Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded Sort descending
5R01NS104295-03
Cellular and Molecular Role of CXCR4 signaling in Painful Diabetic Neuropathy Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS Northwestern University MENICHELLA, DANIELA M Evanston, IL 2019
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Neuropathic pain is a debilitating affliction present in 26% of diabetic patients, with substantial impact on the quality of life. Despite this significant impact and prevalence, current therapies for painful diabetic neuropathy (PDN) are only partially effective, and the molecular mechanisms underlying neuropathic pain in diabetes are not well understood. Our long-term goal is to elucidate the molecular mechanisms responsible for PDN in order to provide targets for the development of therapeutic agents. Our objective is to identify the molecular cascade linking CXCR4/SDF-1 chemokine signaling to DRG nociceptor hyper-excitability, neuropathic pain, and small fiber degeneration. Our aims will determine: 1) the ion-channel current profile of the nociceptor hyper-excitable state produced by CXCR4/SDF-1 signaling in PDN; 2) the gene expression profile of the nociceptor hyper-excitable state produced by CXCR4/SDF-1 signaling in PDN; and 3) the specific features of nociceptor mitochondrial dysfunction produced by CXCR4/SDF-1 signaling in PDN.

1UH3NS115631-01
Multisite adaptive brain stimulation for multidimensional treatment of refractory chronic pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS UNIVERSITY OF CALIFORNIA, SAN FRANCISCO SHIRVALKAR, PRASAD San Francisco, CA 2019
NOFO Title: HEAL Initiative: Clinical Devices to Treat Pain (UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-19-018
Summary:

The research team will develop stimulation control algorithms to treat chronic pain using a novel device that allows longitudinal intracranial signal recording in an ambulatory setting. Subjects with refractory chronic pain syndromes will undergo bilateral surgical implant of temporary electrodes in the thalamus, anterior cingulate, prefrontal cortex, insula, and amygdala to identify candidate biomarkers of pain and optimal stimulation parameters. Six patients will proceed to chronic implantation of “optimal” brain regions for long-term recording and stimulation. The team will first validate biomarkers of low- and high-pain states to define neural signals for pain prediction in individuals. They will then use these pain biomarkers to develop personalized closed-loop algorithms for deep-brain stimulation (DBS) and test the feasibility of closed-loop DBS for chronic pain in weekly blocks. Researchers will assess the efficacy of closed-loop DBS algorithms against traditional open-loop DBS or sham in a double-blinded cross-over trial and measure mechanisms of DBS tolerance.

1U18EB029351-01
Development of an MRgFUS system for precision-targeted neuromodulation of pain circuits with simultaneous functional MRI Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB VANDERBILT UNIVERSITY MEDICAL CENTER CASKEY, CHARLES F (contact); CHEN, LI MIN ; GRISSOM, WILLIAM A Nashville, Tennessee 2019
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

This project aims to develop a next-generation noninvasive neuromodulation system for non-addictive pain treatments. The research team will build an integrated system that uses magnetic resonance image-guided focused ultrasound (MRgFUS) stimulation to target pain regions and circuits in the brain with high precision. The system will use MR imaging to locate three pain targets commonly used in clinical pain treatments, to stimulate those targets with ultrasound, and to monitor responses of nociceptive pain circuits using a functional MRI readout. Three collaborating laboratories will tackle the goals of this project: (Aim 1) Develop focused ultrasound technology for neuromodulation in humans, compatible with the high magnetic fields in an MRI scanner. (Aim 2) Develop MRI technology to find neuromodulation targets, compatible with focused ultrasound transducers. (Aim 3) Validate the complete MRgFUS neuromodulation system in brain pain regions in nonhuman primates. By the end of the project, the research team will have a fully developed and validated MRgFUS system that is ready for pilot clinical trials in pain management.

1U44NS115732-01
Selective Kv7.2/3 activators for the treatment of neuropathic pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS KNOPP BIOSCIENCES, LLC SIGNORE, ARMANDO (contact); RESNICK, LYNN Pittsburgh, PA 2019
NOFO Title: HEAL Initiative: Optimization of Non-addictive Therapies [Small Molecules and Biologics] to Treat Pain
NOFO Number: RFA-NS-19-020
Summary:

The development of non-addictive pain therapeutics can help counter opioid addiction and benefit patients, including those who suffer from neuropathic pain, in particular diabetic neuropathic pain (DNP). This project’s goal is to develop a safe, efficacious, and non-addictive small-molecule drug that activates Kv7 voltage-gated potassium channels to address overactive neuronal activity in DNP. Researchers will discover Kv7 activators that favor Kv7 isoforms altered in DNP and found in dorsal root ganglia, decrease off-target side effects observed with the use of earlier non-biased Kv7 activators, and optimize the absorption, distribution, metabolism, excretion, and toxicity profiles of these activators. This screening paradigm is intended to establish a clinic-ready, well-tolerated, and widely effective product to treat neuropathic pain.

5R01DE027454-02
Modeling temporomandibular joint disorders pain: role of transient receptor potential ion channels Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDCR Duke University Chen, Yong Durham, NC 2019
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Masticatory and spontaneous pain associated with temporomandibular joint disorders (TMJD) is a significant contributor to orofacial pain, and current treatments for TMJD pain are unsatisfactory. Pain-related transient receptor potential (TRP) channels, expressed by trigeminal ganglion (TG) sensory neurons, have been implicated in both acute and chronic pain and represent possible targets for anti-pain strategies. Using bite force metrics, we found TMJ inflammation-induced masticatory pain to be significantly, but not fully, reversed in Trpv4 knockout mice, suggesting the residual pain might be mediated by other pain-TRPs. Our gene expression studies demonstrated that TRPV1 and TRPA1 were up-regulated in the TG in response to TMJ inflammation in a Trpv4-dependent manner. We hypothesize that TRPV1 and TRPA1, like TRPV4, contribute to TMJ pain. Our specific aims will examine the contribution of TRPV1, TRPV4, and TRPA1 to pathogenesis of TMJD pathologic pain including assessment of the role of neurogenic inflammation.

3R01NS102432-02S1
AIBP AND REGULATION OF NEUROPATHIC PAIN Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF CALIFORNIA, SAN DIEGO MILLER, YURY; YAKSH, TONY L. LA JOLLA, CA 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Persistent pain states arising from inflammatory conditions, such as in arthritis, diabetes, HIV, and chemotherapy, exhibit a common feature in the release of damage-associated molecular pattern molecules, which can activate toll-like receptor-4 (TLR4). Previous studies suggest that TLR4 is critical in mediating the transition from acute to persistent pain. TLR4 as well as other inflammatory receptors localize to lipid raft microdomains on the plasma membrane. We have found that the secreted apoA-I binding protein (AIBP) accelerates cholesterol removal, disrupts lipid rafts, prevents TLR4 dimerization, and inhibits microglia inflammatory responses. We propose that AIBP targets cholesterol removal to lipid rafts harboring activated TLR4. The aims of this proposal are to: 1) determine whether AIBP targets lipid rafts harboring activated TLR4; 2) test whether AIBP reduces glial activation and neuroinflammation in mouse models of neuropathic pain; and 3) identify the origin and function of endogenous AIBP in the spinal cord.

1R61NS114926-01
SPRINT: Signature for Pain Recovery IN Teens Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS STANFORD UNIVERSITY SIMONS, LAURA E Stanford, CA 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Up to 5 percent of adolescents suffer from high-impact chronic musculoskeletal (MSK) pain, and only about 50 percent with chronic MSK pain who present for treatment recover. Current treatments for chronic MSK pain are suboptimal and have been tied to the opioid crisis. Discovery of robust markers of the recovery versus persistence of pain and disability is essential to develop more resourceful and patient-specific treatment strategies, requiring measurements across multiple dimensions in the same patient cohort in combination with a suitable computational analysis pipeline. Preliminary data has implicated novel candidates for neuroimaging, immune, quantitative sensory, and psychological markers for discovery. In addition, a standardized specimen collection, processing, storage, and distribution system is in place, along with expertise in machine learning approaches to extract reliable and prognostic bio-signatures from a large and complex data set. This project will facilitate risk stratification and a resourceful selection of patients who are likely to respond to current multidisciplinary pain treatment approaches.

1R61NS113315-01
Biomarker Signature to Predict the Persistence of Post-Traumatic Headache Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS MAYO CLINIC ARIZONA CHONG, CATHERINE DANIELA Scottsdale, AZ 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

There is currently no recognized way of accurately predicting who will recover from post-traumatic headache (PTH) during the acute phase following concussion and who will go on to develop persistent post-traumatic headache (PPTH), a condition that is difficult to treat effectively. Clinical experience suggests that early treatment is most effective, before headache patterns become persistent, but treating all patients with PTH would expose some patients to unnecessary treatment. Clinicians lack the information needed to make informed treatment decisions. Therefore, the study goals are to develop a prognostic biomarker signature for PPTH using clinical data and structural and functional brain neuroimaging and to assess the predictive accuracy of an ensemble biomarker signature for the early identification of patients at high risk for PPTH. This study can be translated into clinical practice and integrated into PTH clinical trials for early identification of those individuals who are at high risk for PPTH.

1U18EB029354-01
Treating pain in sickle cell disease by means of focused ultrasound neuromodulation Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB CARNEGIE-MELLON UNIVERSITY HE, BIN Pittsburgh, PA 2019
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

Researchers will develop a novel transcranial focused ultrasound (tFUS) device for pain treatment and establish its effectiveness for treating sickle cell disease (SCD) pain in humanized mice. The tFUS will target the specific cortical regions involved in SCD pain using a novel non-invasive electrophysiological source imaging technique. The project’s goals have several aims. Aim 1: Develop tFUS devices for pain treatment. The mouse-scale system will be designed to validate the therapeutic effect of stimulating the anticipated cortical targets. This will inform development of the simpler human-scale system, which will use models of the skull to select cost-effective transducers to reach the targets. Aim 2: Evaluate tFUS effectiveness and optimize stimulation parameters in an SCD mice model. Researchers will determine effective tFUS parameters to chronically reduce SCD pain in mice and validate this using behavioral measures. Aim 3: Use electrophysiological source imaging to target and trigger closed-loop tFUS in animal models. This aim also includes performing safety studies to prepare for human trials. The project will develop a transformative, noninvasive tFUS device to effectively and safely treat pain in SCD. 

1UG3TR003150-01
Human Microphysiological Model of Afferent Nociceptive Signaling Preclinical and Translational Research in Pain Management Translational Research to Advance Testing of Novel Drugs and Human Cell-Based Screening Platforms to Treat Pain and Opioid Use Disorder NCATS TULANE UNIVERSITY OF LOUISIANA MOORE, MICHAEL J (contact); ASHTON, RANDOLPH S; RAJARAMAN, SWAMINATHAN New Orleans, LA 2019
NOFO Title: HEAL Initiative: Tissue Chips to Model Nociception, Addiction, and Overdose (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-TR-19-003
Summary:

This project will develop a human cell-based model of the afferent pain pathway in the dorsal horn of the spinal cord. The research team’s approach utilizes novel human pluripotent stem cell (hPSC)-derived phenotypes in a model that combines 3D organoid culture with microfabricated systems on an integrated, three-dimensional (3D) microelectrode array. Researchers will establish the feasibility of a physiologically relevant, human 3D model of the afferent pain pathway that will be useful for evaluation of candidate analgesic drugs. They will then improve the physiological relevance of the system by promoting neural network maturation before demonstrating the system’s utility in modeling adverse effects of opioids and screening compounds to validate the model. Completion of the study objective will establish novel protocols for deriving dorsal horn neurons from hPSCs and create the first human microphysiological model of the spinal cord dorsal horn afferent sensory pathway.

1R61NS113329-01
Discovery of Biomarker Signatures Prognostic for Neuropathic Pain after Acute Spinal Cord Injury Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS UNIVERSITY OF TEXAS HLTH SCI CTR HOUSTON HERGENROEDER, GEORGENE W Houston, TX 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Debilitating neuropathic pain occurs in 40 percent to 70 percent of people who suffer from spinal cord injury (SCI). There are no distinguishing characteristics to identify who will develop neuropathic pain. The objective of this research is to develop a biomarker signature prognostic of SCI-induced neuropathic pain (NP). The aims of the project are to (1) identify autoantibodies in plasma samples from acute SCI patients to CNS autoantigens and determine the relationship between autoantibodies levels to the development of NP, (2) identify the autoantibody combination with maximal prognostic accuracy for the development of NP at six months after SCI, and (3) develop and optimize an assay to simultaneously measure several autoantibodies and independently validate the prognostic efficacy for NP using plasma samples collected prospectively. Establishing a panel will refine the prognostic value of these autoantibodies as biomarkers to detect who are vulnerable to NP and may be used to for development of nonaddictive pain therapeutics.

1U44NS111779-01
DISCOVERY OF NAV1.7 INHIBITORS FOR THE TREATMENT OF PAIN Preclinical and Translational Research in Pain Management NINDS SITEONE THERAPEUTICS, INC. MULCAHY, JOHN VINCENT; ODINK, DEBRA BOZEMAN, MT 2019
NOFO Title: Blueprint Neurotherapeutics Network (BPN): Small Molecule Drug Discovery and Development for Disorders of the Nervous System (U44 Clinical Trial Optional)
NOFO Number: PAR-18-541
Summary:

We propose to develop a safe and effective nonopioid analgesic to treat neuropathic pain that targets an isoform of the voltage-gated sodium ion channel, NaV1.7. Voltage-gated sodium channels are involved in the transmission of nociceptive signals from their site of origin in the peripheral terminals of DRG neurons to the synaptic terminals in the dorsal horn. NaV1.7 is the most abundant tetrodotoxin-sensitive sodium channel in small diameter myelinated and unmyelinated afferents, where it has been shown to modulate excitability and set the threshold for action potentials. Development of systemic NaV1.7 inhibitors has been complicated by the challenge of achieving selectivity over other NaV isoforms expressed throughout the body. We have discovered a series of potent, state-independent NaV1.7 inhibitors that exhibit >1000-fold selectivity over other human isoforms. Work conducted under this program will support advancement of a lead candidate into clinical development as a therapeutic for neuropathic pain.

1RF1NS113881-01
Discovery and validation of a new long noncoding RNA as a novel target for neuropathic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS RBHS-NEW JERSEY MEDICAL SCHOOL TAO, YUAN-XIANG Newark, NJ 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Identification of new targets and mechanisms underlying chronic neuropathic pain is essential for the discovery of novel treatments and preventative tactics for better neuropathic pain management. A recent exploration of next-generation RNA sequencing identified a large, native, full-length long noncoding RNA (lncRNA) in mouse and human dorsal root ganglion (DRG). It was named as nerve injury-specific lncRNA (NIS-lncRNA), since its expression was found increased in injured DRGs, in response to peripheral nerve injury, but not in response to inflammation. Preliminary findings revealed that blocking the nerve injury-induced increases in DRG NIS-lncRNA levels ameliorated neuropathic pain. This project will validate NIS-lncRNA as a therapeutic target in animal models of neuropathic pain and in cell-based functional assays utilizing human DRG neurons. Completion of this proposal will advance neuropathic pain management and might provide a novel, non-opioid pain therapeutic target.

5R01DA038645-05
KOR AGONIST FUNCTIONAL SELECTIVITY IN PERIPHERAL SENSORY NEURONS Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDA UNIVERSITY OF TEXAS HLTH SCIENCE CENTER CLARKE, WILLIAM P; BERG, KELLY ANN SAN ANTONIO, TX 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Functional selectivity is a term used to describe the ability of drugs to differentially regulate the activity of multiple signaling cascades coupled to the receptor. The underlying mechanism for functional selectivity is based upon the formation of ligand-specific receptor conformations that are dependent upon ligand structure. Functional selectivity has the potential to revitalize the drug discovery/development process. Ligands with high efficacy for specific signaling pathways (or specific patterns of signaling) that mediate beneficial effects, and with minimal activity at pathways that lead to adverse effects, are expected to have improved therapeutic efficacy. We propose to demonstrate that ligand efficacy for specific signaling pathways associated with antinociception can be finely tuned by structural modifications to a ligand. We propose to use U50,488 and Salvinorin-A (Sal-A) as scaffolds to develop functionally selective analogs that maintain high efficacy for signaling pathways that lead to antinociception and minimize activity toward anti-antinociceptive signaling pathways.

1UG3TR003081-01
Multi-organ human-on-a-chip system to address overdose and acute and chronic efficacy and off-target toxicity Preclinical and Translational Research in Pain Management Translational Research to Advance Testing of Novel Drugs and Human Cell-Based Screening Platforms to Treat Pain and Opioid Use Disorder NCATS UNIVERSITY OF CENTRAL FLORIDA HICKMAN, JAMES J (contact); SHULER, MICHAEL L Orlando, FL 2019
NOFO Title: HEAL Initiative: Tissue Chips to Model Nociception, Addiction, and Overdose (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-TR-19-003
Summary:

This project will build overdose models for fentanyl, methadone, codeine, and morphine in a multi-organ system and evaluate the acute and repeat dose, or chronic effects, of overdose treatments as well as off-target toxicity. Researchers developed a system using human cells in a pumpless multi-organ platform that allows continuous recirculation of a blood surrogate for up to 28 days. They will develop two overdose models for male and female phenotypes based on pre-B?tzinger Complex neurons and will integrate functional immune components that enable organ-specific or systemic monocyte actuation. Models for cardiomyopathy and infection will be utilized. Researchers will establish a pharmacokinetic/pharmacodynamic model of overdose and treatment to enable prediction for a range of variables. We will use a serum-free medium with microelectrode arrays and cantilever systems integrated on chip that allow noninvasive electronic and mechanical readouts of organ function.

1RF1NS113256-01
Dnmt3a as an epigenetic target for chronic pain treatment Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TX MD ANDERSON CAN CTR PAN, ZHIZHONG Z Houston, TX 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

It is unclear what changes in the brain mediate the development of chronic pain from acute pain and how chronic pain may change responses to opioid reward for the altered liability of opioid abuse under chronic pain. Preliminary studies have found that Dnmt3a, a DNA methyltransferase that catalyzes DNA methylation for gene repression, is significantly downregulated in the brain in a time-dependent manner during the development of chronic pain and after repeated opioid treatment. This project will investigate whether Dnmt3a acts as a key protein in the brain for the development of chronic pain, and whether Dnmt3a could be a novel epigenetic target for the development of new drugs and therapeutic options for the treatment of chronic pain while decreasing abuse liability of opioids.

3R01DA037621-05S1
Long-term activation of spinal opioid analgesia after imflammation - Supplement Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDA University of Pittsburgh TAYLOR, BRADLEY K Pittsburgh, PA 2019
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Severe tissue injury generates central sensitization. Latent sensitization (LS) is a silent form of central sensitization that persists after tissue has healed and overt signs of hyperalgesia have resolved. Pain remission during LS is likely maintained by tonic opioid receptor activity. The opioid receptor inverse agonist, naloxone, can reinstate experimental pain when delivered one week after the resolution of secondary hyperalgesia following first degree thermal injury. Our aims are to test: 1) the hypothesis that burn or surgery triggers LS and long-term opioid analgesia in humans; 2) the hypothesis that mu-opioid receptor (MOR) constitutive activity (MORCA) receptors by opioid peptides maintains endogenous analgesia and restricts LS to a state of pain remission; 3) the extent to which MORs inhibit neural activity in the DH and synaptic strength in presynaptic terminals of primary afferent nociceptors during LS; and 4) whether MORs inhibit spinal NMDA receptor subunits to block pain during LS.

1R01DK123138-01
Validation of peripheral CGRP signaling as a target for the treatment of pain in chronic pancreatitis Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDDK JOHNS HOPKINS UNIVERSITY PASRICHA, PANKAJ J Baltimore, MD 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Chronic pancreatitis (CP) and the debilitating pain associated with it remains a common and challenging clinical syndrome that is difficult to treat effectively. Using rodent models of CP, preliminary studies have found that nerve growth factor (NGF) and transforming growth factor beta (TGFb) appear to be acting by the common effector, calcitonin-gene related peptide (CGRP), to induce pain in CP. CGRP is known to mediate pain as a neurotransmitter in the central nervous system, specifically as a potent vasodilator involved in migraine. This project will test the hypothesis that peripheral CGRP is a major mediator of peripheral nociceptive sensitization in CP, and that peripherally restricted anti-CGRP treatment could provide an efficient and sufficient approach for the treatment of pain in pancreatitis

1UG3NS115718-01
Development of MRGPRX1 positive allosteric modulators as non-addictive therapies for neuropathic pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS JOHNS HOPKINS UNIVERSITY TSUKAMOTO, TAKASHI Baltimore, NC 2019
NOFO Title: Optimization of Non-addictive Therapies [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-010
Summary:

Although opioid-based analgesics have been proven effective in reducing the intensity of pain for many neuropathic pain conditions, their clinical utility is grossly limited due to the substantial risks involved in such therapy, including nausea, constipation, physical dependence, tolerance, and respiratory depression. Cumulative evidence suggests that human Mas-related G protein-coupled receptor X1 (MRGPRX1) is a promising target for pain with limited side effects due to its restricted expression in nociceptors within the peripheral nervous system; however, direct activation of MRGPRX1 at peripheral terminals is expected to induce itch side effects, limiting the therapeutic utility of orthosteric MRGPRX1 agonists. This finding led to the exploration of positive allosteric modulators (PAMs) of MRGPRX1 to potentiate the effects of the endogenous agonists at the central terminals of sensory neurons without activating peripheral MRGPRX1. An intrathecal injection of a prototype MRGPRX1 PAM, ML382, effectively attenuated evoked, persistent, and spontaneous pain without causing itch side effects. The goal of this study is to develop a CNS-penetrant small-molecule MRGPRX1 PAM that can be given orally to treat neuropathic pain conditions.

3R01NS045594-14S1
Study of Activity Dependent Sympathetic Sprouting Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF CINCINNATI JUN-MING, Zhang Cincinnati, OH 2019
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Many chronic pain conditions are dependent upon activity of the sympathetic nervous system. Sympathetic blockade is used clinically in chronic pain conditions, but the clinical and preclinical evidence for this practice is incomplete. We propose that certain pathological pain conditions require intact sympathetic innervation of the sensory nervous system at the level of the dorsal root ganglion (DRG) and that release of sympathetic transmitters enhances local inflammation and leads to pain. Our preliminary data show large, rapid, and long-lasting reduction of pain behaviors and inflammatory responses following a"microsympathectomy" (mSYMPX) in both neuropathic and inflammatory pain models. Our aims are to: 1) characterize the effects of mSYMPX on pain and on local inflammation in the DRG; 2) explore the molecular mechanisms for sympathetic regulation of inflammatory responses in the DRG; and 3) assess the functional role of sympathetic transmitters in the sympathetically mediated inflammatory responses in the DRG.

1R21NS113335-01
Targeting the Vgf signaling system for new chronic pain treatments Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS University of Minnesota VULCHANOVA, LYUDMILA H Minneapolis, MN 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R21 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-042
Summary:

Chronic pain is maintained, in part, by persistent changes in sensory neurons, including a pathological increase in peptides derived from the neurosecretory protein VGF (non-acronymic). Preliminary findings show that the C-terminal VGF peptide, TLQP-62, contributes to spinal cord neuroplasticity and that TLQP-62 immunoneutralization attenuates established mechanical hypersensitivity in a traumatic nerve injury model of neuropathic pain. This project will test the hypothesis that spinal cord TLQP-62 signaling can be targeted for the development of new chronic pain treatments through immunoneutralization and/or receptor inhibition. It will pursue discovery and validation of TLQP-62-based therapeutic interventions along two parallel lines: identification of TLQP-62 receptor(s) and validation of anti-TLQP-62 antibodies as a potential biological therapeutic option for chronic neuropathic pain conditions.

1UG3NS115637-01
Clinical Translation of Ultrasonic Ketamine Uncaging for Non-Opioid Therapy of Chronic Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS STANFORD UNIVERSITY AIRAN, RAAG D (contact); WILLIAMS, NOLAN R Stanford, CA 2019
NOFO Title: HEAL Initiative: Translational Devices to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-19-016
Summary:

The research team has developed ultrasonic drug uncaging for neuroscience, in which neuromodulatory agents are uncaged from ultrasound-sensitive biocompatible and biodegradable drug-loaded nanocarriers. This project will clinically translate ultrasonic ketamine uncaging for chronic pain therapy. In the UG3 phase, the research team will scale our nanoparticle production processes to human scales and adapt them to pharmaceutical standards. In the UH3 phase, they will complete a first-in-human evaluation of the safety and efficacy of ultrasonic ketamine uncaging by quantifying how much ketamine is released relative to the ultrasound dose and assessing whether the uncaged ketamine can modulate the sensitivity and affective response to pain, in patients suffering from chronic osteoarthritic pain. This project aims to yield a novel, noninvasive, non-opioid therapy for chronic pain that maximizes the therapeutic efficacy of ketamine over its side effects, by targeting its action to a critical hub of pain processing.

1U18EB029353-01
Development of a Wireless Endovascular Nerve Stimulator for Treatment of Refractory Neuropathic Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB BAYLOR COLLEGE OF MEDICINE KAN, PETER TZE MAN; ROBINSON, JACOB T; SHETH, SUNIL Houston, TX 2019
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

For patients with neuropathic pain refractory to therapy using small molecules, modulation of specific neural structures in the central or peripheral nervous system can provide effective alternative treatments. While current Food and Drug Administration–approved devices for dorsal root ganglion (DRG) stimulation are safe and effective, there have been an unfortunate number of adverse events associated with pulse generator infections and lead migration. The research team will develop a wireless, millimeter-sized nerve stimulator that can be delivered through the vasculature and stimulate the DRG to alleviate symptoms of neuropathic pain and the associated minimally invasive delivery method. This endovascular nerve stimulation (EVNS) system depends on development and integration of key novel technologies into an endovascular stent. The magnetoelectric transducers and electronic circuits will convert wireless power and data into stimulus patterns that can trigger neural activity in the DRG via miniature electrodes. After chronic demonstration of safety and functionality in large animal models, the team will prepare for regulatory discussions with the FDA. If successful, the EVNS will provide a technology platform for treating other neuropathic pain syndromes. 

1R61NS113316-01
Discovery and analytical validation of Inflammatory bio-signatures of the human pain experience Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS THE UNIVERSITY OF TEXAS HEALTH SCIENCE CENTER AT HOUSTON PROSSIN, ALAN RODNEY Houston, TX 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Postoperative pain is a major contributor to the current opioid epidemic. Novel objective measures capable of personalizing pain care will enhance medical precision in prevention and treatment of postoperative pain. This project seeks to discover and validate a novel biosignature of the human pain experience, based on underlying IL-1 family cytokine activity and associated brain endogenous opioid function, that is readily quantifiable and clinically translatable to prevention and treatment of postoperative pain states. Specific aims will assess whether the novel biosignature will predict 1) experimentally induced pain during an experimental nociceptive pain challenge; 2) postoperative pain states with accuracy >75%, accounting for a wide range of variance in the human pain experience; and 3) postoperative pain states in an expanded clinically enriched sample.

1R01DE029342-01
Identification and Validation of a Novel Central Analgesia Circuit Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDCR DUKE UNIVERSITY WANG, FAN Durham, NC 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

This project focuses on identifying and validating a new central analgesic circuit in the brain, based on a highly innovative hypothesis that the strong analgesic effects of general anesthesia (GA) are in part carried out by GA-mediated activation of the endogenous analgesic circuits. Preliminary discovery studies found that a subset of GABAergic neurons located in the central amygdala (CeA) become strongly activated and express high levels of the immediate early gene Fos under GA (hereafter referred to as CeAGA neurons). Furthermore, activation of these neurons exert profound pain-suppressing effects in an acute pain model and a chronic orofacial neuropathic pain model in mice. Based on these exciting preliminary findings, this project will identify and validate CeAGA neurons’ analgesic functions utilizing multiple mouse pain models. Identification of these shared common pathways that need to be suppressed by specific subtypes of CeAGA analgesic neurons will be highly critical for developing precise CeAGA-targeted therapies to treat chronic pain.