Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Sort descending Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded
1DP2TR004354-01
Scale Up Single-Cell Technologies to Map Pain-Associated Genes and Cells Across the Lifespan Cross-Cutting Research Training the Next Generation of Researchers in HEAL NCATS Massachusetts General Hospital SHU, JIAN Boston, MA 2022
NOFO Title: Emergency Awards: HEAL Initiative- New Innovator Award (DP2 Clinical Trial Not Allowed)
NOFO Number: RFA-tr-22-013
Summary:

Current treatments for chronic pain, including opioids, are not effective for many individuals. Much remains unknown about genes, circuits, and cells that contribute to chronic pain, including how chronic pain changes across the lifespan in certain populations, including infants, children, older people, and pregnant women. This project will develop technology to map the genes, circuits, and cells associated with pain across ages, sexes, and during pregnancy. The technologies will guide the search for new biomarkers for chronic pain diagnosis and treatments.

3U24NS113844-04S1
Statistical Methods to Jointly Model Multiple Pain Outcome Measures Cross-Cutting Research Training the Next Generation of Researchers in HEAL NINDS NEW YORK UNIVERSITY SCHOOL OF MEDICINE TROXEL, ANDREA B; PETKOVA, EVA New York, NY 2022
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107; PA-21-071
Summary:

The Early Phase Pain Investigation Clinical Network (EPPIC-Net) conducts comprehensive analyses of observable traits (deep phenotyping) and aims to identify molecular and physiological signatures to help characterize specific pain conditions. To achieve these goals, researchers collect complex data using technologies such as magnetic resonance imaging of the brain, actigraphy, and electroencephalography. There is a need to train researchers to be able to extract key information from high-powered computing resources now widely available.  This research will complement the goals of EPPIC-Net by enhancing development of novel statistical methods to analyze complex data generated by EPPIC-Net pain studies.

3UH3AR076724-04S1
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC Cross-Cutting Research Training the Next Generation of Researchers in HEAL NIAMS UNIVERSITY OF CALIFORNIA, SAN FRANCISCO MAJUMDAR, SHARMILA San Francisco, CA 2022
NOFO Title: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: PA-20-222
Summary:

Despite the significance of spine disorders, there are few reliable methods to determine appropriate patient care and evaluate intervention effectiveness. The Back Pain Consortium Research Program
(BACPAC) is developing machine learning-based methods to obtain disease-related features from biological images. This project supports a scientist from a group underrepresented in biomedicine to expand ongoing research to improve ways to interpret medical data about spine disorders and associated pain.

1K12NS130673-01
University of Michigan (UM) HEAL Initiative National K12 Clinical Pain Career Development Program (UM-HCPDP) Cross-Cutting Research Training the Next Generation of Researchers in HEAL NINDS UNIVERSITY OF MICHIGAN WILLIAMS, DAVID A (contact); CLAUW, DANIEL J; HARTE, STEVEN EDWARD Ann Arbor, MI 2022
NOFO Title: HEAL Initiative: National K12 Clinical Pain Career Development Program (K12 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-22-045
Summary:

The Interagency Pain Research Coordinating Committee has reported that early-stage investigators are leaving the clinical pain research workforce for other fields. In addition, pain clinician researchers at the senior/mentor level are also exiting the field. This project will create a national training center for early-career clinicians and scientists interested in pursuing and sustaining independent careers in clinical pain research. Research will focus on rigorous scientific methods and procedures in pain research as well as the importance of stakeholder engagement.

3U19AR076734-01S5
University of Michigan BACPAC Mechanistic Research Center Cross-Cutting Research Training the Next Generation of Researchers in HEAL NIAMS UNIVERSITY OF MICHIGAN CLAUW, DANIEL J; HASSETT, AFTON L Ann Arbor, MI 2022
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for Administrative Supplements to Support Career Enhancement Related to Clinical Research on Pain (Admin Supp – Clinical Trial Not Allowed)
NOFO Number: NOT-NS-22-087
Summary:

Many medication-based and complementary/integrative interventions are available to treat chronic low back pain, yet no treatment works for all patients. This clinical research strives to understand patient characteristics that predict differential responses to chronic low back pain interventions such as acupressure. This knowledge will enable early career researchers and clinicians to develop tailored treatments for individual patients.

1DP2NS130454-01
Using Mouse Pain Scales to Discover Unusual Pain Sensitivity and New Pain Targets Cross-Cutting Research Training the Next Generation of Researchers in HEAL NINDS COLUMBIA UNIV NEW YORK MORNINGSIDE ABDUS-SABOOR, ISHMAIL JOHN New York, NY 2022
NOFO Title: Emergency Awards: HEAL Initiative- New Innovator Award (DP2 Clinical Trial Not Allowed)
NOFO Number: RFA-TR-22-013
Summary:

Acute and chronic pain vary widely across patients, due in large part to genetic differences between individuals. The same variation occurs in preclinical animal models with diverse genetic backgrounds. The development of automated mouse “pain scales” using high-speed videography, machine learning, and custom software allows pain to be assessed in a quantitative manner in nonverbal animals. This technology will be used to identify genetically different mice with high or low pain sensitivity, which will facilitate the development of new therapeutic strategies to treat pain and reduce reliance on opioids.

3R01DE029202-01S4
Validation of Blocking TSP4/Cava2d1 Interaction as a New Target for Neuropathic Pain Cross-Cutting Research Training the Next Generation of Researchers in HEAL NIDCR UNIVERSITY OF CALIFORNIA-IRVINE LUO, ZHIGANG DAVID Irvine, CA 2022
NOFO Title: NOT-NS-20-107; PA-21-071
NOFO Number: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
Summary:

An important step for identifying new, non-addictive chronic pain treatments is the search for new, non-opioid molecular targets that reflect the human condition. Recent findings show an increase in levels of two proteins (calcium channel alpha-2delta-1 subunit and thrombospondin) in sensory and spinal cord neurons after nerve injury. This increase is associated with the development of neuropathic pain. This project will determine if chronic injury to key nerve fibers involved in pain cause changes in rat behavior that indicate altered mood. These nerve fibers include the trigeminal nerve that communicates pain, touch, and temperature sensations from the face to the brain and the L5/6 spinal nerves often associated with back and leg pain. This research will also test whether small protein-like molecules (peptides) that block calcium channel alpha-2delta-1 subunit and thrombospondin also block the mood-related behaviors.