Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Sort descending Institution(s) Investigator(s) Location(s) Year Awarded
1R43TR004743-01
The Pain in a Dish Assay (PIDA): A High Throughput System Featuring Human Stem Cell-Derived Nociceptors and Dorsal Horn Neurons to Test Compounds for Analgesic Activity Cross-Cutting Research Small Business Programs NCATS VALA SCIENCES, INC. MCDONOUGH, PATRICK M San Diego, CA 2023
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-23-006
Summary:

This project will develop PIDA, which will allow researchers to measure the activity of pain-sensitive human neurons in response to pain stimuli and potential pain treatments. The tool will use automated digital microscopes in the absence or presence of a potential pain medication. Since this tool contains human neurons, it may be more effective at predicting the efficacy of potential pain drugs in human patients than the animal models that are currently used.

3R44TR001326-03S1
Automation and validation of human on a chip systems for drug discovery Cross-Cutting Research Small Business Programs NCATS HESPEROS, LLC SHULER, MICHAEL L; HICKMAN, JAMES J Orlando, FL 2019
NOFO Title: PHS 2017-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-17-302
Summary:

Hesperos uses microphysiological systems in combination with functional readouts to establish systems capable of analysis of chemicals and drug candidates for toxicity and efficacy during pre-clinical testing, with initial emphasis on predictive toxicity. The team constructed physiological systems that represent cardiac, muscle and liver function, and demonstrated a multi-organ functional cardiac/liver module for toxicity studies as well as metabolic activity evaluations. In addition, the team demonstrated multi-organ toxicity in a 4-organ system composed of neuronal, cardiac, liver and muscle components. While much is known about the cells and neural circuitry regulating pain modulation there is limited knowledge regarding the precise mechanism by which peripheral and spinal level antinociceptive drugs function, and no available human-based model reproducing this part of the pain pathway. The ascending pain modulatory pathways provide a well characterized neural architecture for investigating pain regulatory physiology. In this project, the research team propose a human-on-a-chip neuron tri-culture system composed of nociceptive neurons, GABAergic interneurons and glutamatergic dorsal projection neurons (DPN) integrated with a MEMS construct. Using this model, investigators will interrogate pain signaling physiology at three levels, 1) at the site of origin by targeting nociceptive neurons with pain modulating compounds including noxious stimuli and inflammatory mediators, 2) at the inhibitory GABAergic interneuron, and 3) at the ascending spinal level by targeting glutamatergic DPNs. These circuits will be integrated utilizing expertise in patterning neurons as well as integration with BioMEMs devices. This system provides scientists with a better understanding of ascending pain pathway physiology and enable clinicians to consider alternative indications for treating pain at peripheral and spinal levels. 

3R42TR001270-03S1
PERIPHERAL NERVE-ON-A-CHIP FOR PREDICTIVE PRECLINICAL PHARMACEUTICAL TESTING Cross-Cutting Research Small Business Programs NCATS AXOSIM, INC. CURLEY, JABE L; MOORE, MICHAEL J NEW ORLEANS, LA 2018
NOFO Title: PHS 2016-02 Omnibus Solicitation of the NIH for Small Business Technology Transfer Grant Applications (Parent STTR [R41/R42])
NOFO Number: PA-16-303
Summary:

The ability to de-risk lead compounds during pre-clinical development with advanced “organoid-on-a-chip” technologies shows promise. Development of microphysiological models of the peripheral nervous system is lagging. The technology described herein allows for 3D growth of high-density axonal fiber tracts, resembling peripheral nerve anatomy. The use of structural and functional analyses should mean drug-induced neural toxicity will manifest in these measurements in ways that mimic clinical neuropathology. The goals of this proposal are to establish our human model using relevant physiological measurements in tissues fabricated from human iPS cells and to validate the model system with a library of compounds, comparing against conventional cell culture models. Validating the peripheral nerve model system with drugs known to induce toxicity via a range of mechanisms will demonstrate the ability of the system to predict various classifications of neuropathy, yielding a high-content assay far more informative than traditional in vitro systems.

1R61AT010800-01
Effectiveness of a CBT-based mHealth Intervention Targeting MOUD Retention, Adherence, and Opioid Use Cross-Cutting Research Small Business Programs NCCIH UCLA GLASNER-EDWARDS, SUZETTE V Los Angeles, CA 2019
NOFO Title: HEAL Initiative: Behavioral Research to Improve MAT: Behavioral and Social Interventions to Improve Adherence to Medication Assisted Treatment for Opioid Use Disorders (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-AT-19-006
Summary:

Medications for the treatment of opioid use disorders (MOUD) are effective at reducing opioid use, opioid overdose risk, and opioid-related deaths; however, retention and adherence to MOUD treatment, particularly buprenorphine (BUP), are discouragingly low. The objective of the current research is to adapt and extend a cognitive behavioral therapy-based short message system (SMS) intervention (TXT-CBT) to address MOUD treatment retention and adherence using the imFREE (Interactive Messaging for Freedom from Opioid Addiction) platform. imFREE builds upon the efficacious SMS-based TXT-CBT intervention, with content addressing retention and adherence to BUP, including mitigating risk factors for dropout, and features to notify social and provider support contacts in the face of treatment discontinuation and/or other indicators of relapse and overdose risk. By providing support to maximize BUP treatment adherence, coupled with skills to prevent relapse, imFREE may provide a cost-effective, easily deployable strategy for OUD treatment and prevention of overdose deaths.

1R43CA268700-01A1
Pre-clinical Validation of Phase II Peptide LRP-1 Agonist to Treat and Prevent Chemotherapy Induced Peripheral Neuropathy Cross-Cutting Research Small Business Programs NCI SERPIN PHARMA, LLC GELBER, COHAVA (contact); CAMPANA, WENDY M Manassas, VA 2022
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

Some chemotherapy treatments damage nerves outside the brain and spinal cord. This condition, chemotherapy-induced peripheral neuropathy, involves tingling, burning, weakness, or numbness in hands and/or feet and affects nearly 70% of cancer patients receiving chemotherapy. Common pain medications, including opioids, can relieve pain for short intervals but are not suitable for long-term therapy. This project will develop and test a new type of treatment (reduced size cyclic analogs) for this condition. The research will evaluate the ability of this therapy to reduce inflammation and pain, as well as to repair nerve damage.

1R44CA271904-01A1
Novel Biologic to Treat Chemotherapy-Induced Neuropathic Pain Cross-Cutting Research Small Business Programs NCI RAFT PHARMACEUTICALS, LLC KOGAN, YAKOV San Diego, CA 2022
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

Some chemotherapy treatments damage nerves outside the brain and spinal cord. This condition, chemotherapy-induced peripheral neuropathy, involves tingling, burning, weakness, or numbness in hands and/or feet and affects nearly 70% of cancer patients receiving chemotherapy. Common pain medications, including opioids, can relieve pain for short intervals but are not suitable for long-term therapy. This project will conduct studies to investigate the safety and tolerability of a novel strategy to treat neuropathic pain: modifying the activity of the dorsal root ganglia, which are nerve cells in the spinal cord that communicate pain signals to and from the brain.

1R43CA233371-01A1
Inhibiting soluble epoxide hydrolase as a treatment for chemotherapy inducedperipheral neuropathic pain Cross-Cutting Research Small Business Programs NCI EICOSIS, LLC BUCKPITT, ALAN R Davis, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

 Investigating the broader efficacy of sEH inhibition and specifically our IND candidate, EC5026, has indicated that it is efficacious against chemotherapy induced peripheral neuropathy (CIPN). This painful neuropathy develops from chemotherapy treatment, is notoriously difficult to treat, and can lead to discontinuation of life-prolonging cancer treatments. Thus, new therapeutic approaches are urgently needed. The research team will investigate if EC5026 has potential drug-drug interaction with approved chemotherapeutics or alters immune cells function, and assess the effects of sEHI on the lipid metabolome and probe for changes in endoplasmic reticulum stress and axonal outgrowth in neurons. The team proposes to more fully characterize the analgesic potential of our compound and investigate on and off target actions in CIPN models and model systems relevant to cancer therapy.

1R43HL167661-01A1
Improving Analgesic Effectiveness and Safety with Proactive Precision Pain Management in Thoracic Surgical Patients with Lung Lesions Cross-Cutting Research Small Business Programs NHLBI OPALGENIX, INC. PLUMP, STEVEN R (contact); SADHASIVAM, SENTHILKUMAR Carmel, IN 2023
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 - Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

Thoracic (chest) surgeries often cause both short-term (acute) and long-term (chronic) pain and long-term opioid use. Unique genetic and clinical risk factors affect individual responses to surgical pain and pain medications. Current trial-and-error approaches to managing post-surgical pain and opioid prescribing are not ideal. This project will develop predictive software within a medical device that takes into account an individual’s genetic and clinical information to predict the likelihood of chronic pain following thoracic surgery. 

1R43HL167661-01A1
Improving Analgesic Effectiveness and Safety with Proactive Precision Pain Management in Thoracic Surgical Patients with Lung Lesions Cross-Cutting Research Small Business Programs NHLBI OPALGENIX, INC. PLUMP, STEVEN R (contact); SADHASIVAM, SENTHILKUMAR Indianapolis, IN 2023
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 - Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
1R41AR080620-01A1
Injectable Ice Slurry Cooling Technology for Treatment of Postoperative Pain Cross-Cutting Research Small Business Programs NIAMS BRIXTON BIOSCIENCES, INC. SIDOTI, CHARLES Cambridge, MA 2022
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R41/R42 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-009
Summary:

More than 700,000 total knee replacement surgeries are performed each year in the United States to relieve joint pain in patients with end-stage osteoarthritis or rheumatic arthritis. However, many patients still experience significant pain after this procedure, calling for additional long-lasting, drug-free pain management strategies. This project will develop and test a commercial prototype device for persistent knee pain after total knee replacement. The injection-based method freezes peripheral nerves to reduce pain sensation.

1R44AR076885-01
Enhancing Physical Therapy: Noninvasive Brain Stimulation System for Treating Carpal Tunnel Syndrome Cross-Cutting Research Small Business Programs NIAMS HIGHLAND INSTRUMENTS, INC. WAGNER, TIMOTHY ANDREW; DIPIETRO, LAURA Cambridge, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Required)
NOFO Number: PA-18-573
Summary:

 Non-Invasive Brain Stimulation (NIBS) has been successfully applied for the treatment of chronic pain (CP) in some disease states, where treatment induced changes in brain activity revert maladaptive plasticity associated with the perception/sensation of CP [25-28]. However, the most common NIBS methods, e.g., transcranial direct current stimulation, have shown limited, if any, efficacy in treating neuropathic pain. It has been postulated that limitations in conventional NIBS techniques’ focality, penetration, and targeting control limit their therapeutic efficacy . Electrosonic Stimulation (ESStim™) is an improved NIBS modality that overcomes the limitations of other technologies by combining independently controlled electromagnetic and ultrasonic fields to focus and boost stimulation currents via tuned electromechanical coupling in neural tissue . This proposal is focused on evaluating whether our noninvasive ESStim system can effectively treat CP in carpal tunnel syndrome (CTS), both as a lone treatment and in conjunction with physical therapy (PT). Investigators hypothesize ESStim can be provided synergistically with PT, as both can encourage plasticity-dependent changes which could maximally improve a CTS patient’s pain free mobility. In parallel with the CTS treatments, the team will build multivariate linear and generalized linear regression models to predict the CTS patient outcomes related to pain, physical function, and psychosocial assessments as a function of baseline disease characteristics. The computational work will be used to develop an optimized CTS ESStim dosing model. 

1R44AR083337-01
Development of a Regional Anesthesia Guidance System to Increase Patient Access to Opioid-Sparing Analgesia for Hip Fracture Pain Cross-Cutting Research Small Business Programs NIAMS RIVANNA MEDICAL, INC. MAULDIN, FRANK WILLIAM Charlottesville, VA 2023
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-23-006
Summary:

Every year, more than 330,000 Americans are hospitalized for hip fractures. Rapid surgical intervention and pain treatment is critical to recover mobility and reduce other health complications. Ultrasound-guided regional anesthesia techniques are an effective alternative to opioid medication, but require specialized training for use in the emergency department. This project will develop and validate an easy-to-use ultrasound-based regional anesthesia guidance system, to ultimately improve access to non-opioid-pain treatment for hip fracture pain.

1R44AR074820-01A1
A phenotypic screen for osteoarthritic pain therapeutics using all-optical electrophysiology Cross-Cutting Research Small Business Programs NIAMS QUELL TX, INC. LIU, PIN; MCMANUS, OWEN B Cambridge, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

 Quell Therapeutics uses the Optopatch platform for making all-optical electrophysiology measurements in neurons at a throughput sufficient for phenotypic screening. Using engineered optogenetic proteins, blue and red light can be used to stimulate and record neuronal activity, respectively. Custom microscopes enable electrophysiology recordings from 100’s of individual neurons in parallel with high sensitivity and temporal resolution, a capability currently not available with any other platform screening technology. Here, researchers combine the Optopatch platform with an in vitro model of chronic pain, where dorsal root ganglion (DRG) sensory neurons are bathed in a mixture of inflammatory mediators found in the joints of osteoarthritis patients. The neurons treated with the inflammatory mixture become hyperexcitable, mimicking the anticipated cellular pain response. Investigators calculate the functional phenotype of arthritis pain, which captures the difference in action potential shape and firing rate in response to diverse stimuli. The team will screen for small molecule compounds that reverse the pain phenotype while minimizing perturbation of neuronal behavior orthogonal to the pain phenotype, the in vitro “side effects.” The highest ranking compounds will be chemically optimized and their pharmacokinetic, drug metabolism, and in vivo efficacy will be characterized. The goal is to advance therapeutic discovery for pain, which may ultimately help relieve the US opioid crisis.

1SB1AR083748-01
Commercial Readiness in CTS Pain Management Cross-Cutting Research Small Business Programs NIAMS HIGHLAND INSTRUMENTS, INC. WAGNER, TIMOTHY ANDREW (contact); DIPIETRO, LAURA Cambridge, MA 2023
NOFO Title: HEAL Commercialization Readiness Pilot (CRP) Program: Embedded Entrepreneurs for Small Businesses in Pain Management (SB1 Clinical Trial Not Allowed)
NOFO Number: PAR-23-069
1R43AR074369-01
Development of a fixed-dose combination therapy for the treatment of chronic musculoskeletal pain Cross-Cutting Research Small Business Programs NIAMS NEUROCYCLE THERAPEUTICS, INC. TOCZKO, MATTHEW ALEXANDER Sheridan, WY 2019
NOFO Title: PHS 2017-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-17-302
Summary:

Non-steroidal anti-inflammatory drugs (NSAIDs) are a first line pharmacologic pain therapy for chronic musculoskeletal pain, and rheumatoid arthritis (RA) and moderate to severe osteoarthritis (OA) specifically. However, insufficient pain relief by NSAID monotherapy has encouraged the use of combination therapy. Combinations of NSAIDs plus weak opioids are widely used although objective evidence for efficacy is limited and they have many adverse events.  A growing body of evidence suggests that ?2/?3 subtype-selective positive allosteric modulators (PAM) of the ?- aminobutyric acid A receptor (GABAAR) may effectively restore central pain regulatory mechanisms thus providing effective relief of chronic pain with reduced prevalence and severity of side-effects.  Based on these promising preliminary studies and considerable supporting literature data, the research team will test the hypothesis that combination dosing of TPA-023B with an NSAID will work synergistically to suppress the acute and chronic pain components of chronic musculoskeletal pain. 

1R43HD112219-01A1
Targeted Temperature Modulation with Smart Radiometric Monitoring for Effective and Long-Lasting Opioid-Free Pelvic Pain Relief: A Novel Low-Cost, Portable, Tampon-Sized Thermal Transfer Device Cross-Cutting Research Small Business Programs NICHD H3PELVIC THERAPY SYSTEMS, INC. LYON, ZACHARY W Lewisville, NC 2023
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-23-006
Summary:

Pelvic pain (PP) includes more than 20 different painful and debilitating conditions, such as urinary tract infections, menstrual cramps, endometriosis, overactive bladder, and interstitial cystitis, and affects millions of people. Globally, pelvic pain affects 1 in 5 women and 1 in 12 men. This project will develop an instrument to monitor and treat pain-associated temperature changes in the pelvic region to reduce chronic pelvic pain. This novel system is intended to be used at home with personalized settings.

1R44HD107822-01
A Novel Medical System for Quantitative Diagnosis and Personalized Precision Botulinum Neurotoxin Injection in Chronic Pelvic Pain Management Cross-Cutting Research Small Business Programs NICHD HILLMED, INC. DIAS, NICHOLAS Katy, TX 2021
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 - Clinical Trial Required)
NOFO Number: RFA-NS-20-010
Summary:

Chronic pelvic pain affects social and sexual quality of life in up to 20% of women in the United States. It is often managed with physical therapy approaches, but when these measures fail, injection therapies may be indicated. These include injection of botulinum neurotoxin, which leads to muscle relaxation in the pelvic floor and thus pain relief. However, botulinum neurotoxin has dose-dependent side effects and is expensive. Therefore, a precision injection technique to administer botulinum neurotoxin so that it remains effective while minimizing adverse effects and costs is needed. Hillmed Inc. has developed a technique to assess the pelvic floor and choose the optimal injection site, which has improved treatment outcome in initial analyses. They are now aiming to develop a commercializable, personalized precision injection medical device for botulinum toxin and software package that will enable clinicians to optimize botulinum neurotoxin injection. They will then assess the system’s efficacy in a clinical trial of women with chronic pelvic pain and healthy women.

1R43HD107727-01A1
Novel Approach to Personalize and Monitor Therapeutic Training At Home in Chronic Pelvic Pain Management Cross-Cutting Research Small Business Programs NICHD Hillmed, Inc. DIAS, NICHOLAS Katy, TX 2022
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

Chronic pelvic pain is a debilitating condition that negatively affects the social and sexual quality of life for up to 20% of American women. Pelvic floor muscle (PFM) pain is caused by many factors, as well as by incorrect posture and excessive sensitization of the peripheral nervous system. This project will introduce a prototype of the Chronic Pelvic Pain (CPP) HomeTrainer that monitors, quantitatively and in real time, both PFM activation capacity and muscle interactions between the PFM and hip/trunk muscles and adapts the PFM training to the user’s needs in their own home. The proposed CPP HomeTrainer offers biofeedback to aid myofascial physical therapy and movement pattern training by tailoring the protocol to specifically correct interactions between the PFM and problematic hip/trunk muscles.

1R43HD111082-01A1
Novel Venous Device for the Treatment of Chronic Pelvic Pain Cross-Cutting Research Small Business Programs NICHD V-FLOW MEDICAL, INC. BRENNEMAN, RODNEY San Juan Capistrano, CA 2023
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 - Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

Pelvic venous compression is a common cause of chronic pelvic pain in women. Because many women do not receive an accurate diagnosis for the cause of their pelvic pain, some take opioids to help manage their symptoms. This project will further develop a new diagnostic system specifically designed to treat limited blood flow in pelvic region. This system visualizes pelvic veins toward development of a method to relieve pressure that causes pain. 

1R44DA050357-01
An optimized screening platform for identifying and quantifying biased agonists as drugs for the treatment of Opioid Use Disorder Cross-Cutting Research Small Business Programs NIDA MONTANA MOLECULAR, LLC QUINN, ANNE MARIE (contact); HUGHES, THOMAS E Bozeman, MT 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

As the opioid crisis claims more and more lives, there is a need to develop new, safer analgesics. Biased agonists could activate beneficial signaling pathways while avoiding those that cause adverse effects. This project aims to speed the discovery of non-addictive analgesics by providing drug discovery teams with simpler, more robust, more quantitative assays for agonist bias. The goal is to optimize and test new assays for agonist bias at NOP, D3 dopamine, CB1 cannabinoid, and OPRM1 opioid receptors, which couple to both the Gi and ?-arrestin signaling pathway, and create new tools to improve the analysis of structure/activity relationships that can be used in drug discovery and distribute to researchers who are developing new drugs for OUD.

1R43DA047781-01
A NOVEL FAST ACTING NALMEFENE FORMULATION FOR THE PREVENTION AND TREATMENT OF OPIOID OVERDOSE Cross-Cutting Research Small Business Programs NIDA AVIOR, INC. Vasisht, Niraj Cary, NC 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

Rescue of victims of opioid overdose is accomplished by treatment with antagonist drugs, such as naloxone, that can reverse the respiratory depression. However, naloxone has serious liver toxicity and a short half-life, and its complete antagonism results in a withdrawal effect. Nalmefene is an FDA-approved opioid derivative that is an antagonist of the MOR and a weak agonist of the k-opioid receptors (KOR). An immediate release intravenous injectable formulation was approved by the FDA in 1995 for opioid overdose; however, the requirement for intravenous administration has limited its clinical use. This project, in partnership with Avior, aims to develop a fast-onset, rapidly-dissolving, mucoadhesive thin film formulation that carries uniformly distributed nalmefene nanoparticles on the surface of the film. This film, produced using Avior’s proprietary Speedit™ transmucosal drug delivery technology, rapidly delivers nalmefene when the film is placed in contact with the lower lining of the inner lip. This project will generate non-clinical data to support critical human clinical trials to determine if a transmucosal film can be developed with a rapid onset of action that is required for rescue of opioid overdose patients or taken prophylactically to prevent respiratory depression, to assess whether the effective speed of delivery is sufficient to conduct a human clinical trial.

1R43DA049650-01
Patient-level Risk Identifier Models for a Multifactor Opioid Abuse Risk Assessment Strategy Cross-Cutting Research Small Business Programs NIDA PRINCIPLED STRATEGIES, INC. DuBose, Paul ENCINITAS, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

This project, a partnership with Principled Strategies, will develop innovative, patient-level models for opioid risk identification and integrate them into the SafeUseNow managed care system—an actionable solution for combating prescription drug abuse that currently operates at the prescriber level only. Incorporating patient-level risk identifier models will strengthen an already powerful and demonstrably effective program and constitutes a critical step in generating a first-in-class, multifactor risk assessment strategy that is truly holistic. Using a variety of data sources, advanced analytics, and multiple empirically validated risk identification models, the groundbreaking advancement in SafeUseNow technology will enable health care stakeholders to identify combinations of prescribers, patients, and pharmacies whose behaviors may contribute to prescription drug abuse. This project will work to obtain new datasets for analysis, assess them, and use them to build national patient-level risk models for relevant outcomes, which will enable the development and evaluation of a next-generation prototype for a patient-level version of SafeUseNow.

1R43DA050360-01
Transcutaneous auricular neurostimulation for neonatal abstinence syndrome Cross-Cutting Research Small Business Programs NIDA SPARK BIOMEDICAL INC KHODAPARAST, NAVID (contact); JENKINS, DOROTHEA DENISE Friendswood, TX 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

As of 2012, an infant with neonatal abstinence syndrome (NAS) was born every 25 minutes in the United States, accounting for more than $1.5 billion in national health care expenditures. These infants frequently require hospital stay in a neonatal intensive care unit (NICU), with an average hospital stay of 25 days at an average treatment cost of $66,000. Treatment of NAS usually follows a multimodal regime based on drug therapy with an oral morphine solution, mostly in combination with a sedative, but there is a need for nonpharmacological approaches. This project will test a transcutaneous auricular neurostimulation device to help NAS babies recover from opioid withdrawal without harmful side effects. The non-invasive, auricular neurostimulation device will be placed around the ear (similar to a hearing aid), and stimulation will be delivered transcutaneously.

1R44DA046151-01
RAE (REALIZE, ANALYZE, ENGAGE)- A DIGITAL BIOMARKER BASED DETECTION AND INTERVENTION SYSTEM FOR STRESS AND CRAVING DURING RECOVERY FROM SUBSTANCE ABUSE DISORDERS Cross-Cutting Research Small Business Programs NIDA ContinueYou, LLC Reinhardt, Megan Rois Bristol, ME 2019
NOFO Title: Wearable to Track Recovery and Relapse Factors for People w/ Addiction (R43/R44)
NOFO Number: RFA-DA-18-010
Summary:

For many individuals in recovery from a substance use disorder, certain cues—including stress and drug-related cues—can trigger a physiological state in which they are more likely to relapse. In this SBIR project, the investigators intend to deploy a system—consisting of a wearable sensor, a smartphone app, and a clinical portal—to provide individuals in recovery and their treatment providers with an opportunity to identify moments of high risk for relapse and to access real-time intervention opportunities. The sensors will identify signals of stress or drug use, interface with a smartphone app, and provide options for annotations, stress-reduction techniques, or contact with an individual’s support system and treatment providers, as well as log and encourage healthy behaviors. This study will deploy and optimize the system, as well as test its effects on addiction-related outcomes, such as rate of relapse.

1R44DA059302-01
Development of an Opioid Sparing Therapeutic to Minimize Opioid Use Disorder and Tolerance in the Treatment of Pain Cross-Cutting Research Small Business Programs NIDA AMALGENT THERAPEUTICS, LLC MEYN, MALCOLM A Greenville, NC 2023
NOFO Title: PHS 2022-2 Omnibus Solicitation of the NIH, CDC and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-22-176
Summary:

Managing the risks and benefits of opioid medications can be difficult. Although prescription opioids alleviate pain for some patients, serious adverse effects include opioid use disorder. There is a critical, unmet need for new technologies that significantly minimize the opioid doses needed for effective relief from moderate to severe pain. This project will develop a novel combination treatment containing a small amount of morphine along with pramipexole, a drug approved by the U.S. Food and Drug Administration for Parkinson’s disease and restless legs syndrome that reduces the reward-seeking behavior associated with opioids. The research will conduct safety studies to enable testing in human research participants.