluorescence (TIRF) or confocal microscopy, further testing for complexes containing KCNQ, TRPV1 and CaV1.2 channels. Since all three of these channels bind to AKAP79/150, the researchers hypothesize that they co-assemble into complexes in neurons, together with certain G protein-coupled receptors. Furthermore, the researchers hypothesize these complexes to not be static, but rather to be dynamically regulated by other cellular signals, which the researchers will examine using rapid activation of kinases or phosphatases. Several types of mouse colonies of genetically altered AKAP150 knock-out or knock-in mice will be utilized.

1R43DA049616-01
Development and Evaluation of Computerized Chemosensory-Based Orbitofrontal Cortex Training (CBOT) for relapse preventionin patients with Opioid Use (OUD) Cross-Cutting Research Small Business Programs NIDA EVON MEDICS, LLC SETH, SUMEET (contact); NWULIA, EVARISTUS A Elkridge, MD 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

The orbitofrontal cortex (OFC) plays an important role in regulation of addiction, and OFC impairment from cocaine and opioids use leads to repetitive drug use. Brief optogenetic activation of the OFC reduces self-administration of drugs in neurobiology studies. However, the OFC is less accessible for noninvasive stimulation using direct transcutaneous current stimulation or transcranial magnetic stimulation. The small business EvON Medics LLC and Howard University have created a home-based olfactory pulsing prototype, called computerized chemosensory-based orbitofrontal cortex training (CBOT), using a high-fidelity chemosensory and computerized olfactory training approach to enable home-based neuromodulation of the OFC for treatment of opioid use disorder (OUD). A pilot feasibility study in OUD samples suggests that CBOT can minimize withdrawal symptoms, reduce drug cravings, enhance positive affect, and reduce rate of positive urine drug tests. The project seeks to establish CBOT stimulation parameters needed to maximally improve outcome inference and emotion regulation in OUD.

1R61NS113269-01
Validation of a novel cortical biomarker signature for pain Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS University of Maryland, Baltimore SEMINOWICZ, DAVID Baltimore, MD 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Chronic pain is a major health burden associated with immense economic and social costs. Predictive biomarkers that can identify individuals at risk of developing severe and persistent pain, which is associated with worse disability and greater reliance on opioids, would promote aggressive, early intervention that could halt the transition to chronic pain. The applicant’s team uncovered evidence of a unique cortical biomarker signature that predicts pain susceptibility (severity and duration). This biomarker signature could be capable of predicting the severity of pain experienced by an individual minutes to months in the future, as well as the duration of pain (time to recovery). Analytical validation of this biomarker will be conducted in healthy participants using a standardized model of the transition to sustained myofascial temporomandibular pain. Specifically the biomarker signature will be tested for its ability to predict an individual’s pain sensitivity, pain severity, and pain duration and will perform initial clinical validation.

3R44DA044053-02S1
DEVELOPMENT AND EVALUATION OF VIDEO-BASED DIRECTLY OBSERVED THERAPY FOR OFFICE-BASED TREATMENT OF OPIOID USE DISORDERS WITH BUPRENORPHINE Cross-Cutting Research Small Business Programs NIDA emocha Mobile Health, Inc. Seiguer, Sebastian Owings Mills, MD 2019
NOFO Title: PHS 2016-02 Omnibus Solicitation of the NIH, CDC, FDA, and ACF for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-16-302
Summary:

Since 2002, persons with opioid use disorders who desire medication-assisted treatment can be treated with buprenorphine, which has been shown to be efficacious. Buprenorphine treatment can occur in any medical office-based setting, is prescribed by any physician who seeks to become waivered, and is taken by patients at home unsupervised. However, without visual confirmation of medication ingestion, providers remain unsure if patients divert part or all of their buprenorphine medication. This project will develop the technical and logistical workflow needed to implement a video-­based application, miDOT, for office-­based buprenorphine monitoring during the initial months of care, which will allow health care providers to monitor whether patients ingest the drug and adhere to treatment. The project will configure a video-based DOT platform, evaluate its effectiveness in securing medication ingestion and care retention for illicit opiate users, and solidify routes of sustainable commercial viability with commercial partners.

3R44DA044053-03S1
DEVELOPMENT AND EVALUATION OF VIDEO-BASED DIRECTLY OBSERVED THERAPY FOR OFFICE-BASED TREATMENT OF OPIOID USE DISORDERS WITH BUPRENORPHINE Cross-Cutting Research Small Business Programs NIDA emocha Mobile Health, Inc. Seiguer, Sebastian Owings Mills, MD 2019
NOFO Title: PHS 2016-02 Omnibus Solicitation of the NIH, CDC, FDA, and ACF for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-16-302
Summary:

Since 2002, persons with opioid use disorders who desire medication-assisted treatment can be treated with buprenorphine, which has been shown to be efficacious. Buprenorphine treatment can occur in any medical office-based setting, is prescribed by any physician who seeks to become waivered, and is taken by patients at home unsupervised. However, without visual confirmation of medication ingestion, providers remain unsure if patients divert part or all of their buprenorphine medication. This project will develop the technical and logistical workflow needed to implement a video-­based application, miDOT, for office-­based buprenorphine monitoring during the initial months of care, which will allow health care providers to monitor whether patients ingest the drug and adhere to treatment. The project will configure a video-based DOT platform, evaluate its effectiveness in securing medication ingestion and care retention for illicit opiate users, and solidify routes of sustainable commercial viability with commercial partners.

1R21AT010125-01
EFFECT OF MINDFULNESS TRAINING ON OPIOID USE AND ANXIETY DURING PRIMARY CARE BUPRENORPHINE TREATMENT Translation of Research to Practice for the Treatment of Opioid Addiction Behavioral Research to Improve Medication-Based Treatment NCCIH Cambridge Health Alliance SCHUMAN OLIVIER, ZEV DAVID CAMBRIDGE, MA 2018
NOFO Title: Clinical Trials or Observational Studies of Behavioral Interventions for Prevention of Opioid Use Disorder or Adjunct to Medication Assisted Treatment-SAMHSA Opioid STR Grants (R21/R33)
NOFO Number: RFA-AT-18-002
Summary:

Office-based opioid treatment (OBOT) with buprenorphine/naloxone prevents overdose deaths. Nonpharmacologic approaches to anxiety, stress, and emotion dysregulation are needed during primary care OBOT, which is the primary access point for opioid use disorder (OUD) treatment in most U.S. counties. Mindfulness-based interventions (MBI) safely and reliably reduce the impact of stress, anxiety, depression, and chronic pain, which could increase OBOT retention while reducing rates of relapse and overdose deaths. Current 8-week standard MBIs do not appear to have strong, sustained impact on substance use outcomes, suggesting longer or enhanced MBIs are needed in the OUD treatment setting. This project proposes to adapt, refine, and compare the effectiveness of the 6-month Mindful Recovery OUD Care Continuum delivered within group-based opioid treatment (GBOT) versus standard GBOT alone.

4R33AT010125-02
Effect of Mindfulness Training on Opioid Use and Anxiety During Primary Care Buprenorphine Treatment Translation of Research to Practice for the Treatment of Opioid Addiction Behavioral Research to Improve Medication-Based Treatment NCCIH CAMBRIDGE HEALTH ALLIANCE SCHUMAN OLIVIER, Z Cambridge, MA 2019
NOFO Title: Clinical Trials or Observational Studies of Behavioral Interventions for Prevention of Opioid Use Disorder or Adjunct to Medication Assisted Treatment-SAMHSA Opioid STR Grants (R21/R33)
NOFO Number: RFA-AT-18-002
1U2CDA050098-01
Methodology and Advanced Analytics Resource Center Translation of Research to Practice for the Treatment of Opioid Addiction Justice Community Opioid Innovation Network (JCOIN) NIDA UNIVERSITY OF CHICAGO SCHNEIDER, JOHN (contact); POLLACK, HAROLD ALEXANDER Chicago, IL 2019
NOFO Title: HEAL Initiative: Justice Community Opioid Innovation Network (JCOIN) Methodology and Advanced Analytics Resource Center (U2C Clinical Trial Not Allowed)
NOFO Number: RFA-DA-19-023
Summary:

Many individuals with opioid use disorder (OUD) pass through the criminal justice system over the course of their life. Improved access to high-quality, evidence-based addiction treatment in justice settings will be critical to addressing the opioid crisis. Through the Justice Community Opioid Innovation Network (JCOIN), the National Institutes of Health will study approaches to increase high-quality care for people with opioid misuse and OUD in justice populations. The Methodology and Advanced Analytics Resource Center (MAARC) will provide data infrastructure support across the network using advanced methods that provide best-in-class data storage, management and security with added value to clinical trials through products of forecasting, rapid real-time assessments, explication and exploration of trial findings, and cost-effectiveness analysis.

1UG3DA049598-01
Novel Therapeutics for Opioid Use Disorder in the Acute Overdose and Maintenance Settings Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Epiodyne, Inc. Schmidt, William San Francisco, CA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Opioid use disorder (OUD) and opioid overdose (OD) are major health issues. Breathing can be restored after OD by naloxone, but its short half-life can require multiple administrations to reverse OD, and OD symptoms may return after initial reversal if illicit opioids are still present after the effects of naloxone have worn off. Additionally, while the standard treatment of OUD with buprenorphine and methadone reduces relapse and mortality, access and adoption are limited by dosage forms, metabolic liabilities, and potential for misuse and diversion. This study seeks to develop chemically novel, potent mu-opioid receptor (MOR) antagonists and low- and mid-efficacy partial agonists. Current lead counts can outcompete opioid overdoses in preclinical models with a longer half-life, a key naloxone liability for treating OD. The potent, low-efficacy partial agonists add a low opioid tone, diminishing the aversive effects of pure antagonists. These, and the mid-efficacy partial agonists, are leads to maintenance therapeutics for OUD.

1RM1DE033491-01
Endosomal Mechanisms Signaling Oral Cancer Pain Preclinical and Translational Research in Pain Management Integrated Basic and Clinical Team-Based Research in Pain NIDCR NEW YORK UNIVERSITY SCHMIDT, BRIAN L (contact); BUNNETT, NIGEL W; KHANNA, RAJESH; LEONG, KAM W; YE, YI New York, NY 2023
NOFO Title: HEAL Initiative Integrated Basic and Clinical Team-based Research in Pain (RM1 Clinical Trial Optional)
NOFO Number: RFA-NS-22-069
Summary:

Human oral cancer is associated with significant chronic pain, and a comprehensive understanding of the biology and mechanisms underlying this chronic pain is critical for developing better pain management strategies. This project will determine molecular characteristics, including a specific signaling system (endosomal GPCR kinase), associated with chronic oral cancer pain, using tissue samples obtained from patients with this condition. The findings will then be used to inform studies in animal models of human oral cancer pain to enhance understanding how endosomal GPCR kinase contributes to human oral cancer pain.

1R43DA050358-01
A Project to Test The Efficacy And Safety Of An Innovative Treatment Of Opiate Use Disorders Cross-Cutting Research Small Business Programs NIDA MINDLIGHT, LLC SCHIFFER, FREDRIC (contact); TEICHER, MARTIN H Newton, MA 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

This project aims to demonstrate the safety and effectiveness of a novel treatment for opiate addiction using a technique called photobiomodulation, application of light to the forehead. The treatment consists of using a 4-minute application of transcranial photobiomodulation, near-infrared mode, through a supra-luminous LED, to one side of the forehead over the brain hemisphere that has been determined to have a more positive emotional valence. The study will examine differences in opioid cravings, anxiety, depression, and opioid use between participants receiving the treatment and those receiving a sham treatment. We will evaluate patients weekly for safety and efficacy for 3 weeks post-treatment. In Aim II, a highly-regarded product engineer will work with the company to design a marketable product that may have patentable elements.

2R44DA050358-02A1
A Project to Test the Efficacy and Safety of An Innovative Treatment for Opiate Use Disorders Cross-Cutting Research Small Business Programs NIDA MINDLIGHT, LLC SCHIFFER, FREDRIC (contact); TEICHER, MARTIN H Newton, MA 2022
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

This project will refine an experimental non-invasive light therapy to create an effective, safe, convenient, and affordable method for treating opioid use disorder. This research will test whether a short treatment of near infra-red light administered through the skull can reduce drug use, relapse, and craving, and improve overall function in people with opioid use disorder. If effective, the findings could support a path toward commercialization of this new treatment.

1R01NS118504-01
Targeting GPCRs in Amygdalar and Cortical Neural Ensembles to Treat Pain Aversion Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIV OF NORTH CAROLINA CHAPEL HILL SCHERRER, GREGORY Chapel Hill, NC 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

There is a distinct neural ensemble in the brain that encodes the negative affective valence of pain. This project will identify novel targets to treat pain by determining the molecular identity of these BLA nociceptive cells via in situ hybridization and single cell RNAsequencing (scRNA-seq). Resolving the molecular identity of these ACC nociceptive cells will also reveal new targets to treat pain affect. To achieve these results the project will catalog candidate Gi/o-GPCR targets in BLA and ACC, test their utility to treat pain, and verify these new targets have no effect in the brain?s reward and breathing circuitry. The experiments in this project will also evaluate each target for abuse potential and effects on breathing by using behavioral assays for reward processing and whole-body plethysmography, respectively. To evaluate whether our results in rodents are likely to translate clinically, there will be an analysis of expression patterns of these drug targets in human tissue using in situ hybridization.

1U24DA057650-01
HEAL Data2Action Modeling and Economic Resource Center Cross-Cutting Research Translating Data 2 Action to Prevent Overdose NIDA WEILL MEDICAL COLL OF CORNELL UNIV SCHACKMAN, BRUCE R (contact); LINAS, BENJAMIN P; MCCOLLISTER, KATHRYN E New York, NY 2022
NOFO Title: HEAL Initiative: HEAL Data2Action Modeling and Economic Resource Center (U24 Clinical Trial Optional)
NOFO Number: RFA-DA-22-049
Summary:

This project creates the HEAL Data2Action Modeling and Economic Resource Center that will conduct research as well as support the HEAL Data2Action Innovation Projects with expertise and consultation about simulation modeling and economic evaluation methods. The consultation service will advise on how to select and use various research methods, including economic evaluation, simulation modeling, advanced statistical analysis, behavioral economics, treatment program organization research, and cost analysis. The center will use a dynamic simulation model of opioid use disorder to enhance data-driven decision making. The center will also provide online training resources, tools, and other resources to assess a variety of economic aspects related to the HEAL Data2Action Innovation Projects.

1R43NS119087-01A1
Evaluating the Blood-Brain Barrier Bioavailability and in vivo Efficacy Potential of a Novel TAK1 Inhibitor Targeting Chronic Pain Cross-Cutting Research Small Business Programs NINDS EYDIS BIO, INC. SCARNEO, SCOTT (contact); HAYSTEAD, TIMOTHY A Durham, NC 2021
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: NS-20-011
Summary:

Over-the-counter medicines such as non-steroidal anti-inflammatory drugs are ineffective for treating severe chronic pain and may have serious side effects from continued use, which limits treatment options. A kinase (an enzyme whose activity targets a specific molecule) called TAK1 is involved in the chronic pain process. This research will develop a molecule previously shown to be effective in a model of inflammatory pain that also inhibits TAK1. A main goal will be to determine if this inhibitor (takinib analog HS-276) can cross the blood-brain barrier and, if successful, pursue FDA  Investigative New Drug-enabling safety studies leading to a Phase I clinical trial and a potential new chronic pain treatment.

1UG3NS131785-01A1
Identifying multimodal biomarkers for autologous serum tears in the treatment of chronic postoperative ocular pain Clinical Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS CLEVELAND CLINIC LERNER COLLEGE OF MEDICINE - CWRU SAYEGH, RONY ROGER (contact); ROTROFF, DANIEL Cleveland, OH 2023
NOFO Title: HEAL Initiative: Discovery of Biomarkers and Biomarker Signatures to Facilitate Clinical Trials for Pain Therapeutics (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-22-050
Summary:

Cataract surgery is commonly performed in older adults; however, some patients subsequently experience chronic eye pain that is difficult to treat. One promising approach that is effective in some, but not all, patients uses the patient's own serum (a component of blood) as eye drops. This project seeks to identify markers that can help predict which patients will respond to serum treatment and monitor their progress. Using advanced technology and data analysis to evaluate patient histories, questionnaires, and different genetic and other molecular characteristics in the eyes and serum it aims to identify potential markers that can then be tested in a clinical study.

1R61NS129050-01
Integrating Nonpharmacologic Strategies for Pain with Inclusion, Respect, and Equity (INSPIRE): Tailored Digital Tools, Telehealth Coaching, and Primary Care Coordination Clinical Research in Pain Management Advancing Health Equity in Pain Management NINDS University of California, San Francisco SATTERFIELD, JASON M San Francisco, CA 2022
NOFO Title: HEAL Initiative: Advancing Health Equity in Pain Management (R61/R33 Clinical Trial Required)
NOFO Number: NS22-002
Summary:

There is a need to improve access to treatments and address the stigma, bias, and mistrust that harm and isolate people with chronic pain, especially those from ethnic and racial minority populations. The Integrating Nonpharmacologic Strategies for Pain with Inclusion, Respect, and Equity (INSPIRE) Chronic Pain (CP) intervention blends cognitive-behavioral therapy, physical therapy, mindfulness, and pain education, and is delivered by a trilingual mobile app and supported by a telehealth pain coach who coordinates with doctors. The coach will collect and summarize patient reports on pain, depression, anxiety, substance use, and social factors, and share them with healthcare providers. In this project, researchers will create the digital tool and coaching protocol, develop educational and implementation strategies for healthcare providers, and conduct a pilot test. They will then perform a randomized clinical trial to compare INSPIRE to current treatment, analyze its effects, and evaluate outcomes.

1DP2HD112176-01
Identifying Plasma Proteomic Profiles of Chronic Pain Development in Endometriosis From Adolescence to Adulthood Cross-Cutting Research Training the Next Generation of Researchers in HEAL NICHD BRIGHAM AND WOMEN'S HOSPITAL SASAMOTO, NAOKO Boston, MA 2023
NOFO Title: Emergency Awards: HEAL Initiative- New Innovator Award (DP2 Clinical Trial Not Allowed)
NOFO Number: RFA-TR-22-013
Summary:

Endometriosis is a gynecologic disorder characterized by severe pelvic pain, affecting 10% of reproductive aged women and adolescents worldwide. These individuals are at an increased risk for chronic opioid use, dependence, and overdose. Adolescents and young adults in particular are understudied in endometriosis research. This project will conduct a longitudinal study of adolescent endometriosis. The research will identify novel biomarkers and biological pathways involved in the transition of acute to chronic pain. The research aims to improve non-surgical endometriosis diagnosis, risk, and treatment. 

1R01DA057599-01
Mining Social Media Big Data for Toxicovigilance: Studying Substance Use via Natural Language Processing and Machine Learning Methods Cross-Cutting Research Leveraging Existing and Real-Time Opioid and Pain Management Data NIDA EMORY UNIVERSITY SARKER, ABEED H Atlanta, GA 2022
NOFO Title: HEAL Initiative: Data and Methods to Address Urgent Needs to Stem the Opioid Epidemic (R01- Clinical Trial Not Allowed)
NOFO Number: RFA-DA-22-044
Summary:

Monitoring and reporting substance use and substance use disorder is difficult to obtain in real-time using conventional methods. However, social media captures large amounts of data about substance use that are reported by diverse groups of people. Analysis of these data can provide population- or subpopulation-level insights, at low cost and in near real-time. This project aims to convert large amounts of social media data on substance use into actionable knowledge using advanced natural language processing and artificial intelligence approaches. The researchers will publicly release the aggregated statistics through a dedicated dashboard and provide user-friendly, open-source tools to determine trends and analyze disparities.

1R01AR077890-01
Validation of Novel Target for OA Treatment Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF ILLINOIS AT CHICAGO SAMPEN, HEE-JEONG IM; LASCELLES, DUNCAN Chicago, IL 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Osteoarthritis (OA) is the most common form of arthritis and a leading cause of pain and disability. Current challenges of managing OA are that there is no OA disease-modifying drug available, there are few effective treatment strategies, and there is an over-reliance on the use of opioids to manage OA-related joint pain. This project aims to validate vascular endothelial growth factor receptors 1 and 2 (VEGFR 1 receptor = Flt1) and (VEGFR 2 receptor = Flk1) as novel therapeutic targets for OA. This is based on a hypothesis that blocking these two specific receptors of VEGF will inhibit cartilage tissue degeneration and alleviate pain symptoms. This study will test the role of VEGFR-1 and -2 in multiple OA animal models using multiple available VEGF inhibitor molecules. The findings from these studies will develop a rationale for future clinical trials to target VEGFR-1 and -2 for OA patients and develop a novel non-addictive treatment for both joint pain and OA pathology.

3UM1DA049412-03S2
Research Supplement to Promote Diversity in Health-Related Research under MassHEAL - Reducing overdose deaths by 40% (2019-2023) Translation of Research to Practice for the Treatment of Opioid Addiction HEALing Communities Study NIDA BOSTON MEDICAL CENTER SAMET, JEFFREY H Boston, MA 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

Understanding municipal policies that influence implementation of effective evidence-based practices (EBPs) as well as effective strategies for working with municipal groups may inform local efforts to translate EBPs. Just as important, engaging with local stakeholders may help to facilitate the long-term sustainability of EBPs. This can only occur if diverse local actors in municipal governance are thinking about health and behavioral health in the context of municipal planning and policy. Building from research related opioid use disorder and the risk environment, built environment, and zoning, this research will work to support coalition-based approach currently implemented by the HEALing Communities Study. The research aims to develop an understanding of local policies that may affect implementation of community action plans in the HEALing Communities Study Massachusetts communities.

1UM1DA049412-01
HEALing Communities Study - Massachusetts Translation of Research to Practice for the Treatment of Opioid Addiction HEALing Communities Study NIDA BOSTON MEDICAL CENTER SAMET, JEFFREY H Boston, MA 2019
NOFO Title: HEALing Communities Study: Developing and Testing an Integrated Approach to Address the Opioid Crisis (Research Sites) (UM1 - Clinical Trial Required)
NOFO Number: RFA-DA-19-016
Summary:

Although there are effective prevention and treatment programs and services to address opioid misuse, opioid use disorder (OUD), and overdose, gaps remain between those needing and those receiving prevention and treatment, in part because of a need to better understand how to make these programs and services most effective at a local level. The National Institutes of Health (NIH) and the Substance Abuse and Mental Health Services Administration (SAMHSA) launched the HEALing Communities Study to generate evidence about how tools for preventing and treating opioid misuse and OUD are most effective at the local level. This multisite implementation research study will test the impact of an integrated set of evidence-based practices across health care, behavioral health, justice, and other community-based settings. The goal of the study is to reduce opioid-related overdose deaths by 40 percent over three years. Boston Medical Center is partnering with academic institutions in three other states to study the impact of these efforts in 67 highly affected communities. The study will also look at the effectiveness of coordinated systems of care designed to increase the number of individuals receiving medication to treat OUD, increase the distribution of naloxone, and reduce high-risk opioid prescribing.