Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Sort ascending Year Awarded
1R44CA271904-01A1
Novel Biologic to Treat Chemotherapy-Induced Neuropathic Pain Cross-Cutting Research Small Business Programs NCI RAFT PHARMACEUTICALS, LLC KOGAN, YAKOV San Diego, CA 2022
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

Some chemotherapy treatments damage nerves outside the brain and spinal cord. This condition, chemotherapy-induced peripheral neuropathy, involves tingling, burning, weakness, or numbness in hands and/or feet and affects nearly 70% of cancer patients receiving chemotherapy. Common pain medications, including opioids, can relieve pain for short intervals but are not suitable for long-term therapy. This project will conduct studies to investigate the safety and tolerability of a novel strategy to treat neuropathic pain: modifying the activity of the dorsal root ganglia, which are nerve cells in the spinal cord that communicate pain signals to and from the brain.

1R43TR004743-01
The Pain in a Dish Assay (PIDA): A High Throughput System Featuring Human Stem Cell-Derived Nociceptors and Dorsal Horn Neurons to Test Compounds for Analgesic Activity Cross-Cutting Research Small Business Programs NCATS VALA SCIENCES, INC. MCDONOUGH, PATRICK M San Diego, CA 2023
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-23-006
Summary:

This project will develop PIDA, which will allow researchers to measure the activity of pain-sensitive human neurons in response to pain stimuli and potential pain treatments. The tool will use automated digital microscopes in the absence or presence of a potential pain medication. Since this tool contains human neurons, it may be more effective at predicting the efficacy of potential pain drugs in human patients than the animal models that are currently used.

1U24NS115714-01
California Clinical and Translational Pain Research Consortium Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS UNIVERSITY OF CALIFORNIA, SAN DIEGO WALLACE, MARK S San Diego, CA 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-036
Summary:

The California Clinical and Translational Pain Research Consortium (CCTPRC) consists of four University of California academic medical centers with considerable experience in pain management clinical trials, phenotyping, and biomarker validation. The network will leverage solid existing Clinical and Translational Science Award (CTSA) resources to make clinical trial execution efficient and rapid. The hub will be located at the University of California, San Diego, with spokes located on the other three campuses to provide maximum flexibility, ready to accommodate studies in a variety of pain conditions and provide successful recruitment and high-quality data collection.

9SB1NS137964-04
Advancing precision pain medicines to the clinic Cross-Cutting Research Small Business Programs NINDS NAVEGA THERAPEUTICS, INC. MORENO, ANA MARIA (contact); ALEMAN GUILLEN, FERNANDO San Diego, CA 2023
NOFO Title: HEAL Commercialization Readiness Pilot (CRP) Program: Embedded Entrepreneurs for Small Businesses in Pain Management (SB1 Clinical Trial Not Allowed)
NOFO Number: PAR-23-069
1R44DA058467-01
Development of a Novel Calcium Channel Therapeutic for Opioid Use Disorder Cross-Cutting Research Small Business Programs NIDA VIVREON BIOSCIENCES, LLC GREENBERG, MILTON L San Diego, CA 2023
NOFO Title: Developing Regulated Therapeutic and Diagnostic Solutions for Patients Affected by Opioid and/or Stimulants use Disorders (OUD/StUD) (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-23-021
Summary:

Hospitalized patients often receive opioids for pain and sleep management, which can contribute to opioid dependence and continued use after leaving the hospital. Even when hospital stays are extended to wean people from opioids, these patients remain at increased risk for opioid use disorder and withdrawal.  This project will develop a novel small molecule medication that blocks nerve inflammation to prevent opioid dependence in hospitalized patients receiving opioids. 

1R41NS113717-01
Pre-clinical evaluation of DT-001, a small molecule antagonist of MD2-TLR4 for utility in the treatment of pain Cross-Cutting Research Small Business Programs NINDS DOULEUR THERAPEUTICS, INC. YAKSH, TONY L; CHAKRAVARTHY, KRISHNAN San Diego, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Technology Transfer Grant Applications (Parent STTR [R41/R42] Clinical Trial Not Allowed)
NOFO Number: PA-18-575
Summary:

 Chronic persistent post-operative pain (CPOP) is a devastating outcome from any type of surgical procedure. Its incidence is anywhere between 20-85% depending on the type of surgery, with thoracotomies showing one of the highest annual incidences of 30-60%. Given that millions of patients (approximately 23 million yearly based on incidence) are affected by CPOP, the results are increased direct medical costs, increased indirect medical costs due to decreased productivity, and associated negative effects on an individual’s physical functioning, psychological state, and quality of life. Given these extensive public health and economic consequences there is a resurgence of research in the area of preventative analgesia.  The goal of this project is to evaluate a novel small molecule antagonist of MD2-TLR4, DT-001 in preclinical models of surgical pain representative of persistent post-operative pain. In collaboration with University of California, San Diego, DT-001 will be evaluated for its ability to block the development of neuropathic pain states. These studies will evaluate dose escalating efficacy of DT001 in rats in formalin and spinal nerve injury (SNI) models using both intrathecal and intravenous routes of administration. Tissues will be preserved to assess functional effects on relevant pain centers for analysis by Raft. With demonstration of efficacy, these studies will determine the optimal dose and route of administration of DT001 and guide a development path to IND and eventually clinical trials.

1R43NS112088-01A1
Repression of Sodium Channels via a Gene Therapy for Treatment of Chronic Neuropathic Pain Cross-Cutting Research Small Business Programs NINDS NAVEGA THERAPEUTICS, INC. MORENO, ANA MARIA; ALEMAN GUILLEN, FERNANDO San Diego, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

Voltage-gated sodium channels are responsible for the transmission of pain signals. Nine genes have been identified, each having unique properties and tissue distribution patterns. Genetic studies have correlated a hereditary loss-of-function mutation in one human Na+ channel isoform – ?Na?V?1.7 – with a rare genetic disorder known as Congenital Insensitivity to Pain (CIP). Individuals with CIP are not able to feel pain without any significant secondary alteration. Thus, selective inhibition of ?Na?V?1.7 in normal humans could recapitulate the phenotype of CIP. This research team developed a non-permanent gene therapy to target pain that is non-addictive (because it targets a non-opioid pathway), highly specific (only targeting the gene of interest), and long-term lasting (around 3 weeks in preliminary assays in mice). During this Phase I , the team will 1) test additional pain targets ?in vitro?, and 2) evaluate the new targets ?in vivo ?in mice models of inflammatory and neuropathic pain. 

1UG3NS134781-01
A novel glycan-based selectin and complement inhibitor for at-home disease-modifying rescue of pain crisis in sickle cell disease Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS IHP THERAPEUTICS, INC. PADERI, JOHN San Carlos, CA 2023
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
1R24DA057659-01
Peer Recovery Innovation Network (PRIN) Translation of Research to Practice for the Treatment of Opioid Addiction Recovery Research Networks NIDA University of Texas Health Science Center at San Antonio POTTER, JENNIFER SHARPE (contact); ASHFORD, ROBERT San Antonio, TX 2022
NOFO Title: HEAL Initiative: Research Networks for the Study of Recovery Support Services for Persons Treated with Medications for Opioid Use Disorder (R24 Clinical Trial Optional)
NOFO Number: RFA-DA-22-043
Summary:

About 23 million Americans identify as being in recovery from opioid and other substance use disorders. While recovery support services are an established best practice to support people in recovery, there is little scientific evidence to support the efficacy and implementation of peer recovery support services, training approaches, and delivery models. Recovery support services are particularly lacking in the U.S. Southwest and for individuals who choose to take medications for opioid use disorder as part of their recovery pathway. This project will establish the Peer Recovery Innovation Network to address research gaps. This research will incorporate input from people with lived experience in all stages of the recovery process – toward helping to set the research agenda and conducting the research, as well as enhancing infrastructure for peer recovery support services research.

5R01DA038645-05
KOR AGONIST FUNCTIONAL SELECTIVITY IN PERIPHERAL SENSORY NEURONS Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDA UNIVERSITY OF TEXAS HLTH SCIENCE CENTER CLARKE, WILLIAM P; BERG, KELLY ANN SAN ANTONIO, TX 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Functional selectivity is a term used to describe the ability of drugs to differentially regulate the activity of multiple signaling cascades coupled to the receptor. The underlying mechanism for functional selectivity is based upon the formation of ligand-specific receptor conformations that are dependent upon ligand structure. Functional selectivity has the potential to revitalize the drug discovery/development process. Ligands with high efficacy for specific signaling pathways (or specific patterns of signaling) that mediate beneficial effects, and with minimal activity at pathways that lead to adverse effects, are expected to have improved therapeutic efficacy. We propose to demonstrate that ligand efficacy for specific signaling pathways associated with antinociception can be finely tuned by structural modifications to a ligand. We propose to use U50,488 and Salvinorin-A (Sal-A) as scaffolds to develop functionally selective analogs that maintain high efficacy for signaling pathways that lead to antinociception and minimize activity toward anti-antinociceptive signaling pathways.

1R01DA048417-01
A novel opioid receptor antagonist for treating abuse and overdose Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA UNIVERSITY OF TEXAS HLTH SCIENCE CENTER France, Charles P San Antonio, TX 2019
NOFO Title: NIH Research Project Grant (Parent R01 Clinical Trial Not Allowed)
NOFO Number: PA-18-484
Summary:

Deaths from opioid overdose continue to rise; from 2015 to 2016, there was a 28 percent increase in the number of fatal overdoses. Currently available pharmacotherapies include MOR agonists (e.g., buprenorphine) and antagonists (e.g., naloxone), all of which suffer from specific and clear limitations. To address the main deficits in these treatments, the researchers will develop and optimize medications with longer duration of action that prevent and reverse the effects of opioids in a manner that is not surmounted by increasing doses of agonist. Their pilot studies in monkeys show that the pseudo irreversible MOR selective antagonist methocinnamox (MCAM) decreases heroin but not cocaine self-administration, decreases choice for remifentanil in a food/drug choice procedure, and reverses—as well as protects against—respiratory depression by heroin, with a single injection being effective for a week or longer. Bringing a medication like this to marketable fruition could significantly improve the treatment of OUD and save lives by providing insurmountable extended protection after rescue from overdose, including from ultra-potent fentanyl analogs.

3R01DE029187-01S2
LIGHT and Lymphotoxin targeting for the treatment of chronic orofacial pain conditions Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TEXAS HLTH SCIENCE CENTER AKOPIAN, ARMEN N; RUPAREL, SHIVANI B; TUMANOV, ALEXEI V San Antonio, TX 2020
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-18-906 Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-023
Summary:

Chronic orofacial pain during Temporomandibular Disorders (TMD) and oral cancer is a significant health problem with scarce non-opioid treatment options. This study aims to validate critical regulators of the balance between protective immunity and immunopathology during chronic inflammatory diseases?tumor necrosis factor alpha superfamily members, LIGHT (TNFSF14) and lymphotoxin-beta (LT?) and their receptors, LT?R and Herpes Virus Entry Mediator (HVEM)?as novel therapeutic targets. The study also seeks to determine whether inhibition of LIGHT and LT? signaling prevents the development and inhibits maintenance of chronic TMD and oral cancer pain via peripheral mechanisms involving plasticity of immune, muscle and tumor cells as well as sensory neurons. The study will define the contribution of LIGHT and LT? signaling to TMD-induced excitability of trigeminal sensory neurons innervating the masseter muscle and joint. New validated therapeutic targets for prevention and treatment of orofacial pain that can be peripherally targeted would reduce side effects of current pain medicates related to drug dependence or tolerance.

1UG3DA048387-01A1
Methocinnamox (MCAM): A novel ?-opioid receptor antagonist for opioid use disorders Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA University of Texas Health Science Center San Antonio Woods, James San Antonio, TX 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

MCAM is a novel opioid antagonist that can be used for opioid overdose reversal and has advantages over naloxone, including a pseudo-irreversible interaction with the ?-opioid receptor and a longer duration of action. Studies in animal models demonstrate MCAM’s long duration of action against the reinforcing and respiratory-depressant effects of remifentanil and heroin, indicating that could be a better treatment option for opioid use disorder. This project studies the pharmacodynamics of MCAM through animal toxicity and safety studies to establish the necessary and sufficient conditions from which to establish MCAM’s safety and antagonist activity in animals and humans. MCAM may be able to prevent all actions of any ?-receptor opioid drug in humans for a longer period of time than any other antagonist given acutely.

1UC2AR082195-01
Comprehensive Functional Phenotyping of Trigeminal Neurons Innervating Temporomandibular Joint (TMJ) Tissues in Male, Female and Aged Mice, Primates, and Humans With and Without TMJ Disorders (TMJD) Preclinical and Translational Research in Pain Management Restoring Joint Health and Function to Reduce Pain (RE-JOIN) NIAMS UNIVERSITY OF TEXAS HLTH SCIENCE CENTER AKOPIAN, ARMEN N; BOADA, MARIO DANILO; ERNBERG, MALIN; MACPHERSON, LINDSEY J San Antonio, TX 2022
NOFO Title: HEAL Initiative: Restoring Joint Health and Function to Reduce Pain Consortium (RE-JOIN) (UC2 Clinical Trial Not Allowed)
NOFO Number: RFA-AR-22-009
Summary:

Scientists do not know the details of how the nervous system interacts with the temporomandibular joint (TMJ) that connects the lower jaw with the skull. This project aims to comprehensively explain the functions, types, neuroanatomical distributions, and adaptability (plasticity) of specific nerve cells in the brain (trigeminal neurons) that connect with the TMJ. The research will analyze nerve-TMJ connections associated with chewing muscles and other structures that form the TMJ such as cartilage and ligaments. The project will analyze samples from both sexes of aged mice, primates, and humans with and without painful TMJ disorders. This research aims to uncover potential treatment and prevention targets for managing TMJ pain.

5R01NS094461-04
Clustering of individual and diverse ion channels together into complexes, and their functional coupling, mediated by A-kinase anchoring protein 79/150 in neurons Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TEXAS HLTH SCI CTR SAN ANTONIO SHAPIRO, MARK S San Antonio, TX 2018
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Multi-protein complexes have emerged as a mechanism for spatiotemporal specificity and efficiency in the function and regulation of cellular signals. Many ion channels are clustered either with the receptors that modulate them or with other ion channels whose activities are linked. Often, the clustering is mediated by scaffolding proteins, such as AKAP79/150. We will probe complexes containing AKAP79/150 and three different channels critical to nervous function: KCNQ/Kv7, TRPV1, and CaV1.2. We will use"super-resolution" STORM imaging of primary sensory neurons and heterologously expressed tissue-culture cells, in which individual complexes can be visualized at 10–20 nm resolution with visible light. We hypothesize that AKAP79/150 brings several of these channels together to enable functional coupling, which we will examine by patch-clamp electrophysiology of the neurons. Since all three of these channels bind to AKAP79/150, we hypothesize that they co-assemble into complexes in neurons and that they are dynamically regulated by other cellular signals.

3R01NS094461-04S2
TARGETING SPECIFIC INTERACTIONS BETWEEN A-KINASE ANCHORING PROTEINS (AKAPS) AND ION CHANNELS WITH CELL-PERMEANT PEPTIDES AS A NOVEL MODE OF THERAPEUTIC INTERVENTION AGAINST PAIN DISORDERS Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TEXAS HLTH SCIENCE CENTER SHAPIRO, MARK S SAN ANTONIO, TX 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Multi-protein complexes have emerged as a mechanism for spatiotemporal specificity and efficiency in the function and regulation of myriad cellular signals. In particular, many ion channels are clustered either with the receptors that modulate them, or with other ion channels whose activities are linked. Often the clustering is mediated by scaffolding proteins, such as the AKAP79/150 protein that is a focus of this research. This research will focus on three different channels critical to nervous function. One is the"M-type" (KCNQ, Kv7) K+ channel that plays fundamental roles in the regulation of excitability in nerve and muscle. It is thought to associate with Gq/11- coupled receptors, protein kinases, calcineurin (CaN), calmodulin (CaM) and phosphoinositides via AKAP79/150. Another channel of focus is TRPV1, a nociceptive channel in sensory neurons that is also thought to be regulated by signaling proteins recruited by AKAP79/150. The third are L-type Ca2+ (CaV1.2) channels that are critical to synaptic plasticity, gene regulation and neuronal firing. This research will probe complexes containing AKAP79/150 and these three channels using"super-resolution" STORM imaging of primary sensory neurons and heterologously-expressed tissue-culture cells, in which individual complexes can be visualized at 10-20 nm resolution with visible light, breaking the diffraction barrier of physics. The researchers hypothesize that AKAP79/150 brings several of these channels together to enable functional coupling, which the researchers will examine by patch-clamp electrophysiology of the neurons. Förster resonance energy transfer (FRET) will also be performed under total internal reflection fluorescence (TIRF) or confocal microscopy, further testing for complexes containing KCNQ, TRPV1 and CaV1.2 channels. Since all three of these channels bind to AKAP79/150, the researchers hypothesize that they co-assemble into complexes in neurons, together with certain G protein-coupled receptors. Furthermore, the researchers hypothesize these complexes to not be static, but rather to be dynamically regulated by other cellular signals, which the researchers will examine using rapid activation of kinases or phosphatases. Several types of mouse colonies of genetically altered AKAP150 knock-out or knock-in mice will be utilized.

1R01DE029187-01
LIGHT and Lymphotoxin targeting for the treatment of chronic orofacial pain conditions Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDCR UNIVERSITY OF TEXAS HLTH SCIENCE CENTER AKOPIAN, ARMEN N San Antonio, TX 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Mismanagement of orofacial chronic pain, such as temporomandibular joint and muscle disorders (TMJD) and oral cancer, substantially contributes to opioid overuse; overdose-related deaths; and cardiovascular, renal, and neurological complications at epidemic proportions. The current paradigm implies that orofacial conditions could trigger maladaptation of the immune system and plasticity supporting persistent inflammation, which influences the development and maintenance of orofacial chronic pain. LIGHT (TNFSF14) and Lymphotoxin-beta (LT?), members of the tumor necrosis factor superfamily, provide a balance between protective immunity and immunopathology during chronic inflammatory diseases. This project will test the hypothesis that targeting LIGHT and LT? signaling could prevent the development and inhibit the maintenance of chronic pain produced by TMJD and oral cancer, via peripheral mechanisms involving plasticity of immune, stromal, and tumor cells, as well as sensory neurons. The proposed research is significant as it advances our understanding of mechanisms regulating the development and maintenance of orofacial pain and offers new therapeutic targets and an immunotherapeutic approach for preventing and blocking chronic pain during TMJD and oral cancer.

1R01DA046532-01A1
Evaluation of drug mixtures for treating pain: behavioral and pharmacological interactions between opioids and serotonin agonists Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA UNIVERSITY OF TEXAS HLTH SCIENCE CENTER Maguire, David Richard San Antonio, TX 2019
NOFO Title: NIH Research Project Grant (Parent R01 Clinical Trial Not Allowed)
NOFO Number: PA-18-484
Summary:

Opioids remain the gold standard for treating moderate to severe pain, but their use is limited by numerous adverse effects, including tolerance, dependence, abuse, and overdose. Adverse effects could be avoided by combining an opioid with another drug, such that smaller doses of the opioid (in combination with another drug) produce the desired therapeutic effect. Direct-acting serotonin type 2 (5-HT2) receptor agonists interact in a synergistic manner with the opioid morphine to produce antinociceptive effects, suggesting a 5-HT2 receptor agonist could be combined with small amounts of an opioid to treat pain, thereby lowering the risk associated with larger doses. Unfortunately, very little is known about interactions between 5-HT2 receptor agonists and other opioids. The proposed studies will evaluate the therapeutic potential of mixtures of opioids and 5-HT2 receptor agonists using highly translatable and well-established procedures to characterize the antinociceptive, respiratory-depressant (overdose), positive-reinforcing (leading to misuse), and discriminative-stimulus (subjective) effects of drug mixtures as well as the impact of chronic treatment on the development of tolerance to and physical dependence on opioids. If successful, these studies will provide proof-of-concept for this innovative approach to pain treatment and evaluate the utility of targeting 5-HT receptors for analgesic drug development.

1UG1DA049444-01
Greater Intermountain Node Translation of Research to Practice for the Treatment of Opioid Addiction Enhancing the National Drug Abuse Treatment Clinical Trials Network to Address Opioids NIDA UNIVERSITY OF UTAH GORDON, ADAM JOSEPH; COCHRAN, GERALD T; ZUBIETA, JON-KAR Salt Lake City, UT 2019
NOFO Title: The National Drug Abuse Treatment Clinical Trials Network (UG1 Clinical Trial Optional)
NOFO Number: RFA-DA-19-008
Summary:

There is a critical need to expand research infrastructure to develop, test, and implement new clinical interventions and evidence-based opioid use disorder (OUD) treatment into diverse clinical settings. The University of Utah’s Greater Intermountain Node (GIN) will expand the existing NIDA Clinical Trial Network’s (CTN) infrastructure by developing and testing innovative OUD interventions, expanding the settings for CTN research, and bringing new research acumen to the CTN. GIN brings expertise in three spheres of OUD research: (1) non-addiction health care settings, (2) large health systems of care, and (3) implementation science. GIN’s specific aims include (1) enhance CTN’s ability to conduct research in primary care and non-addiction care settings; (2) enhance CTN’s ability to conduct research within integrated systems of care with “big data” resources; and (3) enhance CTN’s implementation of science research to integrate and disseminate evidence-based addiction care into diverse non-addiction and health system targets.

1U44NS115632-01
Implantable Peripheral Nerve Stimulator for Treatment of Phantom Limb Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS RIPPLE, LLC MCDONNALL, DANIEL Salt Lake City, UT 2019
NOFO Title: HEAL Initiative: Translational Devices to Treat Pain (U44 Clinical Trial Optional)
NOFO Number: RFA-NS-19-017
Summary:

The research team will develop an implantable neural stimulation system to provide natural and intuitive sensation for prosthesis users. The nerve cuff technology meets the requirements for a sensory feedback system capable of providing consistent and controlled electrical stimulation. Coupled with a multichannel implantable stimulator, this electrode array will offer substantial improvement over existing options to treat phantom limb pain (PLP). In Phase I, researchers will finalize array architectures for evaluation in cadaver studies, complete integration of electrodes with our stimulator, conduct benchtop verification of electrical and mechanical performance, send implants for third-party evaluation of system biocompatibility, and complete a Good Laboratory Practice animal study to validate safety and efficacy. In Phase II, researchers will conduct a 5-subject clinical study to test the implantable stimulation system. Each unilateral prosthesis user will be implanted for one year as researchers evaluate the safety and efficacy of this implantable device to treat PLP.

3U19TW008163-10S1
DIVERSE DRUG LEAD COMPOUNDS FROM BACTERIAL SYMBIONTS IN PHILIPPINE MOLLUSKS Preclinical and Translational Research in Pain Management FIC UNIVERSITY OF UTAH HAYGOOD, MARGO GENEVIEVE Salt Lake City, UT 2018
NOFO Title: Limited Competition: International Cooperative Biodiversity Groups (U19)
NOFO Number: RFA-TW-13-001
Summary:

The Philippine Mollusk Symbiont International Cooperative Biodiversity Group harnesses the vast biodiversity of the Philippines to discover new drugs to treat bacterial infections, parasitic infections, pain, and other neurological conditions and cancer, all of which are serious health problems in both the Philippines and the United States. The Republic of the Philippines represents a unique nexus of exceptional biodiversity, dense human population with pressing societal needs, consequent urgent need for conservation, and government commitment to education and technology to harness national human and natural resources for a sustainable future. Mollusks are one of the most diverse groups of marine animals, and their associated bacteria represent an unexplored trove of chemical diversity. Researchers will use an increasing understanding of the interactions between mollusk symbionts and their hosts to discover the most novel and useful molecules. The project will document and describe Philippine mollusk biodiversity and support training and infrastructure that provide the foundation for conservation of Philippine biodiversity.

1UH2AR076736-01
Focused Ultrasound Neuromodulation of Dorsal Root Ganglion for Noninvasive Mitigation of Low Back Pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF UTAH RIEKE, VIOLA (contact); SHAH, LUBDHA Salt Lake City, UT 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

This project's goal is to develop a completely noninvasive, precise, and durable treatment option for low back pain (LBP). Focused ultrasound (FUS) is a lower-risk, completely noninvasive modality that enables the delivery of spatially confined acoustic energy to a small tissue region (dorsal root ganglion [DRG]) under magnetic resonance (MR) imaging guidance to treat axial low back pain by neuromodulation. The central goal of this study is to demonstrate neuromodulation of the DRG with FUS to decrease nerve conduction; this treatment can be used to attenuate pain sensation. This exploratory study will demonstrate FUS neuromodulation of the DRG in pigs as assessed by somatosensory evoked potential and perform unique behavioral assessments indicative of supraspinal pain sensation, with the ultimate goal of translating this technology to patients with LBP. FUS could potentially replace current invasive or systemically detrimental treatment modalities.

1R01DA058621-01
Optimizing Patient-Centered Opioid Tapering with Mindfulness-Oriented Recovery Enhancement (MORE) Clinical Research in Pain Management Reducing Opioid-Related Harms to Treat Chronic Pain (IMPOWR and MIRHIQL) NIDA UNIVERSITY OF UTAH GARLAND, ERIC LEE (contact); COOPERMAN, NINA Salt Lake City, UT 2023
NOFO Title: HEAL Initiative: Multilevel Interventions to Reduce Harm and Improve Quality of Life for Patients on Long Term Opioid Therapy (MIRHIQL) (R01 Clinical Trial Required)
NOFO Number: RFA-DA-23-041
Summary:

Decreasing opioid dosing faster than advised by clinical recommendations often leaves chronic pain unaddressed and may increase the risk of overdose and suicide compared to continuing long-term opioid treatment. This project will compare a patient-centered tapering protocol with or without MORE in primary care offices in New Jersey and Utah. The MORE approach integrates training in mindfulness, reappraisal, and savoring to alter behavior away from valuation of drug rewards and toward natural rewards. This research will also identify practices to use MORE in primary care settings.

1U18EB030607-01
Non-invasive Nonpharmaceutical Treatment for Neck Pain: Development of Cervical Spine-specific MR-guided Focused Ultrasound System Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS UNIVERSITY OF UTAH RIEKE, VIOLA Salt Lake City, UT 2020
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

Neck pain is the fourth leading cause of disability and also a significant cause of cervicogenic headaches. Many of the currently available neck pain treatments are invasive with associated risks and complications, particularly because of the complex anatomy. Magnetic resonance guided focused ultrasound, a novel, completely noninvasive technique, can precisely target spinal facet joints to help ameliorate neck pain, potentially transforming the current practices. The goal of this study is to develop a cervical spine-specific device and demonstrate its safety and efficacy on targeting cervical sensory fibers and the third occipital nerve. The results of these studies will provide an understanding on how to best use this technology for chronic neck pain as well as a basis for translation into human use.

1K01DA059641-01
Adapting and Implementing a Chronic Disease Self-Management Program for Primary Care Patients with Opioid Use Disorder and Serious Mental Illness Cross-Cutting Research Training the Next Generation of Researchers in HEAL NIDA UNIVERSITY OF UTAH SIANTZ, ELIZABETH Salt Lake City, UT 2023
NOFO Title: Career Development Awards in Implementation Science for Substance Use Prevention and Treatment (K01 - Clinical Trial Required) 
NOFO Number: PAS-22-206
Summary:

Many people with opioid use disorder (OUD) also have a serious mental illness and other chronic conditions, which can be difficult for individuals and primary care providers to manage. A chronic disease self-management program is an established health care model in which peers help to educate patients about their condition(s) and build problem-solving skills to manage their health. Such programs have been effective in other populations and settings, but they have not been adapted for primary care patients who have OUD and SMI. This project will adapt and test a chronic disease self-management program for this population to understand its feasibility, acceptability, impact, and how best to put such programs into place widely in primary care settings.