Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Sort descending Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded
1UC2AR082197-01
Neural Architecture of the Murine and Human Temporomandibular Joint Preclinical and Translational Research in Pain Management Restoring Joint Health and Function to Reduce Pain (RE-JOIN) NIAMS DUKE UNIVERSITY DONNELLY, CHRISTOPHER RYAN; CAI, DAWEN; EMRICK, JOSHUA JAMES Durham, NC 2022
NOFO Title: HEAL Initiative: Restoring Joint Health and Function to Reduce Pain Consortium (RE-JOIN) (UC2 Clinical Trial Not Allowed)
NOFO Number: RFA-AR-22-009
Summary:

Temporomandibular joint (TMJ) disorders are the most common form of chronic pain in the face and mouth area (orofacial pain), but relatively little is known about the biological causes of these conditions. This project will define the properties of sensory neurons that connect to tissues that make up the TMJ which connects the lower jaw and skull. This research aims to lay groundwork for development of new therapeutic approaches to treat these painful conditions.

1R21HD112210-01
Neurobiology of Pain Experiences in Youth in the ABCD Study Cross-Cutting Research Leveraging Existing and Real-Time Opioid and Pain Management Data NICHD OREGON HEALTH & SCIENCE UNIVERSITY WILSON, ANNA CAMILLE Portland, OR 2022
NOFO Title: HEAL Initiative: Secondary Analysis and Integration of Existing Data Related to Acute and Chronic Pain Development or Management in Humans (R21 Clinical Trials Not Allowed)
NOFO Number: RFA-DE-22-011
Summary:

Many millions of Americans experience chronic pain, including about 25 million who report pain that substantially interferes with daily activities and reduces quality of life. Many chronic pain syndromes are more prevalent in females, and the incidence of chronic pain increases dramatically during adolescence. This research will use neuroimaging and other biological, social, and psychological data from a large study of young adolescents with or without pain to identify risk and protective factors for chronic pain.

1R43DA050380-01
Neurofeedback-EEG-VR (NEVR) System for Non-opioid Pain Therapy Cross-Cutting Research Small Business Programs NIDA QUASAR, INC. ROBERTS, BROOKE San Diego, CA 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

Pain is one of the most common and debilitating symptoms of a wide range of injuries and diseases. Safe and effective alternatives for treating pain that reduce dependence on opioids are, therefore, a primary goal of the NIH. This project proposes a non-invasive, non-pharmacological alternative to treat pain by combining an innovative electroencephalography (EEG)-based Neurofeedback (NF) solution in an immersive virtual reality (VR) environment. NF and VR have been shown to independently produce ameliorative effects on pain, and it is hypothesized that an NF training in VR would have synergistic effects, as VR would distract from pain perception to improve patient compliance in more engaging NF protocols that improve their ability to control pain perception. In the scope of this project, we will initially focus our work on chronic low back pain (cLBP), as this is a growing segment of chronic pain sufferers with a 39 percent worldwide lifetime prevalence, and whose sufferers have historically been heavy users of opiates; later stages of this project will expand this application to address other forms of pain.

3UG3NS123958-01S1
Neuroimmune Mechanisms of a Humanized CCK-B Receptor scFv as Therapy for Chronic Pain Patients Cross-Cutting Research Training the Next Generation of Researchers in HEAL NINDS University of New Mexico WESTLUND-HIGH, KARIN N Albuquerque, NM 2022
NOFO Title: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp Clinical Trial Not Allowed)
NOFO Number: PA21-071
Summary:

There are currently few effective therapies available for chronic nerve injury-induced pain, associated anxiety, and depression. This project aims to extend previous research aiming to uncover the mechanism of action of artificially modified immune molecules (humanized cholecystokinin-2 receptor [CCKBR] single-chain variable fragments [scFv]) on human neurons and how it reverses chronic pain and anxiety-like behaviors in mouse models. This potential treatment approach offers important advantages over existing therapies, including extreme specificity, higher affinity, brain/nerve penetrance, safety, and reduced self-immunogenicity.

1UC2AR082200-01
Neuronal Anatomy, Connectivity, and Phenotypic Innervation of the Knee Joint Preclinical and Translational Research in Pain Management Restoring Joint Health and Function to Reduce Pain (RE-JOIN) NIAMS BAYLOR COLLEGE OF MEDICINE LEE, BRENDAN (contact); ARENKIEL, BENJAMIN R; RAY, RUSSELL S; WYTHE, JOSHUA D Houston, TX 2022
NOFO Title: HEAL Initiative: Restoring Joint Health and Function to Reduce Pain Consortium (RE-JOIN) (UC2 Clinical Trial Not Allowed)
NOFO Number: RFA-AR-22-009
Summary:

Pain caused by degenerative joint diseases such as osteoarthritis (OA) is a major public health challenge that significantly affects quality of life for millions of Americans. There are no therapies available that offer pain relief and reverse the course of OA.  This project will use state-of-the-art technologies to create a neuronal connectivity and molecular map of the mouse knee joint, which will help identify molecular signatures that can be targeted for therapy. The research will include animals of different ages and of both sexes and test joint effects after exercise, in animals with OA, and after gene therapy that delivers an experimental OA medication directly to the joint.

1UG1DA049468-01
New Mexico Clinical Trials Node: Clinical research and practice to address substance use in diverse, rural and underserved populations Translation of Research to Practice for the Treatment of Opioid Addiction Enhancing the National Drug Abuse Treatment Clinical Trials Network to Address Opioids NIDA UNIVERSITY OF NEW MEXICO HEALTH SCIS CTR PAGE, KIMBERLY; KOMAROMY, MIRIAM Albuquerque, NM 2019
NOFO Title: The National Drug Abuse Treatment Clinical Trials Network (UG1 Clinical Trial Optional)
NOFO Number: RFA-DA-19-008
Summary:

New Mexico (NM) is an epicenter of the opioid crisis in the United States. Many challenging social determinants, including poverty and unemployment, contribute to high rates of opioid use disorder (OUD) in NM. The aims of the NM node are to (1) develop and maintain a highly efficient platform to conduct clinical trials that will inform evidence-based prevention and treatment of OUD; (2) collaborate on and lead research that addresses and improves outcomes across the OUD Cascade of Care (CoC); and (3) promote uptake of best practices in OUD prevention and care in NM and nationwide through effective dissemination of evidence-based innovations. NM node research will ensure the development of robust and generalizable methods for prevention, identification, and treatment of OUD, including evaluation and modification of the CoC to expand the local and national knowledge base.

1R43DA049684-01
Non-intrusive detection of temporary neurologic impairment by opioids Cross-Cutting Research Small Business Programs NIDA ZXEREX CORPORATION BESSERMAN, RICHARD Scottsdale, AZ 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Required)
NOFO Number: PA-18-573
Summary:

With the exception of the Breathalyzer for alcohol, there is currently no available technology that can immediately identify neurologic impairment related to the use of licit or illicit drugs. The presently available methods for detecting opioids—which rely upon analysis of urine, blood, saliva, or hair—are expensive, time-consuming to implement, and can take days to deliver actionable information to meet the “fitness-for-duty” concerns of employers as well as the needs for immediate detection of drug use in the drug rehabilitation and public safety fields. This project intends to develop a non-invasive means of identifying temporary neurological impairment from prescription opioids using analysis of involuntary eye movements. The resultant biometric signature of opioid impairment will be incorporated into Zverex’s existing product library of oculomotor biosignatures, such as marijuana impairment and fatigue.

1R43DA049623-01
Non-invasive Neuromodulation Device for Decreasing Withdrawal Symptoms and Craving during Treatment of Opioid Use Disorder Cross-Cutting Research Small Business Programs NIDA THERANOVA, LLC JAASMA, MICHAEL San Francisco, CA 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

Opioid use disorder (OUD) can be lethal, with opioid overdose causing more than 115 deaths in the U.S. each day. Although medications are effective at reducing illicit opioid use and overdose deaths, it is well-established that withdrawal and craving are highest in the initial weeks, making this a high-risk period for treatment dropout, relapse, and overdose. Adjunct therapies that can reduce early opioid withdrawal and craving may improve retention in treatment with buprenorphine-naloxone, and recent research has shown that stimulation of a peripheral nerve significantly modulates withdrawal- and craving-related responses for opioids and other drugs. This project will test the effectiveness of the EMPOWER Neuromodulation System, a portable, non-invasive transcutaneous electrical nerve stimulation (TENS) device developed by TheraNova for the treatment of OUD.

1U18EB030607-01
Non-invasive Nonpharmaceutical Treatment for Neck Pain: Development of Cervical Spine-specific MR-guided Focused Ultrasound System Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS UNIVERSITY OF UTAH RIEKE, VIOLA Salt Lake City, UT 2020
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

Neck pain is the fourth leading cause of disability and also a significant cause of cervicogenic headaches. Many of the currently available neck pain treatments are invasive with associated risks and complications, particularly because of the complex anatomy. Magnetic resonance guided focused ultrasound, a novel, completely noninvasive technique, can precisely target spinal facet joints to help ameliorate neck pain, potentially transforming the current practices. The goal of this study is to develop a cervical spine-specific device and demonstrate its safety and efficacy on targeting cervical sensory fibers and the third occipital nerve. The results of these studies will provide an understanding on how to best use this technology for chronic neck pain as well as a basis for translation into human use.

3UG3DA048502-01A1S2
Non-invasive vagal nerve stimulation in opioid use disorders Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA EMORY UNIVERSITY BREMNER, JAMES DOUGLAS Atlanta, GA 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

This research will expand the understanding of the effects of non-invasive vagal nerve stimulation on patients with opioid use disorder by examining the relationship between nerve stimulation and treatment, respiratory physiology, withdrawal symptoms, and relapse. Additionally, these relationships will be added to existing algorithms and equipment being developed by the Inan Research Lab at the Georgia Institute of Technology. Collecting and determining the quality of conventional respiration signals, as well as collecting high-resolution impedance based respiratory measurements, will help to determine the impact of non-invasive vagal nerve stimulation on breathing and lung function in people with opioid use disorder, toward development of a profile of physiological effects of non-invasive vagal nerve stimulation during opioid withdrawal.

1UG3DA048502-01A1
Non-Invasive Vagal Nerve Stimulation in Patients with Opioid Use Disorders Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA EMORY UNIVERSITY Bremner, James Douglas Atlanta, Georgia 2020
NOFO Title:
NOFO Number: PAR18-494
1R44GM140795-01A1
Non-Opioid Post-Operative Pain Management Using Bupivacaine-loaded Poly(ester urea) Mesh Cross-Cutting Research Small Business Programs NIGMS 21MEDTECH, LLC ALFARO, ARTHUR Durham, NC 2021
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

There is an urgent need for non-opioid post-operative pain management solutions.  This research is developing a naturally absorbable polymer film that can release controlled amounts of the non-opioid analgesic bupivacaine – aiming to manage pain for several days following surgery. Project objectives are to optimize the timing of drug release, develop manufacturing standards, determine effective dosage for preserving motor function, and determine safety and efficacy in mouse models of neuropathic pain. Continued development of this film delivery system may lead to a new, non-opioid therapeutic strategy that could be combined with local anesthesia for up to 4 days after surgery to reduce or potentially eliminate opioids use.

1UG3AG067593-01
Non-pharmacological Options in postoperative Hospital-based And Rehabilitation pain Management (NOHARM) pragmatic clinical trial Clinical Research in Pain Management Pragmatic and Implementation Studies for the Management of Pain to Reduce Opioid Prescribing (PRISM) NIA MAYO CLINIC ROCHESTER CHEVILLE, ANDREA LYNNE (contact); TILBURT, JON C Rochester, MN 2019
NOFO Title: HEAL Initiative: Pragmatic and Implementation Studies for the Management of Pain to Reduce Opioid Prescribing (PRISM)(UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-AT-19-004
Summary:

Prescriptions for narcotic pain relief after surgery result in unintended prolonged opioid use for hundreds of thousands of Americans. Nonpharmacological pain care is effective and recommended by guidelines for perioperative pain while offering a more favorable risk-benefit ratio. However, nonpharmacological pain care is rarely used as first or second-line therapy after surgery. Patient and clinician decision support interventions are effective in encouraging patient-centered and guideline-concordant care, but these strategies have not been tested pragmatically as a bundle in everyday postoperative pain care. The NOHARM trial will first confirm the feasibility of patient-facing and clinician-facing decision support components of an EHR-embedded evidence-based bundle. The investigators will test the bundle in a stepped-wedge cluster randomized trial. They will test a sustainable system strategy that could change the paradigm of perioperative pain management toward nonpharmacological options in a manner that preserves patient function, honors patient values, and maintains availability of opioids as a last resort.

1R44DA049685-01
Noninvasive Brain Stimulation for Treating Addiction Cross-Cutting Research Small Business Programs NIDA HIGHLAND INSTRUMENTS, INC DIPIETRO, LAURA; WAGNER, TIMOTHY ANDREW Cambridge, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Required)
NOFO Number: PA-18-573
Summary:

Noninvasive brain stimulation (NIBS) may be effective in treating some forms of addiction, but the most common NIBS methods, Transcranial Magnetic Stimulation (TMS) and Transcranial Direct Current Stimulation (tDCS), have not been found to be effective in treating opioid use disorder (OUD). This project seeks to test the efficacy in OUD patients of Electrosonic Stimulation (ESStim™), an improved NIBS modality that combines independently controlled electromagnetic and ultrasonic fields to focus and boost stimulation currents via tuned electromechanical coupling in neural tissue.

1UG3NR019943-01
Nonpharmacologic Pain Management in FQHC primary care clinics Clinical Research in Pain Management Pragmatic and Implementation Studies for the Management of Pain to Reduce Opioid Prescribing (PRISM) NCCIH UNIVERSITY OF UTAH FRITZ, JULIE M Salt Lake City, UT 2020
NOFO Title: HEAL Initiative: Pragmatic and Implementation Studies for the Management of Pain to Reduce Opioid Prescribing (PRISM) (UG3/UH3, Clinical Trials Optional)
NOFO Number: RFA-AT-20-004
Summary:

Back pain is the most common chronic pain diagnosis and the most common diagnosis for which opioids are prescribed. Clinical practice guidelines make it clear that nonpharmacologic treatments are preferable to opioids for patients with back pain. Despite clear evidence, over-prescribing of opioids to individuals with back pain continues. Providers of nonpharmacologic care are often absent or unreachable from rural and low-income communities and patients with limited financial resources. Many rural and low-income communities are served by Federally Qualified Health Centers (FQHCs) that are at the forefront of the opioid crisis, but often lack adequate options to provide accessible nonpharmacologic treatments. This pragmatic clinical trial will compare the effectiveness of different telehealth strategies to provide effective nonpharmacologic interventions to overcome the barriers specific to serving rural and low-income communities. The trial will evaluate two strategies, one providing both a brief pain teleconsult with phone-based physical therapy, the other uses an adaptive strategy ? providing the brief pain teleconsult first, followed by phone-based physical therapy to those who need additional treatment. The study will also evaluate outcomes related to the efforts to implement strategies in FQHC clinics. This research will provide a toolkit for future efforts to make nonpharmacological interventions for back pain available in other low resource health care settings.

1UG3DA052282-01
NOP Receptor Antagonist for OUD Pharmacotherapy Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA UNIVERSITY OF TEXAS MED BR GALVESTON Cunningham, Kathryn Galveston, TX 2020
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Medication-based treatment for opioid use disorder OUD aids in reducing mortality, opioid withdrawal, intake and opioid-seeking behaviors, however there is a clear need to increase the armamentarium of therapeutics for OUD. The ?non-classical? NOcicePtin receptor (NOPr) binds the endogenous neuropeptide nociceptin/orphanin FQ (N/OFQ) and is a promising target based on the evidence for its function in the regulation of the rewarding and motivational effects of opioids and alcohol. This study plans to assess the ability of the novel and selective NOPr antagonist BTRX-246040 to block oxycodone intake without abuse liability, and to suppress oxycodone withdrawal and relapse-like behaviors in rats. The study will also determine Drug Metabolism and Pharmacokinetics interactions (DMPK) between oxycodone and BTRX-246040 and brain penetrability in male and female rats. If successful, these preclinical studies will be followed by a Phase 1 clinical trial in non-treatment seeking OUD participants. These investigations will advance the prospects of validating a novel medication for OUD.

3UG1DA040316-06S4
NorthStar Node of the Clinical Trials Network-Bring two lines of research together to help primary care clinicians (PCCs) recognize and address increased risk of suicide for people at elevated risk of opioid use disorder (OUD) Translation of Research to Practice for the Treatment of Opioid Addiction Enhancing the National Drug Abuse Treatment Clinical Trials Network to Address Opioids NIDA HENNEPIN HEALTHCARE RESEARCH INSTITUTE BART, GAVIN Minneapolis, MN 2020
NOFO Title: HEAL Initiative: Notice of Special Interest (NOSI) regarding the Availability of Administrative Supplements to Support Strategies to Reduce Stigma in Pain Management and Opioid Use Disorder (OUD) and Treatment
NOFO Number: NOT-OD-20-101
Summary:

Increasing primary care clinician intention and behavior to obtain waivers to prescribe buprenorphine for treatment of opioid use disorder and increase use of the Opioid Wizard, a clinical decision support tool, has potential for patient benefit. This supplement will provide support to evaluate a training tool as an intervention to reduce stigma in primary care clinics by integrating a stigma reduction training component into the Opioid Wizard training at multiple sites of the NIDA Clinical Trial Network. Primary care providers will be randomized to novel stigma reduction training, grounded in stigma science, or an attention-control training to determine whether stigma reduction training reduces provider stigma, increases intention to apply for a waiver to prescribe buprenorphine, and ultimately increase the likelihood that providers use Opioid Wizard. The proposed supplement will utilize the randomized controlled trial design embedded in the larger multisite trial to evaluate the Opioid Wizard tool to help primary care clinicians identify, diagnose, and treat patients with opioid use disorder while evaluating the effect of the stigma reduction training.

1R43HD107727-01A1
Novel Approach to Personalize and Monitor Therapeutic Training At Home in Chronic Pelvic Pain Management Cross-Cutting Research Small Business Programs NICHD Hillmed, Inc. DIAS, NICHOLAS Katy, TX 2022
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

Chronic pelvic pain is a debilitating condition that negatively affects the social and sexual quality of life for up to 20% of American women. Pelvic floor muscle (PFM) pain is caused by many factors, as well as by incorrect posture and excessive sensitization of the peripheral nervous system. This project will introduce a prototype of the Chronic Pelvic Pain (CPP) HomeTrainer that monitors, quantitatively and in real time, both PFM activation capacity and muscle interactions between the PFM and hip/trunk muscles and adapts the PFM training to the user’s needs in their own home. The proposed CPP HomeTrainer offers biofeedback to aid myofascial physical therapy and movement pattern training by tailoring the protocol to specifically correct interactions between the PFM and problematic hip/trunk muscles.

1R44CA271904-01A1
Novel Biologic to Treat Chemotherapy-Induced Neuropathic Pain Cross-Cutting Research Small Business Programs NCI RAFT PHARMACEUTICALS, LLC KOGAN, YAKOV San Diego, CA 2022
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

Some chemotherapy treatments damage nerves outside the brain and spinal cord. This condition, chemotherapy-induced peripheral neuropathy, involves tingling, burning, weakness, or numbness in hands and/or feet and affects nearly 70% of cancer patients receiving chemotherapy. Common pain medications, including opioids, can relieve pain for short intervals but are not suitable for long-term therapy. This project will conduct studies to investigate the safety and tolerability of a novel strategy to treat neuropathic pain: modifying the activity of the dorsal root ganglia, which are nerve cells in the spinal cord that communicate pain signals to and from the brain.

1R21NS130409-01
Novel Genetically Encoded Inhibitors to Probe Functional Logic of Cav-Beta Molecular Diversity Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS COLUMBIA UNIVERSITY HEALTH SCIENCES COLECRAFT, HENRY M New York, NY 2022
NOFO Title: Emergency Awards: HEAL Initiative-Early-Stage Discovery of New Pain and Opioid Use Disorder Targets Within the Understudied Druggable Proteome (R21 Clinical Trial Not Allowed)
NOFO Number: TR22-011
Summary:

High-voltage-gated calcium channels convert electrical signals into physiological responses. After a nerve injury, levels of these channels go down in some neurons in the dorsal root ganglia that communicates pain signals to and from the brain. This decline results in reduced flow of calcium that may underlie pain. This project will develop novel approaches to block these calcium channels p to further study their roles in controlling pain.

1UG3NS114947-01
Novel HCN1-selective small molecule inhibitors for the treatment of neuropathic pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS WEILL MEDICAL COLL OF CORNELL UNIV GOLDSTEIN, PETER A New York, NY 2019
NOFO Title: Optimization of Non-addictive Therapies [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-010
Summary:

Neuropathic pain is characterized by neuronal hyperexcitability and spontaneous activity, properties associated with activity of hyperpolarization-activated, cyclic nucleotide-regulated (HCN1-4) channels, the source of the pacemaker current, Ih. Inhibition of HCN1-mediated Ih elicits marked antihyperalgesia in multiple animal models of neuropathic pain, including models for direct nerve injury and chemotherapy-induced peripheral neuropathy, and does so with little or no disruption to either normal pain processing or baseline behaviors and activities. The overall objective is to develop a peripherally restricted HCN1 inverse-agonist as a therapeutic for neuropathic pain. Researchers have generated a novel small molecule that combines an antihyperalgesic HCN1 inhibitor with a motif that controls distribution and membrane presentation and is a potential non-opioid antihyperalgesic treatment for peripheral neuropathic pain.

1UH2AR076719-01
Novel imaging of endplate biomarkers in chronic low back pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF CALIFORNIA, SAN FRANCISCO FIELDS, AARON J (contact); KRUG, ROLAND San Francisco, CA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

This project will examine the association between end plate pathology and chronic low back pain (cLBP) and improve patient selection by developing and translating new imaging tools, technologies, and/or methods (iTTM) that provide accurate, noninvasive measures of end plate pathologies. A search for clinically relevant biomarkers of end plate pathology will focus on novel imaging measures of end plate bone marrow lesion (BML) severity with IDEAL MRI and cartilage endplate (CEP) fibrosis/damage with UTE MRI, assess interactions with paraspinal muscles, and identify metrics that associate with pain, disability, and degeneration. The research will refine imaging and post-processing methodologies by leveraging and expanding existing cross-sectional cohorts and then deploy and validate the new end plate iTTM to other BACPAC sites to test the most promising metrics’ clinical utility. These studies will provide validated iTTM that are useful for addressing the end plates pathology’s role in cLBP, identifying sub-phenotypes, discovering pain mechanisms, uncovering treatment targets, and selecting patients.

1U18EB030609-01
Novel Implantable Device to Negate Post-Amputation Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB NOVAFLUX, INC. LABIB, MOHAMED E (contact); KATHJU, SANDEEP Princeton, NJ 2021
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

Approximately 3.6 million Americans live with an amputated extremity, and the majority of these individuals are likely to suffer from chronic post-amputation pain. There is no consensus as to a recommended therapy for such pain, and many treatments do not provide sufficient pain control. Some studies have shown effective pain suppression from delivering an anesthetic agent directly to an injured nerve. This research aims to develop a device that can be implanted near the injured nerves of an amputated limb to deliver an anesthetic. Findings from this preclinical study will optimize design and delivery features to maximize its effect on pain control for as long as possible without needing a drug refill. The research is expected to advance eligibility for further testing in large animals and humans.

1UG3DA048768-01A1
Novel LAAM formulations to treat Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Virginia Commonwealth University Xu, Qingguo Richmond, VA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Levo-alpha-acetylmethadol (LAAM) offers numerous behavioral and clinical advantages for select opioid use disorder (OUD) patients who do not respond to standard treatment. While LAAM was withdrawn from the market despite being approved for OUD treatment, this project seeks to develop novel, patentable, convenient dosage forms of LAAM, including novel LAAM oral dosage formulations and novel buccal film formulations of LAAM. Morphology, mechanical property, drug release kinetics, and stability of the oral dosage and buccal film formulations will be characterized to determine the instant release or steady release of LAAM, respectively. The two lead LAAM formulations with adequate release and stability profiles will be chosen through optimization studies both in vitro and in vivo. A human pharmacokinetic/pharmacodynamic study will then be carried out on the two selected formulations.

3UH3NS116218-02S1
Novel mGlu5 Negative Allosteric Modulators as First-in-Class Non-Addictive Analgesic Therapeutic Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS Vanderbilt University ROOK, JERRI MICHELLE Nashville, TN 2022
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements. Parent Grant: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: Supplement: PA-20-272; Parent NOFO: NS-21-010
Summary:

Negative allosteric modulators (NAMs) of the metabotropic glutamate (mGlu) receptor, mGlu5, have shown promise for treatment of multiple pain conditions without the serious adverse effects and safety concerns associated with opioids. This project will develop and test a novel series of highly selective mGlu5 NAMs that are structurally unrelated to earlier failed compounds and do not form toxic byproducts as with previous mGlu5 NAMs. A lead candidate is now being characterized in several studies to assess readiness for testing in Phase I clinical studies.