Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Sort descending Year Awarded
1R44AR074820-01A1
A phenotypic screen for osteoarthritic pain therapeutics using all-optical electrophysiology Cross-Cutting Research Small Business Programs NIAMS QUELL TX, INC. LIU, PIN; MCMANUS, OWEN B Cambridge, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

 Quell Therapeutics uses the Optopatch platform for making all-optical electrophysiology measurements in neurons at a throughput sufficient for phenotypic screening. Using engineered optogenetic proteins, blue and red light can be used to stimulate and record neuronal activity, respectively. Custom microscopes enable electrophysiology recordings from 100’s of individual neurons in parallel with high sensitivity and temporal resolution, a capability currently not available with any other platform screening technology. Here, researchers combine the Optopatch platform with an in vitro model of chronic pain, where dorsal root ganglion (DRG) sensory neurons are bathed in a mixture of inflammatory mediators found in the joints of osteoarthritis patients. The neurons treated with the inflammatory mixture become hyperexcitable, mimicking the anticipated cellular pain response. Investigators calculate the functional phenotype of arthritis pain, which captures the difference in action potential shape and firing rate in response to diverse stimuli. The team will screen for small molecule compounds that reverse the pain phenotype while minimizing perturbation of neuronal behavior orthogonal to the pain phenotype, the in vitro “side effects.” The highest ranking compounds will be chemically optimized and their pharmacokinetic, drug metabolism, and in vivo efficacy will be characterized. The goal is to advance therapeutic discovery for pain, which may ultimately help relieve the US opioid crisis.

1UG3DA052166-01A1
CVL-354, a kappa opioid receptor antagonist for treatment of opioid use disorder, withdrawal and relapse Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA CEREVEL THERAPEUTICS, LLC IREDALE, PHILIP Cambridge, MA 2021
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: PAR-20-092
Summary:

Kappa opioid receptors (KOR) are expressed in brain areas that control reward, motivation, and anxiety. Upon opioid drug withdrawal and abstinence, dysregulated KOR signaling can result in aversive physical and affective states that are a major driver of relapse. Preclinical data have demonstrated that antagonism of KOR can reduce the physical symptoms of opioid withdrawal. Currently, the alpha 2-adrenergic agonist lofexidine is the only approved therapy for the mitigation of the physical symptoms of opioid withdrawal but it is only modestly effective and can have significant unwanted side effects. Cerevel Therapeutics has identified a novel selective KOR antagonist, CVL-354, with unique properties and good preclinical safety margins. This project will assess this drug in early human safety/pharmacokinetics and occupancy studies. Future studies will then be able to assess efficacy of this drug in acute opioid withdrawal.

1R41AR080620-01A1
Injectable Ice Slurry Cooling Technology for Treatment of Postoperative Pain Cross-Cutting Research Small Business Programs NIAMS BRIXTON BIOSCIENCES, INC. SIDOTI, CHARLES Cambridge, MA 2022
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R41/R42 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-009
Summary:

More than 700,000 total knee replacement surgeries are performed each year in the United States to relieve joint pain in patients with end-stage osteoarthritis or rheumatic arthritis. However, many patients still experience significant pain after this procedure, calling for additional long-lasting, drug-free pain management strategies. This project will develop and test a commercial prototype device for persistent knee pain after total knee replacement. The injection-based method freezes peripheral nerves to reduce pain sensation.

U01DA058548-01
Clinical Development of a Therapeutic Agent for Rapid Reversal of Methamphetamine Intoxication Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA CLEAR SCIENTIFIC, LLC LI, XINHUA Cambridge, MA 2023
NOFO Title: Grand Opportunity in Medications Development for Substance-Use Disorders (U01 - Clinical Trial Optional)
NOFO Number: PAR-19-327
Summary:

Currently there are no safe, rapidly acting treatments for methamphetamine use disorder and overdose. This project will evaluate a potential treatment: the small molecule CS-1103, which selectively attaches to methamphetamine in the blood. This molecule quickly removes methamphetamine blood and into urine for elimination from the body. The research will evaluate the safety and compatibility of CS-1103 with the human body, toward future clinical testing in humans. 

4R33AT010125-02
Effect of Mindfulness Training on Opioid Use and Anxiety During Primary Care Buprenorphine Treatment Translation of Research to Practice for the Treatment of Opioid Addiction Behavioral Research to Improve Medication-Based Treatment NCCIH CAMBRIDGE HEALTH ALLIANCE SCHUMAN OLIVIER, Z Cambridge, MA 2019
NOFO Title: Clinical Trials or Observational Studies of Behavioral Interventions for Prevention of Opioid Use Disorder or Adjunct to Medication Assisted Treatment-SAMHSA Opioid STR Grants (R21/R33)
NOFO Number: RFA-AT-18-002
1U01DA059472-01
Value of Sleep Metrics in Predicting Opioid Use Disorder Treatment Outcomes: Leadership and Data Coordinating Center New Strategies to Prevent and Treat Opioid Addiction Sleep Dysfunction as a Core Feature of Opioid Use Disorder and Recovery NIDA HARVARD PILGRIM HEALTH CARE, INC. WANG, RUI (contact); PURCELL, SHAUN M; REDLINE, SUSAN S Canton, MA 2023
NOFO Title: HEAL Initiative - Sleep Predictors of Opioid-Use Disorder Treatment Outcomes Program: Leadership and Data Co-ordinating Center (U01 Clinical Trial Optional)
NOFO Number: RFA-DA-23-060
Summary:

Chronic opioid use has well-known effects on sleep quality and circadian rhythms, but few predictive metrics core to mental and physical health and well-being are available to guide treatment with medications for opioid use disorder (OUD). This project will identify observable characteristics related to sleep and circadian rhythms that predict OUD treatment outcomes, toward refining treatment strategies and developing new ones. This data coordinating center will ensure that (1) high quality and standardized data are collected across all research sites, (2) all milestones and regulatory requirements are met, (3) study results are reported in a timely manner, and (4) that data and results are disseminated broadly.

1R43HL167661-01A1
Improving Analgesic Effectiveness and Safety with Proactive Precision Pain Management in Thoracic Surgical Patients with Lung Lesions Cross-Cutting Research Small Business Programs NHLBI OPALGENIX, INC. PLUMP, STEVEN R (contact); SADHASIVAM, SENTHILKUMAR Carmel, IN 2023
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 - Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

Thoracic (chest) surgeries often cause both short-term (acute) and long-term (chronic) pain and long-term opioid use. Unique genetic and clinical risk factors affect individual responses to surgical pain and pain medications. Current trial-and-error approaches to managing post-surgical pain and opioid prescribing are not ideal. This project will develop predictive software within a medical device that takes into account an individual’s genetic and clinical information to predict the likelihood of chronic pain following thoracic surgery. 

1R43DA058430-01
Predicting and Preventing Adverse Maternal and Child Outcomes of Opioid Use Disorder in Pregnancy Cross-Cutting Research Small Business Programs NIDA OPALGENIX, INC. PLUMP, STEVEN R (contact); SADHASIVAM, SENTHILKUMAR Carmel, IN 2023
NOFO Title: Developing Regulated Therapeutic and Diagnostic Solutions for Patients Affected by Opioid and/or Stimulants use Disorders (OUD/StUD) (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-23-021
Summary:

There is an urgent and unmet clinical need for a reliable technology to prevent maternal opioid use relapse and neonatal opioid withdrawal syndrome (NOWS) in their infants. This project aims to assess risk for these outcomes based on individual genetic and clinical factors. The research will expand previous studies of genetic and clinical predictors of opioid-related adverse outcomes. The goal is to develop a risk predictor algorithm and software tool for use in an electronic health record, toward personalized risk assessment and prevention of maternal relapse and NOWS. 

R44DA056280-01
Reducing Opioid Use and Adverse Effects through Proactive Precision Pain Management Following Spine Surgery Cross-Cutting Research Small Business Programs NIDA Opalgenix, Inc. PLUMP, STEVEN R (contact); SADHASIVAM, SENTHILKUMAR Carmel, IN 2022
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

Lumbar spinal surgery, an increasingly common surgery in adults with severe chronic back pain, is associated with acute post-surgical pain, costly postoperative opioid-related adverse effects, long hospital stays, high-risk for chronic post-surgical back pain, and persistent opioid use and dependence. Each individual responds differently to opioids based on their unique genetic and clinical factors, and the current trial-and-error approach to opioid use and prescribing promotes excessive opioid use, costly adverse outcomes, and poor surgical pain management. To address this issue, this research project will develop a preoperative diagnostic test that will use genetic and clinical information to proactively assess each person’s risk for opioid-related adverse events and chronic post-operative pain. The results will help clinicians provide personalized pain management to maximize pain relief while minimizing opioid-related safety risks, including opioid dependence.

1R43DA047781-01
A NOVEL FAST ACTING NALMEFENE FORMULATION FOR THE PREVENTION AND TREATMENT OF OPIOID OVERDOSE Cross-Cutting Research Small Business Programs NIDA AVIOR, INC. Vasisht, Niraj Cary, NC 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

Rescue of victims of opioid overdose is accomplished by treatment with antagonist drugs, such as naloxone, that can reverse the respiratory depression. However, naloxone has serious liver toxicity and a short half-life, and its complete antagonism results in a withdrawal effect. Nalmefene is an FDA-approved opioid derivative that is an antagonist of the MOR and a weak agonist of the k-opioid receptors (KOR). An immediate release intravenous injectable formulation was approved by the FDA in 1995 for opioid overdose; however, the requirement for intravenous administration has limited its clinical use. This project, in partnership with Avior, aims to develop a fast-onset, rapidly-dissolving, mucoadhesive thin film formulation that carries uniformly distributed nalmefene nanoparticles on the surface of the film. This film, produced using Avior’s proprietary Speedit™ transmucosal drug delivery technology, rapidly delivers nalmefene when the film is placed in contact with the lower lining of the inner lip. This project will generate non-clinical data to support critical human clinical trials to determine if a transmucosal film can be developed with a rapid onset of action that is required for rescue of opioid overdose patients or taken prophylactically to prevent respiratory depression, to assess whether the effective speed of delivery is sufficient to conduct a human clinical trial.

1R34DA050256-01
5/5 Establishing Innovative Approaches for the HEALthy Brain and Child Development Study Enhanced Outcomes for Infants and Children Exposed to Opioids HEALthy Brain and Child Development Study (HBCD) NIDA UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN MCELWAIN, NANCY L CHAMPAIGN, IL 2019
NOFO Title: HEAL Initiative: HEALthy Brain and Child Development Study (HEALthy BCD) (Collaborative R34 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-19-029
Summary:

A more than 5-fold increase in the incidence of neonatal abstinence syndrome has been reported since 2000. Preliminary studies show that prenatal opioid exposure is associated with increased risk of impaired neurodevelopment. Five institutions (Duke University, Arkansas Children’s Research Institute, Cincinnati Children’s Hospital, University of Illinois at Urbana–Champaign, and University of North Carolina at Chapel Hill) have formed a consortium to develop strategies for the Phase II HEALthy Brain and Child Development Study. Research teams will develop instruments and strategies (recruitment/retention protocols, assessment batteries, and novel tools); conduct pilot studies (fetal and postnatal imaging, advanced imaging harmonization and quality control, assessment administration, biosampling) to evaluate instruments; and analyze available data, including imaging, behavioral, cognitive, and maternal data from studies on early brain development, to guide the Phase II study design. Upon completion, the consortium aims to conduct the Phase II study.

1R01DA059422-01
Validation of a Virtual Still Face Procedure and Deep Learning Algorithms to Assess Infant Emotion Regulation and Infant-Caregiver Interactions in the Wild Enhanced Outcomes for Infants and Children Exposed to Opioids Virtual Assessments to Understand Developmental Trajectories of Substance Use Exposure NIDA UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN MCELWAIN, NANCY L (contact); HASEGAWA-JOHNSON, MARK ALLAN Champaign, IL 2023
NOFO Title: HEAL Initiative: Development and validation of virtual assessments to study children and caregivers in their natural environment (R01- Clinical Trial Not Allowed)
NOFO Number: RFA-DA-23-050
Summary:

Both an infant’s ability to regulate their emotions and infant-parent interactions are critical to healthy brain and behavioral development. Accurate assessment of these factors for research in laboratory settings is technically difficult and burdensome for participants. Next-generation methods that can be used at home, including wearable sensors and machine learning approaches, promise to make it easier to assess infants with prenatal substance exposures. This project will use remote sensing technologies and machine learning to characterize dynamic real-time infant emotion regulation and infant-caregiver interactions throughout the day and in the home.

1UG3DA048388-01
Cannabidiol Effects on Craving and Relapse Prevention in Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA INSYS DEVELOPMENT COMPANY ELKASHEF, AHMED Chandler, AZ 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

To tackle the national public health emergency posed by opioid misuse, addiction, and overdose deaths, the development of effective new medications and the FDA drug approval process must be accelerated. In response to this call, INSYS Development Company, Inc. (INSYS) has developed a cannabidiol (CBD) oral solution that shows promise as a novel medication for prevention of relapse that addresses one of the five opportunities specified in the HEAL Initiative to improve treatment options. The first phase of this project involves clinical trials of CBD on cue-induced cravings, modulation of withdrawal, alterations of negative affect states, relapse to opioid use, and treatment retention in patients with OUD receiving buprenorphine treatment in a residential drug treatment facility. The findings from this phase will inform further studies in an outpatient setting. If successful, this project could advance to the development of a new monotherapy for the treatment of OUD.

1OT2OD031940-01
A Strategy for HEAL Federated Data Ecosystem OD UNIV OF NORTH CAROLINA CHAPEL HILL AHALT, STANLEY CARLTON Chapel Hill, NC 2021
NOFO Number: OTA-21-002
Summary:

The HEAL Initiative is establishing a HEAL Data Ecosystem to help investigators manage and share HEAL-generated data. A key principle underlying the HEAL Data Ecosystem strategy is to make those data findable, accessible, interoperable, and reusable (FAIR). Renascence Computing Institute at the University of North Carolina Chapel Hill (RENCI) and RTI, International (RTI) [RENCI/RTI] are serving as the HEAL Data Stewardship Group to guide HEAL investigators as they prepare their data to connect to the HEAL Platform, a secure data access and computing environment that will leverage metadata query to provide access to data and digital assets stored in various disparate repositories. The HEAL Data Stewardship Group is engaging HEAL investigators to understand and enhance data management needs, provide tools, training, and best practices for making data FAIR, and understand and support valuable uses and reuses of HEAL data sharing via the Platform The HEAL Data Stewardship Group will collaborate closely with the HEAL Platform team at the University of Chicago to meet the needs and goals of the HEAL Data Ecosystem.

1R01NS118563-01A1
FKBP51 Antagonism to Prevent Chronic Pain: Optimizing Efficacy & Evaluating Safety and Mechanisms Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIV OF NORTH CAROLINA CHAPEL HILL LINNSTAEDT, SARAH ; MCLEAN, SAMUEL A Chapel Hill, NC 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

A substantial proportion of Americans seeking emergency care after traumatic stress exposure (TSE) are at a high risk of chronic pain and opioid use/misuse. Physiologic systems involved in the stress response could possibly play a critical role in the development of chronic pain after TSE. FK506-binding protein 51 (FKBP51) is an intracellular protein known to affect glucocorticoid negative feedback inhibition and component of stress response, provides an important non-opioid therapeutic target for such chronic pain. This project will test the hypothesis that functional inhibition of FKBP51 prevents or reduces enduring stress-induced hyperalgesia in a timing, dose, and duration-dependent manner in animal models of single prolonged stress alone and in combination with surgery. This project will also test if FKBP51 inhibition enhances recovery following TSE via reduction in pro-inflammatory responses in peripheral and central tissues. It will also test whether FKBP51 inhibition effects cardiotoxicity or addiction. Completion of these studies will increase understanding of FKBP51 as a novel therapeutic target for the prevention of chronic pain and opioid use/misuse resulting from TSE.

1U01DA055344-01
5/6 HBCD Prenatal Experiences and Longitudinal Development (PRELUDE) Consortium Enhanced Outcomes for Infants and Children Exposed to Opioids HEALthy Brain and Child Development Study (HBCD) NIDA UNIV OF NORTH CAROLINA CHAPEL HILL LIN, WEILI (contact); GREWEN, KAREN M Chapel Hill, NC 2021
NOFO Title: HEAL Initiative: HEALthy Brain and Child Development Study (Collaborative U01- Clinical Trial Not Allowed)
NOFO Number: RFA-DA-21-020
Summary:

The objective of the HBCD PRELUDE (Prenatal Experiences and Longitudinal Development) multi-site consortium is to characterize typical brain development from birth through childhood. All sites in this consortium will measure the influence of key biological and environmental factors on child social, cognitive, and emotional development. Researchers will assess how prenatal exposure to opioids and other substances, as well as other adverse environmental factors, affect brain development and other child health outcomes. The study site at the University of North Carolina, Chapel Hill will work with Wake Forest University to help recruit pregnant women with substance use disorders and enroll mother-infant dyads. This collaboration serves to expand participant diversity and extend recruitment to cover a larger region of North Carolina, a state hit hard by the opioid crisis.

1R34DA050262-01
1/5 Establishing Innovative Approaches for the HEALthy Brain and Child Development Study Enhanced Outcomes for Infants and Children Exposed to Opioids HEALthy Brain and Child Development Study (HBCD) NIDA UNIV OF NORTH CAROLINA CHAPEL HILL LIN, WEILI (contact); GILMORE, JOHN HORACE; GREWEN, KAREN M; JONES, HENDREE E Chapel Hill, NC 2019
NOFO Title: HEAL Initiative: HEALthy Brain and Child Development Study (HEALthy BCD) (Collaborative R34 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-19-029
Summary:

A more than 5-fold increase in the incidence of neonatal abstinence syndrome has been reported since 2000. Preliminary studies show that prenatal opioid exposure is associated with increased risk of impaired neurodevelopment. Five institutions (Duke University, Arkansas Children’s Research Institute, Cincinnati Children’s Hospital, University of Illinois at Urbana–Champaign, and University of North Carolina at Chapel Hill) have formed a consortium to develop strategies for the Phase II HEALthy Brain and Child Development Study. Research teams will develop instruments and strategies (recruitment/retention protocols, assessment batteries, and novel tools); conduct pilot studies (fetal and postnatal imaging, advanced imaging harmonization and quality control, assessment administration, biosampling) to evaluate instruments; and analyze available data, including imaging, behavioral, cognitive, and maternal data from studies on early brain development, to guide the Phase II study design. Upon completion, the consortium aims to conduct the Phase II study.

1R01NS118504-01
Targeting GPCRs in Amygdalar and Cortical Neural Ensembles to Treat Pain Aversion Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIV OF NORTH CAROLINA CHAPEL HILL SCHERRER, GREGORY Chapel Hill, NC 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

There is a distinct neural ensemble in the brain that encodes the negative affective valence of pain. This project will identify novel targets to treat pain by determining the molecular identity of these BLA nociceptive cells via in situ hybridization and single cell RNAsequencing (scRNA-seq). Resolving the molecular identity of these ACC nociceptive cells will also reveal new targets to treat pain affect. To achieve these results the project will catalog candidate Gi/o-GPCR targets in BLA and ACC, test their utility to treat pain, and verify these new targets have no effect in the brain?s reward and breathing circuitry. The experiments in this project will also evaluate each target for abuse potential and effects on breathing by using behavioral assays for reward processing and whole-body plethysmography, respectively. To evaluate whether our results in rodents are likely to translate clinically, there will be an analysis of expression patterns of these drug targets in human tissue using in situ hybridization.

3U24AR076730-01S1
Back Pain Consortium (BACPAC) Research Program Data Integration, Algorithm Development and Operations Management Center Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIV OF NORTH CAROLINA CHAPEL HILL LAVANGE, LISA Chapel Hill, NC 2021
NOFO Title: HEAL Initiative: Notice of Special Interest (NOSI) regarding the Availability of Administrative Supplements to Support Strategies to Increase Participant Diversity, Inclusion and Engagement in Clinical Studies
NOFO Number: NOT-NS-21-025
Summary:

The NIH Back Pain Consortium (BACPAC) Research Program brings together leading centers with expertise in studying and treating chronic low back pain to advance understanding of the mechanisms that underlie the condition and to identify novel treatment strategies. BACPAC is undertaking a multisite precision medicine clinical trial taking into account patient-specific information to understand which patients with chronic low back pain respond best to various nonopioid, evidence-based treatments. The trial seeks to enroll a racially, ethnically, and socioeconomically diverse patient population to ensure that the results are applicable to all Americans with chronic low back pain. This project aims to develop comprehensive recruitment and retention plans for study sites that can recruit from historically underrepresented populations in clinical research (e.g., Black and Hispanic populations) and to provide dedicated financial resources to engage patients from these populations using tailored, culturally appropriate strategies.

1U24AR076730-01
Back Pain Consortium (BACPAC) Research Program Data Integration, Algorithm Development and Operations Management Center Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIV OF NORTH CAROLINA CHAPEL HILL ANSTROM, KEVIN J (contact); IVANOVA, ANASTASIA ; LAVANGE, LISA Chapel Hill, NC 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Data Integration, Algorithm Development and Operations Management Center (U24 Clinical Trial Not Allowed)
NOFO Number: RFA-AR-19-027
Summary:

The BACPAC Research Program’s Data Integration, Algorithm Development, and Operations Management Center (DAC) will bring cohesion to research performed by the participating Mechanistic Research Centers, Technology Research Sites, and Phase 2 Clinical Trials Centers. DAC Investigators will share their vision and provide scientific leadership and organizational support to the BACPAC Consortium. The research plan consists of supporting design and conduct of clinical trials with precision interventions that focus on identifying the best treatments for individual patients. The DAC will enhance collaboration and research progress with experienced leadership, innovative design and analysis methodologies, comprehensive research operations support, a state-of-the-art data management and integration system, and superior administrative support. This integrated structure will set the stage for technology assessments, solicitation of patient input and utilities, and the evaluation of high-impact interventions through the innovative design and sound execution of clinical trials, leading to effective personalized treatment approaches for patients with chronic lower back pain.

3R01NS118563-01A1S1
Diversity Supplement to FKBP51 Antagonism to Prevent Chronic Pain: Optimizing Efficacy & Evaluating Safety and Mechanisms Cross-Cutting Research Training the Next Generation of Researchers in HEAL NINDS UNIV OF NORTH CAROLINA CHAPEL HILL LINNSTAEDT, SARAH; MCLEAN, SAMUEL A Chapel Hill, NC 2022
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107; PA-21-071
Summary:

Current evidence indicates that chronic pain after a traumatic injury is influenced by the body’s response to stress. This project will conduct a comprehensive analysis of gene expression after traumatic stress exposure in a range of animal models in various body regions including the brain (amygdala, hippocampus, hypothalamus) and spinal cord, as well as nerves and immune cells throughout the body. These studies will be conducted in animals with no stress exposure as well as in animals treated with a molecule (FKBP51) known to block the stress response. This research will enhance understanding of how FKBP51 and post-injury stress affect pain processes.

1R34DA046730-01
Web-Based Treatment for Perinatal Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA MEDICAL UNIVERSITY OF SOUTH CAROLINA Guille, Constance Charleston, SC 2019
NOFO Title: Behavioral & Integrative Treatment Development Program (R34)
NOFO Number: PA-16-073
Summary:

The increased risk of maternal, obstetric, and newborn morbidity and mortality associated with perinatal prescription opioid (PO) misuse and opioid use disorder (OUD) is well established. Despite clear advances in maternal, fetal, and newborn health with treatment of perinatal opioid misuse and OUD, much work remains. Preliminary data has demonstrated significant reductions in opioid misuse as a result of our Cognitive Behavioral Therapy (CBT) program for pain combined with shared decision making for medication management for pregnant women misusing POs or with OUD (including heroin). However, access to the program is still limited and several obstacles to its expansion remain. This proposal will fill this critical gap by converting their CBT intervention from in-person sessions to a web-based interface. The proposed research will result in a critical advance in the management of opioid use and abuse during pregnancy and prevent both the acute and long-term risks associated with pre- and perinatal PO misuse and OUD, including overdose and death.

1U24NS113846-01
Medical University of South Carolina Specialized Clinical Center of EPPIC-Net Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS MEDICAL UNIVERSITY OF SOUTH CAROLINA BORCKARDT, JEFFREY J (contact); BRADY, KATHLEEN T Charleston, SC 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trials Not Allowed)
NOFO Number: RFA-NS-19-025
Summary:

The Medical University of South Carolina (MUSC) Specialized Clinical Center (Hub) of the Early Phase Pain Investigation Clinical Network (EPPIC-Net) will provide a robust and readily accessible infrastructure for rapid implementation and performance of high-quality comprehensive studies of novel treatments for patients with a wide variety of pain conditions. The MUSC-Hub will harness multidisciplinary clinical, research, statistical, and data management expertise to provide the scientific leadership and infrastructure required to design and conduct multisite Phase II clinical trials, biomarker validation studies, and deep phenotyping of patient populations as part of the EPPIC-Net with the overall goal of accelerating the development of new therapies for patients with acute and/or chronic pain.

1R01DA058620-01
Sequential Trial of Adding Buprenorphine, Cognitive Behavioral Treatment, and Transcranial Magnetic Stimulation to Improve Outcomes of Long-Term Opioid Therapy for Chronic Pain (ACTION) Clinical Research in Pain Management Reducing Opioid-Related Harms to Treat Chronic Pain (IMPOWR and MIRHIQL) NIDA MEDICAL UNIVERSITY OF SOUTH CAROLINA BARTH, KELLY S (contact); BORCKARDT, JEFFREY J Charleston, SC 2023
NOFO Title: HEAL Initiative: Multilevel Interventions to Reduce Harm and Improve Quality of Life for Patients on Long Term Opioid Therapy (MIRHIQL) (R01 Clinical Trial Required)
NOFO Number: RFA-DA-23-041
Summary:

There is little evidence available to guide clinical care for patients on long-term opioid therapy for whom risks exceed benefits. Given valid fears about both pain and withdrawal during decreased dosing (tapering), these individuals face challenges, including concerns about being abandoned by providers and uncertainty about the need to discontinue opioids. As such, these patients are hesitant to enroll voluntarily in opioid discontinuation research, further deepening the clinical evidence gap. This project will evaluate three effective and scalable interventions for individuals on long-term opioid therapy: (1) low-dose transdermal buprenorphine (without) of opioid withdrawal, (2) a brief cognitive behavioral intervention for pain, and (3) noninvasive brain stimulation.

3UG1DA013727-20S1
CTN Workforce Development Program Translation of Research to Practice for the Treatment of Opioid Addiction Enhancing the National Drug Abuse Treatment Clinical Trials Network to Address Opioids NIDA Medical University of South Carolina Brady, Kathleen Charleston, SC 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

The opioid epidemic has increased the demand for a research workforce with the necessary expertise and skills to conceptualize and carry out studies to expand and improve treatment options for opioid use disorders (OUDs). In particular, as the NIDA-funded Clinical Trials Network (CTN) expands the number of nodes and takes on additional studies as part of the HEAL Initiative, the need for an increasing number of staff who are familiar with the CTN research environment is amplified, and opportunities to provide a platform for training new investigators interested in the OUD area are increased. The CTN Research workforce development and dissemination program will provide multi-modal training, including didactic, experiential, and mentoring, to prepare research staff (regulatory personnel, study coordinators, project managers), post-doctoral fellows and faculty from a variety of disciplines (MD, PhD, PharmD, Nurse Practitioners, etc.) to participate in HEAL Initiative studies being conducted within the CTN.