Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded Sort descending
1R21NS132565-01
Discovery of the Novel Targets for Post-Traumatic Headache Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS WASHINGTON UNIVERSITY CAO, YUQING Saint Louis, MO 2023
NOFO Title: Emergency Awards: HEAL Initiative-Early-Stage Discovery of New Pain and Opioid Use Disorder Targets Within the Understudied Druggable Proteome (R21 Clinical Trial Not Allowed)
NOFO Number: RFA-TR-22-011
Summary:

Chronic post-traumatic headache (PTH) is highly debilitating, poorly understood, and difficult to treat. This project aims to identify proteins located in the membrane of certain neurons that are critical for the development, maintenance, and/or resolution of PTH. These proteins may be targets for novel treatment approaches that are nonaddictive and have minimal side effects.

1RF1NS135580-01
Validation of Prenatal Rabbit Hypoxia Ischemia as a Model of Cerebral Palsy-Induced Pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS UNIVERSITY OF RHODE ISLAND QUINLAN, KATHARINA ANN (contact); DETLOFF, MEGAN R Kingston, RI 2023
NOFO Title: HEAL Initiative: Development and Validation of Non-Rodent Mammalian Models of Pain (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-22-070
Summary:

Cerebral palsy (CP), the leading cause of childhood disabilities in the United States, refers to a group of neurological disorders that appear in infancy or early childhood and permanently affect body movement and muscle coordination. The experience of pain is one of the most common, poorly understood, and inadequately treated conditions in CP, impairing health and quality of life for both patients and caregivers. To understand why pain and motor dysfunction occur together, a model that accurately replicates both is needed. This project will validate an established, rabbit model of CP motor dysfunction for use in studying and developing effective treatments for CP-associated pain.

1R61NS133217-01
A Novel Assay to Improve Translation in Analgesic Drug Development Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS VIRGINIA COMMONWEALTH UNIVERSITY NEGUS, SIDNEY S Richmond, VA 2023
NOFO Title: Development and Validation of Pain-Related Models and Endpoints to Facilitate Non-Addictive Analgesic Discovery
NOFO Number: NOT-NS-22-095
Summary:

Effective development of non-addictive therapies for pain requires animal models that reflect the human condition. Unfortunately, currently used models have limitations and have not always done a good job of predicting what will work in human patients. This project will refine a new way of measuring pain-related behaviors in mice that takes advantage of more natural mouse behavior and is less influenced by experimenter biases and artifacts. The research will verify that the promising results hold up in several different types of pain and that different classes of clinically used pain medications are effective. They will also make sure the data can be reproduced by an outside laboratory. If successful, this will support the use of this new read-out for future pain therapy development.

1UG3NS134781-01
A novel glycan-based selectin and complement inhibitor for at-home disease-modifying rescue of pain crisis in sickle cell disease Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS IHP THERAPEUTICS, INC. PADERI, JOHN San Carlos, CA 2023
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
1U19NS130608-01
Human Nociceptor and Spinal Cord Molecular Signature Center Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TEXAS DALLAS PRICE, THEODORE J (contact); CURATOLO, MICHELE; DOUGHERTY, PATRICK M Richardson, TX 2023
NOFO Title: Notice of Special Interest (NOSI): Encourage Eligible NIH HEAL Initiative Awardees to Apply for Administrative Supplements to Support Career Enhancement Related to Clinical Research on Pain
NOFO Number: NOT-NS-22-087
Summary:

This project supports a post-baccalaureate trainee develop skills needed to pursue a career in clinical pain research. The research will use molecular tools to study nerve, joint, muscle, and fascia tissues from individuals with chronic low back pain who had spine surgery. The research will include working with patients, designing clinical studies, and sharing results. 

1UG3NS135551-01
Translating an MR-guided focused ultrasound system for first-in-human precision neuromodulation of pain circuits Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS VANDERBILT UNIVERSITY MEDICAL CENTER CASKEY, CHARLES F (contact); CHEN, LI MIN Nashville, TN 2023
NOFO Title: Blueprint MedTech Translator (UG3/UH3 - Clinical Trial Optional)
NOFO Number: PAR-21-315
1R61NS133704-01
Development of Adrb3 Antagonists for the Treatment of Pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS DUKE UNIVERSITY NACKLEY, ANDREA G (contact); JIN, CHUNYANG Durham, NC 2023
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-21-029
Summary:

Common chronic pain syndromes such as fibromyalgia, temporomandibular disorder, and low back pain, are significant health conditions for which safe and effective treatments are needed. Previous studies have identified the adrenergic receptor beta-3 (Adrb3) as a novel target for chronic pain, but past attempts to block this receptor have not worked. This project aims to identify and develop new molecules to attach selectively and block Adrb3 without entering the brain and spinal cord. The research will test these molecules in rodent animal models to determine their ability to block pain without significant side effects.

4UH3NS123964-02
Disease Modifying Analgesia with CA8 Gene Therapy Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS UNIVERSITY OF MIAMI SCHOOL OF MEDICINE LEVITT, ROY C Coral Gables, FL 2023
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
1R61NS127271-01A1
Planning Study for the Development of Sigma 2 Ligands as Analgesics Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS UNIVERSITY OF KENTUCKY TIDGEWELL, KEVIN JOSEPH (contact); KOLBER, BENEDICT J Lexington, KY 2023
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-21-029
Summary:

Natural products, which are substances found in nature and made by living organisms, have been used in the past as good sources for developing new medications. Natural products isolated from marine bacteria that attach to the pain-signaling protein sigma-2 receptor (also known as transmembrane protein 97 [TMEM97]), may serve as a starting point to create new, non-opioid pain medications. This project will use chemistry and biology approaches to refine such natural products as a treatment for neuropathic pain.

1UG3NS128148-01A1
Peripherally Restricted Non-Addictive Cannabinoids for Cancer Pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS UNIVERSITY OF CALIFORNIA LOS ANGELES SPIGELMAN, IGOR (contact); CAHILL, CATHERINE M; FAULL, KYM FRANCIS; SCHMIDT, BRIAN L; SPOKOYNY, ALEXANDER MICHAEL Los Angeles, CA 2023
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Oral cancer pain is debilitating and difficult to treat, in part because even the most effective available pain remedies are limited by side effects. Opioid-based pain medications have several side effects including dependence and tolerance, in which the body gets used to a medicine so that either more medicine is needed or different medicine is needed. Another side effect is hyperalgesia, in which people taking opioids become more sensitive to certain painful stimuli and may misuse the drugs and risk addiction. This project will evaluate lab-made versions of cannabinoid molecules known to block pain signals in nerve cells, but which cannot enter the brain to cause neurological side effects. The research aims to advance promising versions of the molecules to testing in human research participants.

1RM1NS128956-01A1
Mechanisms of Action of Peripheral Nerve Stimulation for the Treatment of Chronic Neuropathic Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS STANFORD UNIVERSITY HAH, JENNIFER (contact); BISWAL, SANDIP; CHADWICK, ANDREA LYNN Stanford, CA 2023
NOFO Title: HEAL Initiative: Interdisciplinary Team Science to Uncover the Mechanisms of Pain Relief by Medical Devices (RM1 Clinical Trial Optional)
NOFO Number: RFA-NS-23-003
Summary:

Technology approaches that deliver electrical current through the skin near a damaged or injured peripheral nerve are used to treat chronic neuropathic pain that does not respond to other treatments. This project will optimize this nerve stimulation approach while also determining how the stimulation works to reduce pain in the body. The research will also look for patient characteristics that predict response by conducting a clinical trial comparing combined peripheral nerve stimulation and conventional medical treatment to medication alone.

1R18EB035004-01
Point of Care Diagnostic for Sickle Cell Disease Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB DUKE UNIVERSITY WAX, ADAM Durham, NC 2023
NOFO Title: HEAL Initiative: Translational Development of Diagnostic and Therapeutic Devices (R18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-22-002
Summary:

People with sickle cell disease often experience episodes of severe pain (vaso-occlusive crisis) that are caused by the abnormal red blood cells and frequently result in opioid use. Tools that can identify and measure the degree of such a crisis early on could allow clinicians to pre-emptively disrupt this process. This project aims to develop a rapid, automated screening technology for evaluating red blood cells that allows assessment of patients at risk of pain crisis right in their health care provider’s office.