Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Sort ascending Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded
1R61AT010604-01
Testing the Effects of Contingency Management and Behavioral Economics on Buprenorphine-Naloxone Treatment Adherence Using a Sequential Multiple Assignment Randomized Trial (SMART) Design Translation of Research to Practice for the Treatment of Opioid Addiction Behavioral Research to Improve Medication-Based Treatment NCCIH University of Tennessee DEREFINKO, KAREN J Knoxville, TN 2019
NOFO Title: HEAL Initiative: Behavioral Research to Improve MAT: Behavioral and Social Interventions to Improve Adherence to Medication Assisted Treatment for Opioid Use Disorders (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-AT-19-006
Summary:

This application will develop and execute a sequential multiple assignment randomized trial (SMART) design to test two forms of behavioral economics intervention to promote medication-assisted treatment (MAT) for opioid use disorder. The two interventions, in person, brief motivational interviewing and substance-free activities intervention (BMI+SFAS), initially will be tested for satisfaction and acceptability with participants who are initiating buprenorphine-naloxone treatment and then be tested by SMART for its ability to promote MAT adherence. This innovative SMART design that tests two psychosocial interventions to increase adherence to MAT initiation is likely to have a significant impact on engagement of opioid use disorder patients in treatment and address an underserved population with opioid use disorder who is resistant to MAT adherence.

1R61DA059887-01
Testing an Occupational Stress Intervention for Harm Reduction Workers in Substance Misuse Settings Translation of Research to Practice for the Treatment of Opioid Addiction Optimizing the Quality, Reach, and Impact of Addiction Services NIDA UNIVERSITY OF TEXAS AT AUSTIN CREECH, SUZANNAH K Austin, TX 2023
NOFO Title: HEAL Initiative: Translating Research to Practice to End the Overdose Crisis (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-DA-23-053
Summary:

People who work in harm reduction settings aiming to keep people with substance use disorders safe from overdose and other negative health outcomes are exposed to high rates of lifetime and occupational stress and trauma. Their work conditions can have adverse effects on patient care and also on their own well-being, such as unmet mental health needs, burnout, and relapse. This project will adapt the Stress First Aid intervention for harm reduction workers. The research will test the impact of this intervention on social support, burnout, secondary traumatic stress, use of mental health care, engagement, and turnover. The long-term goal of this work is to implement a sustainable and effective national occupational stress intervention for harm reduction workers to strengthen their important role in helping individuals get treatment and avoid overdose.

1R61DA059897-01
Testing a Video and Text Messaging Intervention to Reduce PTSD and Opioid Misuse Among Sexual Violence Survivors Translation of Research to Practice for the Treatment of Opioid Addiction Optimizing the Quality, Reach, and Impact of Addiction Services NIDA UNIVERSITY OF WISCONSIN-MADISON WALSH, KATIE L Madison, WI 2023
NOFO Title: HEAL Initiative: Translating Research to Practice to End the Overdose Crisis (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-DA-23-053
Summary:

People who survive sexual violence are at increased risk for posttraumatic stress disorder (PTSD) and opioid misuse. Emergency departments are often the first, and in some cases only, contact with the medical care system for survivors of sexual violence. This makes them a suitable setting to initiate interventions to address the risk of PTSD and opioid misuse in these individuals. This project will develop and test a brief, low-cost video and text message intervention that can be initiated in the emergency department to prevent onset or escalation of PTSD and opioid misuse among people who survive sexual violence.

1U18EB029257-01
Temporal Patterns of Spinal Cord Stimulation Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB DUKE UNIVERSITY GRILL, WARREN M Durham, NC 2019
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

This project will design and test optimized temporal patterns of stimulation to improve the efficacy of commercially available spinal cord stimulation (SCS) systems to treat chronic neuropathic pain. Researchers will build upon a validated biophysical model of the effects of SCS on sensory signal processing in neurons within the dorsal horn of the spinal cord to better understand how to improve the electrical stimulus patterns applied to the spinal cord. They will use sensitivity analyses to determine the robustness of stimulation patterns to variations in electrode positioning, selectivity of stimulation, and biophysical properties of the dorsal horn neural network. Researchers will demonstrate improvements from these new stimulus patterns by 1) measuring their effects on pain-related behavioral outcomes in a rat model of chronic neuropathic pain and by 2) quantifying the effects of optimized temporal patterns on spinal cord neuron activity. The outcome will be mechanistically derived and validated stimulus patterns that are significantly more efficacious than the phenomenologically derived standard of care patterns; these patterns could be implemented with either a software update or minor hardware modifications to existing SCS products.

3UH3AR076724-03S1
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS University of California, San Francisco MAJUMDAR, SHARMILA San Francisco, CA 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

Chronic low back pain affects millions of Americans and is difficult to treat. Currently, there are no reliable methods to determine the best treatment options for patients, or to objectively evaluate the effectiveness of various interventions. This research will develop an imaging technology that uses machine learning to make automated assessments of spine characteristics, pain response, and patient-reported outcomes in people with chronic low back pain. This award will be used to recruit and support two postdoctoral fellows from populations underrepresented in biomedicine. The research will focus on whether use of the imaging tool helps clarify clinical diagnoses, as measured by the level of agreement between radiologists before and after using the tool.

1UH2AR076724-01
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF CALIFORNIA, SAN FRANCISCO MAJUMDAR, SHARMILA San Francisco, CA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

Despite the significance of spine disorders, there are few reliable methods to determine appropriate patient care and evaluate intervention effectiveness. The research and tool development take the critical next step in the clinical translation of faster, quantitative magnetic resonance imaging (MR) of patients with lower back pain. The multidisciplinary Technology Research Site (Tech Site) of BACPAC will develop Phase IV (i.e., technology optimization) technologies and/or methods (TTMs) to leverage two key technical advancements: development of machine learning-based, faster MR acquisition methods and machine learning for image segmentation and extraction of objective disease related features from images. The team will develop, validate, and deploy end-to-end deep learning-based technologies (TTMs) for accelerated image reconstruction, tissue segmentation, and detection of spinal degeneration to facilitate automated, robust assessment of structure-function relationships between spine characteristics, neurocognitive pain response, and patient-reported outcomes.

3UH3AR076724-04S1
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC Cross-Cutting Research Training the Next Generation of Researchers in HEAL NIAMS UNIVERSITY OF CALIFORNIA, SAN FRANCISCO MAJUMDAR, SHARMILA San Francisco, CA 2022
NOFO Title: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: PA-20-222
Summary:

Despite the significance of spine disorders, there are few reliable methods to determine appropriate patient care and evaluate intervention effectiveness. The Back Pain Consortium Research Program
(BACPAC) is developing machine learning-based methods to obtain disease-related features from biological images. This project supports a scientist from a group underrepresented in biomedicine to expand ongoing research to improve ways to interpret medical data about spine disorders and associated pain.

1R01DA057633-01
Teaching Harm Reduction in Vulnerable Environments (THRIVE): A Peer-Led Intervention Bridging Acute Care Settings and the Discharge to the Community Translation of Research to Practice for the Treatment of Opioid Addiction Harm Reduction Approaches to Reduce Overdose Deaths NIDA UNIVERSITY OF PITTSBURGH WILSON, JACQUELINE DEANNA Pittsburgh, PA 2022
NOFO Title: HEAL Initiative: Harm Reduction Policies, Practices, and Modes of Delivery for Persons with Substance Use Disorders (R01 Clinical Trial Optional)
NOFO Number: RFA-DA-22-046
Summary:

People who use drugs often have other medical problems that cause them to visit an emergency department frequently. This project will develop and test an intervention aimed at reducing health risk among Black people who use drugs that visit an urban emergency department for care. The intervention will be delivered by people with lived experience of drug use and tailored to meet the unique needs of Black people who use drugs.

3UG3DA047793-01S1
tDCS to decrease opioid relapse Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA BUTLER HOSPITAL (PROVIDENCE, RI) Abrantes, Ana M Providence, RI 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Neurostimulation techniques, such as transcranial direct current stimulation (tDCS), have been used as interventions for substance use disorders. This is a supplement to the currently NIDA-funded UG3 DA047793, “tDCS to Decrease Opioid Relapse,” which will measure behavioral and brain responses following tDCS stimulation delivered during tasks that use a particular brain network involved in cognitive control, and utilizing FMRI to assess the effects. This supplement allows the researchers to add an EEG measurement to the study, to get a complete picture of how tDCS might affect the function of key brain networks in ways that could be helpful for SUDs.

1UG3DA047793-01
TDCS TO DECREASE OPIOID RELAPSE New Strategies to Prevent and Treat Opioid Addiction Translational Research to Advance Testing of Novel Drugs and Human Cell-Based Screening Platforms to Treat Pain and Opioid Use Disorder NIDA Butler Hospital ABRANTES, ANA M.; STEIN, MICHAEL D PROVIDENCE, RI 2018
NOFO Title: Device-Based Treatments for Substance Use Disorders (UG3/UH3, Clinical Trial Optional)
NOFO Number: PAR-18-494
Summary:

Neurostimulation techniques, such as transcranial direct current stimulation (tDCS), have been used as interventions for substance use disorders. This is a supplement to the currently NIDA-funded UG3 DA047793, “tDCS to Decrease Opioid Relapse,” which will measure behavioral and brain responses following tDCS stimulation delivered during tasks that use a particular brain network involved in cognitive control, and utilizing FMRI to assess the effects. This supplement allows the researchers to add an EEG measurement to the study, to get a complete picture of how tDCS might affect the function of key brain networks in ways that could be helpful for SUDs.

1R42NS132622-01
Targeting TLR4-lipid rafts to prevent postoperative pain Cross-Cutting Research Small Business Programs NINDS RAFT PHARMACEUTICALS, LLC DOUGHERTY, PATRICK M (contact); KOGAN, YAKOV San Diego, CA 2023
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R41/R42 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-009
1R01DA056673-01
Targeting Tiam1-Mediated Synaptic Plasticity for the Relief of Opioid Tolerance Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Baylor College of Medicine LI, LINGYONG (contact); TOLIAS, KIMBERLY Houston, TX 2022
NOFO Title: HEAL Initiative: Novel Targets for Opioid Use Disorders and Opioid Overdose (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-22-031
Summary:

Chronic opioid use results in tolerance, a primary driver for opioid misuse and overdose that directly contribute to increased morbidity and mortality. Changes in neuronal connectivity known as synaptic plasticity are a key determinant of opioid tolerance, but the underlying molecular mechanisms remain unclear. Tiam1 is a protein known to control the development of nerve cells and their connections and is also involved in morphine-induced neuronal changes. This research will examine Tiam1-mediated synaptic plasticity underlying opioid tolerance and validate Tiam1 as a potential therapeutic target for prevention of tolerance development.

1R21NS113335-01
Targeting the Vgf signaling system for new chronic pain treatments Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS University of Minnesota VULCHANOVA, LYUDMILA H Minneapolis, MN 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R21 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-042
Summary:

Chronic pain is maintained, in part, by persistent changes in sensory neurons, including a pathological increase in peptides derived from the neurosecretory protein VGF (non-acronymic). Preliminary findings show that the C-terminal VGF peptide, TLQP-62, contributes to spinal cord neuroplasticity and that TLQP-62 immunoneutralization attenuates established mechanical hypersensitivity in a traumatic nerve injury model of neuropathic pain. This project will test the hypothesis that spinal cord TLQP-62 signaling can be targeted for the development of new chronic pain treatments through immunoneutralization and/or receptor inhibition. It will pursue discovery and validation of TLQP-62-based therapeutic interventions along two parallel lines: identification of TLQP-62 receptor(s) and validation of anti-TLQP-62 antibodies as a potential biological therapeutic option for chronic neuropathic pain conditions.

3R01DK103901-04S1
TARGETING THE TRANSIENT RECEPTOR POTENTIAL CHANNELS TO IMPROVE BOWEL DYSFUNCTION Preclinical and Translational Research in Pain Management NIDDK WASHINGTON UNIVERSITY HU, HONGZHEN SAINT LOUIS, MO 2018
NOFO Title: Research Project Grant (Parent R01)
NOFO Number: PA-13-302
Summary:

Postoperative ileus (POI) following gastrointestinal (GI) surgery leads to significant patient morbidity and prolonged hospitalizations. Recent studies have demonstrated that intestinal manipulation and surgical trauma activate inflammatory macrophages (M?) and release inflammatory mediators such as nitric oxide (NO) to inhibit intestinal smooth muscle cells in POI. Intestinal M? are a highly heterogeneous and dynamic population in the innate immune system. Preliminary studies show that transient receptor potential vanilloid 4 (TRPV4) channel, a molecular sensor of tissue damage and inflammation, is exclusively expressed by the F4/80+/CD206+ intestinal anti-inflammatory M2 M?. Activation of TRPV4 produces an intestinal contractile response and improves GI transit in a mouse model of POI. The current proposal aims to elucidate the cellular and molecular mechanisms underlying the activation of TRPV4 in the intestinal M2 M?.

1UG3DA050317-01
Targeting the Ghrelin System for Novel Opioid Use Disorder Therapeutics Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA The University of Texas Medical Branch at Galveston Cunningham, Kathryn Galveston, TX 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

To address the need for novel therapeutics for opioid use disorder (OUD), this research group identified ghrelin as an endogenous regulator of the mesocorticostriatal circuit, which contributes to the enhanced motivational attributes of addictive drugs and drug-associated cues. Ghrelin binds to the growth hormone secretagogue receptor 1? (GHS1?R) to transduce several physiological and behavioral processes, including the reward-related effects of opioid agonists. Systemic administration of a GHS1?R antagonist/inverse agonist dose-dependently attenuated self-administration of the addictive opioid analgesic oxycodone as well as oxycodone-seeking. This project proposes to employ a suite of validated rodent OUD models to define the preclinical profile for PF5190457, a selective GHS1?R antagonist/inverse agonist. PF5190457’s abuse liability, ability to suppress withdrawal and relapse-like behaviors, drug metabolism and pharmacokinetics, and brain penetrability in rats will be assessed. Phase 1 clinical studies in non–treatment seeking OUD participants will follow to assess the safety and tolerability of PF5190457.

3R01NS094461-04S2
TARGETING SPECIFIC INTERACTIONS BETWEEN A-KINASE ANCHORING PROTEINS (AKAPS) AND ION CHANNELS WITH CELL-PERMEANT PEPTIDES AS A NOVEL MODE OF THERAPEUTIC INTERVENTION AGAINST PAIN DISORDERS Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TEXAS HLTH SCIENCE CENTER SHAPIRO, MARK S SAN ANTONIO, TX 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Multi-protein complexes have emerged as a mechanism for spatiotemporal specificity and efficiency in the function and regulation of myriad cellular signals. In particular, many ion channels are clustered either with the receptors that modulate them, or with other ion channels whose activities are linked. Often the clustering is mediated by scaffolding proteins, such as the AKAP79/150 protein that is a focus of this research. This research will focus on three different channels critical to nervous function. One is the"M-type" (KCNQ, Kv7) K+ channel that plays fundamental roles in the regulation of excitability in nerve and muscle. It is thought to associate with Gq/11- coupled receptors, protein kinases, calcineurin (CaN), calmodulin (CaM) and phosphoinositides via AKAP79/150. Another channel of focus is TRPV1, a nociceptive channel in sensory neurons that is also thought to be regulated by signaling proteins recruited by AKAP79/150. The third are L-type Ca2+ (CaV1.2) channels that are critical to synaptic plasticity, gene regulation and neuronal firing. This research will probe complexes containing AKAP79/150 and these three channels using"super-resolution" STORM imaging of primary sensory neurons and heterologously-expressed tissue-culture cells, in which individual complexes can be visualized at 10-20 nm resolution with visible light, breaking the diffraction barrier of physics. The researchers hypothesize that AKAP79/150 brings several of these channels together to enable functional coupling, which the researchers will examine by patch-clamp electrophysiology of the neurons. Förster resonance energy transfer (FRET) will also be performed under total internal reflection fluorescence (TIRF) or confocal microscopy, further testing for complexes containing KCNQ, TRPV1 and CaV1.2 channels. Since all three of these channels bind to AKAP79/150, the researchers hypothesize that they co-assemble into complexes in neurons, together with certain G protein-coupled receptors. Furthermore, the researchers hypothesize these complexes to not be static, but rather to be dynamically regulated by other cellular signals, which the researchers will examine using rapid activation of kinases or phosphatases. Several types of mouse colonies of genetically altered AKAP150 knock-out or knock-in mice will be utilized.

1R01NS113243-01
Targeting sensory ganglia and glial signaling for the treatment of acute and chronic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF CINCINNATI BERTA, TEMUGIN Cincinnati, OH 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

There is increasing evidence that satellite glial cells (SGCs) surrounding neurons in the dorsal root ganglia modulate sensory processing and are important for chronic pain. Tissue inhibitor of metalloproteinase 3 (TIMP3) signaling occurs in SGCs and has unique plethoric functions in inhibiting matrix metalloproteinases, the tumor necrosis factor-?-converting enzyme, and the vascular endothelial growth factor receptor 2, all of which have been implicated in inflammation and pain. This study will test the hypothesis that expression of TIMP3 in SGCs is critical for the neuroimmune homeostasis in sensory ganglia, as well as for the development of pain, and therefore could be a novel therapeutic target for acute and chronic pain. Given the expression of TIMP3 in human SGCs and the strong validation of multiple small molecules targeting TIMP3 signaling, including FDA-approved drugs, in various animal models of pain and in cultured human SGCs, the successful completion of this research project has a high likelihood of rapid translation into therapeutic testing in inflammatory pain conditions that are a risk for opioid abuse.

1R01DE032501-01
Targeting HB-EGF and Trigeminal EGFR for Oral Cancer Pain and Opioid Tolerance Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDCR NEW YORK UNIVERSITY YE, YI New York, NY 2022
NOFO Title: HEAL Initiative: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: NS22-034
Summary:

Oral cancers are painful and often require use of opioid medications to manage pain. However, the effectiveness of opioids often wanes quickly, and many patients require higher doses because they develop tolerance to these medications. This project will study the potential value of blocking epidermal growth-factor receptors interacting with peripheral nerves to treat oral cancer pain. The findings will advance understanding of the molecular mechanisms underlying oral cancer pain and provide a rationale for repurposing epidermal growth-factor receptor blockers, which is already approved for head and neck cancer treatment for treating oral cancer and associated pain.

1R01NS118504-01
Targeting GPCRs in Amygdalar and Cortical Neural Ensembles to Treat Pain Aversion Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIV OF NORTH CAROLINA CHAPEL HILL SCHERRER, GREGORY Chapel Hill, NC 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

There is a distinct neural ensemble in the brain that encodes the negative affective valence of pain. This project will identify novel targets to treat pain by determining the molecular identity of these BLA nociceptive cells via in situ hybridization and single cell RNAsequencing (scRNA-seq). Resolving the molecular identity of these ACC nociceptive cells will also reveal new targets to treat pain affect. To achieve these results the project will catalog candidate Gi/o-GPCR targets in BLA and ACC, test their utility to treat pain, and verify these new targets have no effect in the brain?s reward and breathing circuitry. The experiments in this project will also evaluate each target for abuse potential and effects on breathing by using behavioral assays for reward processing and whole-body plethysmography, respectively. To evaluate whether our results in rodents are likely to translate clinically, there will be an analysis of expression patterns of these drug targets in human tissue using in situ hybridization.

3R01DE029951-01S1
Targeting Endosomal Receptors for Treatment of Chronic Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDCR NEW YORK UNIVERSITY BUNNETT, NIGEL W New York, NY 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

G protein-coupled receptors (GPCRs) are the largest family of transmembrane signaling proteins and play important roles in inflammation and pain. GPCR signaling is fast and temporary, making it hard to measure in clinical studies of potential drugs to interfere with the signaling. This research is using selectively designed nanoparticles to stimulate or block GPCRs toward identifying new treatments for oral cancer pain. This award will use a new nanoformulation approach to understand how nanoparticles affect nerve function by i) testing the effects of continuous release of a GPCR inhibitor in an oral cancer microenvironment and ii) investigating the influence of various physicochemical characteristics of nanoparticles on nerve function in an oral cancer microenvironment.

1R01DE029951-01
Targeting Endosomal Receptors for Treatment of Chronic Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS COLUMBIA UNIVERSITY HEALTH SCIENCES BUNNETT, NIGEL W; SCHMIDT, BRIAN L New York, NY 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Many non-opioid drugs target G Protein-Coupled Receptors (GPCRs), a family of proteins involved in many pathophysiological processes including pain, fail during clinical trials for unknown reasons. A recent study found GPCRs not only function at the surface of nerve cells but also within a cell compartment called the endosome, where their sustained activity drives pain. This study will build upon this finding and test whether the clinical failure of drugs targeting plasma membrane GPCRs is related to their inability to target and engage endomsomal GPCRs (eGPCRs). This study will use stimulus-responsive nanoparticles (NP) to encapsulate non-opioid drugs and selectively target eGPCR dyads to investigate how eGCPRs generate and regulate sustained pain signals in neuronal subcellular compartments. This study will also validate eGCPRs as therapeutic targets for treatment of chronic inflammatory, neuropathic and cancer pain. Using NPs to deliver non-opioid drugs, individually or in combinations, directly into specific compartments in nerve cells could be a potential strategy for new pain therapies.

1RF1NS131812-01A1
Targeting Checkpoint Inhibitors for Pain Control Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS DUKE UNIVERSITY JI, RU-RONG Durham, NC 2023
NOFO Title: HEAL Initiative: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-22-034
Summary:

Immune checkpoint proteins regulate the immune system to prevent it from indiscriminately attacking cells. Some cancers activate these immune checkpoints to avoid attack, and drugs that target certain immune checkpoints are approved for cancer treatment. The same pathway may also be involved in pain because immune checkpoint proteins, such as programmed death 1 (PD-1) and the molecule that binds to it (programmed death ligand 1 [PD-L1]), also are found in sensory neurons, microglia, and macrophages. This project will investigate PD-1/PD-L1 in different cell populations to determine their contribution to pain and to the effects of opioids such as morphine. This knowledge may help identify new drugs for pain management that modify immune checkpoint activity.

1R43HD112219-01A1
Targeted Temperature Modulation with Smart Radiometric Monitoring for Effective and Long-Lasting Opioid-Free Pelvic Pain Relief: A Novel Low-Cost, Portable, Tampon-Sized Thermal Transfer Device Cross-Cutting Research Small Business Programs NICHD H3PELVIC THERAPY SYSTEMS, INC. LYON, ZACHARY W Lewisville, NC 2023
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-23-006
Summary:

Pelvic pain (PP) includes more than 20 different painful and debilitating conditions, such as urinary tract infections, menstrual cramps, endometriosis, overactive bladder, and interstitial cystitis, and affects millions of people. Globally, pelvic pain affects 1 in 5 women and 1 in 12 men. This project will develop an instrument to monitor and treat pain-associated temperature changes in the pelvic region to reduce chronic pelvic pain. This novel system is intended to be used at home with personalized settings.

1RF1NS113839-01
Target validation of a novel CGRP receptor in migraine Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF IOWA RUSSO, ANDREW F Iowa City, IA 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Migraine is a painful and debilitating neurological condition, the development and maintenance of which involves the neuropeptide calcitonin gene-related peptide (CGRP). An exciting development in the treatment of migraine is the recent FDA approval of a new class of CGRP-targeted therapies designed to prevent migraine. However, these drugs meet a clinically relevant endpoint for only about half of the patients. This project will test the hypothesis that the high-affinity CGRP receptor AMY1 is a novel and unexplored target that mediates specific migraine-related behaviors in the brain and/or periphery to cause migraine. Validation of CGRP and AMY1 receptor involvement in migraines will create a new direction for the development of novel drugs and provide alternatives to opioids for management of migraine and potentially for other chronic pain conditions.

1R01DA056660-01
Target Specificity of Tabernanthalog Treatment in Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA University of Colorado, Denver PETERS, JAMIE (contact); HEINSBROEK, JASPER Denver, Colorado 2022
NOFO Title: HEAL Initiative: Novel Targets for Opioid Use Disorders and Opioid Overdose (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-22-031
Summary:

Currently available treatments for opioid use disorder (OUD) are insufficient for many patients. Novel compounds that can promote alterations in brain connections (i.e., neural plasticity) possess enormous potential for improving substance use disorder (SUD) treatments. Psychedelic compounds induce neural plasticity and can elicit long-lasting, beneficial impacts on a wide variety of SUDs. However, these compounds have significant side effects, including hallucinations and cardiotoxicity. Researchers have developed a novel, synthetic derivative of the psychedelic ibogaine, called tabernanthalog, that does not have these side effects. This compound has demonstrated both short- and long-term therapeutic effects in a preclinical model of OUD. This research study will determine the molecular and neural mechanisms through which tabernanthalog affects opioid seeking. It will also evaluate whether the effects are specific to opioids and do not alter response to natural rewards and will examine the efficacy of tabernanthalog in a preclinical model of comorbid opioid and alcohol use disorder.