Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Sort ascending Institution(s) Investigator(s) Location(s) Year Awarded
1R41NS115460-01
Minimally Invasive Intercostal Nerve Block Device to Treat Severe Pain and Reduce Usage of Opiates Cross-Cutting Research Small Business Programs NINDS TAI, CHANGFENG; POPIELARSKI, STEVE THERMAQUIL, INC. Philadelphia, PA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Technology Transfer Grant Applications (Parent STTR [R41/R42] Clinical Trial Not Allowed)
NOFO Number: PA-18-575
Summary:

Most of the 200k Americans who undergo thoracotomy each year receive opiates to reduce postoperative pain because clinicians have few non-addictive, cost-effective choices to control the severe pain patients often experience in the first two weeks after surgery. Managing pain post-thoracotomy is critical to enable patients to take deep breaths and remove (via coughing) lung secretions that otherwise significantly increase risk of pneumonia and collapsed lung, hospital re-admission and morbidity. The most severe pain associated with thoracotomy is transmitted along the intercostal nerves, but no long-term analgesic or nerve block device exists that can provide safe and effective long-term reduction of pain. A reversible, patient-controlled, non- addictive, intercostal nerve block device would reduce suffering due to thoracotomy, broken ribs and herpes zoster. In this Phase I project, the team will develop a minimally invasive thermal nerve block device that can control nerve conduction by gently warming and cooling a short nerve segment between room temperature and warm water temperature. This novel approach is based on the discovery that warm and cool temperature mechanisms of nerve block are different and additive, enabling moderate-temperature nerve block by cycling neural tissues slightly above and below body temperature. Reversible thermal nerve blocks represent a completely new approach to managing pain.  

1R41NS118992-01
Development of selective calpain-1 inhibitors for chronic pain Cross-Cutting Research Small Business Programs NINDS 1910 GENETICS, INC. NWANKWO, JENNIFER Cambridge, MA 2021
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: NS-20-011
Summary:

The need to develop non-opioid therapeutics for chronic pain is greater than ever.  One option being explored is inhibiting the activity of calpains – enzymes that have been shown to cause pain in animal models of chronic pain.  Using an artificial intelligence (AI)-driven drug discovery platform, researchers have uncovered and validated four calpain-1 inhibitors using biochemical assays.  This study by 1910 Genetics Inc. hopes to synthesize multiple analogs of its most potent discovered calpain-1 inhibitor and determine its effectiveness against calpain-2 and certain enzymes that break down proteins.  Findings that successfully significantly inhibit calpain-1 in at least one animal model of chronic pain could lead to the first oral, central nervous system penetrating selective calpain-1 inhibitor [non-opioid therapeutic] for chronic pain.

1R41NS127637-01A1
Protease-Activated-Receptor-2 Antagonists for Treatment of Migraine Pain Cross-Cutting Research Small Business Programs NINDS PARMEDICS, INC. DEFEA, KATHRYN (contact); DUSSOR, GREGORY O Temecula, CA 2023
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R41/R42 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-009
Summary:

There is a need for additional effective treatments for migraine, which affects more than 36 million people in the United States. This project will develop an oral medication to disrupt the biological processes that drive migraine pain, which include nerve inflammation in response to pain signals. 

1R43NS120335-01
Closed-Loop Micromagnetic Neuromodulation as a Non-Opioid Treatment for Neuropathic Pain Cross-Cutting Research Small Business Programs NINDS QUANTUM NANOSTIM REILLY, THOMAS Treasure Island, FL 2021
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

Spinal cord stimulation (SCS) has been shown to provide effective relief for most people with chronic pain and eliminated the need for opioid therapy in more than half of those treated. However, traditional SCS approaches have encountered problems when glial cells coat the stimulation electrodes that distance the device from targeted neurons. This project will develop a novel hybrid Closed Loop Omnidirectional Neuromodulation with Electromagnetic fields (CLONE) system that is combined with magnetic-based stimulation to overcome glial coating of SCS electrodes, better target neurons in dorsal spine tissue, which may lead to better treatment of chronic neuropathic neck and low back pain.

1R41NS116784-01
Discovery of T-type Calcium Channel Antagonists from Multicomponent Reactions and Their Application in Paclitaxel-induced Peripheral Neuropathy Cross-Cutting Research Small Business Programs NINDS REGULONIX, LLC KHANNA, RAJESH Tucson, AZ 2019
NOFO Title: PHS 2017-02 Omnibus Solicitation of the NIH for Small Business Technology Transfer Grant Applications (Parent STTR [R41/R42])
NOFO Number: PA-17-303
Summary:

Chemotherapy-induced peripheral neuropathy (CIPN) is detected in 64% of cancer patients during all phases of cancer. CIPN can result in chemotherapy dose reduction or discontinuation, and can also have long-term effects on the quality of life. Taxanes (like Paclitaxel) may cause structural damage to peripheral nerves, resulting in aberrant somatosensory processing in the peripheral and/or central nervous system. Dorsal root ganglia (DRG) sensory neurons as well as neuronal cells in the spinal cord are key sites in which chemotherapy induced neurotoxicity occurs. T-type Ca2+ channels are critical determinants of increased neuronal excitability and neurotransmission accompanying persistent neuropathic pain. Though Cav3.2 has been targeted clinically with small molecule antagonists, no drugs targeting these channels have advanced to phase II human clinical trials. This proposal aims to explore multicomponent reaction products, for the rapid identification of potent and selective T-type Ca2+ channel antagonists. The work proposed here is the first step in developing non-opioid pain treatments for CIPN. The team anticipates success against paclitaxel-induced chronic pain will translate into other chronic pain types as well, but CIPN provides focus for early stage proof-of-concept.

1R44NS119036-01
Development of a novel analgesic for mixed inflammatory and neuropathic pain states Cross-Cutting Research Small Business Programs NINDS ANABIOS CORPORATION GHETTI, ANDREA San Diego, CA 2021
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

As prescription opioid drug abuse and overdose-related deaths continue to skyrocket in the United States, the need for new and more effective non-addictive pain drugs to treat chronic pain remains critical. This research is conducting studies in animal models of a small molecule that has high potential to treat chronic pain conditions associated with neuropathy and/or inflammation. The goal of this project is to conduct dosing and other studies leading up to an animal model study of the potential drug in a toxicology study for 28 days. Results may lead to Investigative New Drug regulatory clearance to begin clinical studies to validate the potential drug’s efficacy and safety.

2R44MD015912-03
Clinical Optimization of Ultrasonic Drug Delivery Technologies for Underserved Minority U.S. Veterans in Chronic Pain Cross-Cutting Research Small Business Programs NIMHD ZETROZ SYSTEMS, LLC LEWIS, GEORGE KENNETH Trumbull, CT 2023
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 - Clinical Trial Required)
NOFO Number: RFA-NS-20-010
Summary:

Osteoarthritis is one of the most common joint diseases affecting Americans. Osteoarthritis is particularly high among veterans with a service-related disability. This project will develop and refine a wireless ultrasound device that increases the penetration of over-the-counter pain medications into the body, which is expected to reduce pain. The research will conduct safety and clinical testing toward commercializing this technology. 

1R44GM140795-01A1
Non-Opioid Post-Operative Pain Management Using Bupivacaine-loaded Poly(ester urea) Mesh Cross-Cutting Research Small Business Programs NIGMS 21MEDTECH, LLC ALFARO, ARTHUR Durham, NC 2021
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

There is an urgent need for non-opioid post-operative pain management solutions.  This research is developing a naturally absorbable polymer film that can release controlled amounts of the non-opioid analgesic bupivacaine – aiming to manage pain for several days following surgery. Project objectives are to optimize the timing of drug release, develop manufacturing standards, determine effective dosage for preserving motor function, and determine safety and efficacy in mouse models of neuropathic pain. Continued development of this film delivery system may lead to a new, non-opioid therapeutic strategy that could be combined with local anesthesia for up to 4 days after surgery to reduce or potentially eliminate opioids use.

1R43DE029379-01
Therapeutic in Situ Analgesic Implant for improved Oral-Facial Post-Operative Pain Outcomes Cross-Cutting Research Small Business Programs NIDCR EPIGEN BIOSCIENCES, INC. FRIEDMAN, CRAIG; CAUDLE, ROBERT M San Diego, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

Analgesia for post-operative populations remains a significant health need that calls for innovative therapies which improve both safety and outcome measures. Recent FDA drug safety warnings and studies focusing on post-operative analgesia have highlighted the imperative need for new approaches that can be utilized for common clinical scenarios. Accordingly, novel treatment options that are safe and afford additional benefit in relief of pain are needed. In this proposal, the development of an innovative surgical sealant technology is proposed that functions at the level of the surgical wound bed and actively delivers local pharmacologic agents to therapeutically address post-operative pain. New formulations of several analgesic regimens will be assessed for their ability to seal wounds and provide appropriate pain management.

1R43DE029369-01
A Novel Opioid-Free Targeted Pain Control Method for Acute Post-Operative Localized Pain Related to Oral Surgical Procedures Cross-Cutting Research Small Business Programs NIDCR LAUNCHPAD MEDICAL, LLC JADIA, RAHUL; KAY, GEORGE Boston, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

There is a compelling need to develop a front line, non-opioid-based acute pain management strategy for outpatient oral surgical procedures. LaunchPad Medical has developed Tetranite® (TN), a novel bone regenerative mineral-organic self-setting adhesive biomaterial. TN has been extensively studied in vivo in a canine jaw model and shown to be effective and well-tolerated. In this project, researchers will demonstrate that drug-loaded TN can be a novel route to providing localized and time release pain medication following wisdom tooth extraction by determining the release profile of various pain medications from TN at different concentrations. The ability to release pain therapeutics in a controlled fashion and directly at the site of injury offers improved pain control following oral surgical procedures without exposing the patient to opioids. This novel approach to pain management can be extended to more invasive orthopedic procedures such as joint replacement, spinal fusions or reconstructive trauma surgery. In Phase II the team will conduct an in vivo study to assess efficacy of medicated TN to address post-operative pain following wisdom tooth odontectomy, optimize incorporation and release of medications in TN formulations, develop cGMP manufacturing process for the compounded product, and ultimately conduct clinical trials for bone void filler using medicated TN.

1R44DA046151-01
RAE (REALIZE, ANALYZE, ENGAGE)- A DIGITAL BIOMARKER BASED DETECTION AND INTERVENTION SYSTEM FOR STRESS AND CRAVING DURING RECOVERY FROM SUBSTANCE ABUSE DISORDERS Cross-Cutting Research Small Business Programs NIDA ContinueYou, LLC Reinhardt, Megan Rois Bristol, ME 2019
NOFO Title: Wearable to Track Recovery and Relapse Factors for People w/ Addiction (R43/R44)
NOFO Number: RFA-DA-18-010
Summary:

For many individuals in recovery from a substance use disorder, certain cues—including stress and drug-related cues—can trigger a physiological state in which they are more likely to relapse. In this SBIR project, the investigators intend to deploy a system—consisting of a wearable sensor, a smartphone app, and a clinical portal—to provide individuals in recovery and their treatment providers with an opportunity to identify moments of high risk for relapse and to access real-time intervention opportunities. The sensors will identify signals of stress or drug use, interface with a smartphone app, and provide options for annotations, stress-reduction techniques, or contact with an individual’s support system and treatment providers, as well as log and encourage healthy behaviors. This study will deploy and optimize the system, as well as test its effects on addiction-related outcomes, such as rate of relapse.

1R44DA059302-01
Development of an Opioid Sparing Therapeutic to Minimize Opioid Use Disorder and Tolerance in the Treatment of Pain Cross-Cutting Research Small Business Programs NIDA AMALGENT THERAPEUTICS, LLC MEYN, MALCOLM A Greenville, NC 2023
NOFO Title: PHS 2022-2 Omnibus Solicitation of the NIH, CDC and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-22-176
Summary:

Managing the risks and benefits of opioid medications can be difficult. Although prescription opioids alleviate pain for some patients, serious adverse effects include opioid use disorder. There is a critical, unmet need for new technologies that significantly minimize the opioid doses needed for effective relief from moderate to severe pain. This project will develop a novel combination treatment containing a small amount of morphine along with pramipexole, a drug approved by the U.S. Food and Drug Administration for Parkinson’s disease and restless legs syndrome that reduces the reward-seeking behavior associated with opioids. The research will conduct safety studies to enable testing in human research participants.

3R44DA044083-03S1
CLINICAL DATA INTELLIGENCE & ADVANCED ANALYTICS TO REDUCE DRUG DIVERSION ACROSS THE CARE DELIVERY CYCLE AND DRUG SUPPLY CHAIN IN HEALTH SYSTEMS Cross-Cutting Research Small Business Programs NIDA Invistics Corporation Knight, Thomas Peachtree Corners, GA 2019
NOFO Title: PHS 2016-02 Omnibus Solicitation of the NIH, CDC, FDA, and ACF for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-16-302
Summary:

There are alarming rates of substance abuse and diversion in hospitals, with multiple studies finding that roughly 10% of our nation’s nurses, anesthesiologists, and pharmacists are currently diverting drugs in their workplaces. Diversion continues even though most hospitals already lock addictive drugs in Automated Dispensing Machines (ADMs) and run monthly “anomalous usage” computer reports to try to detect diversion. This SBIR project will research mechanisms to detect when health care workers (HCWs) in hospitals steal or “divert” legal drugs, either to abuse themselves or to illegally sell to others, by building a computer system with (a) automated data feeds from multiple existing hospital computer systems and (b) advanced analytics to flag potential diversion for investigation. This research has the potential to reduce injuries to HCWs who are becoming addicted, destroying their careers, jeopardizing their patients’ safety, and increasingly dying from drug diversion overdoses.

1R43DA049300-01A1
PRAPELA™ SVS: A COST-EFFECTIVE STOCHASTIC VIBROTACTILE STIMULATION DEVICE TO IMPROVE THE CLINICAL COURSE OF INFANTS WITH NEONATAL ABSTINENCE SYNDROME Cross-Cutting Research Small Business Programs NIDA PRAPELA, Inc. KONSIN, JOHN PHILLIP (contact); SINGH, RACHANA Concord, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

Maternal use and addiction to opioids or other drugs has resulted in an unprecedented rise in drug withdrawal complications in newborns known as neonatal abstinence syndrome (NAS). While there is no accepted standard for treating NAS, non-pharmacological bundles are recommended as an initial course of treatment. Unfortunately, non-pharmacological care (swaddling, rocking, frequent feedings, and skin contact) require significant use of human resources. This project studies the technical feasibility of a stochastic vibrotactile stimulation (SVS) technology incorporated into the hospital bassinet pad, which provides gentle vibrating sensory stimulation to soothe infants with NAS. Building on preliminary evidence that this type of stimulation calms NAS infants without altering their sleep, this study aims to develop a commercially viable bassinet pad that could be used in a hospital setting.

1R43DA047722-01
PERIPHERALLY-RESTRICTED AND LONG-ACTING MAS1(LA-MAS1) AGONISTS FOR PAIN Cross-Cutting Research Small Business Programs NIDA Peptide Logic, LLC Riviere, Pierre SAN DIEGO, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

This project seeks to develop a first-in-class (FIC), peripherally restricted and long-acting drug with potential to reduce or replace opioid for moderate to severe pain, and that will be non-addictive, safe, and convenient to use. The program is based on strong scientific evidence showing that activation of a receptor called MAS1 produces opioid-independent and peripheral pain relieving activity in a wide range of animal models of chronic pain, including inflammatory, neuropathic, and bone cancer pain. This project focuses on the development of potent, stable, and specific molecules that stimulate MAS1. Researchers will then attach peptides that stimulate MAS to antibody carriers that make them last longer and selectively affect only the peripheral nervous system, which could allow for once a week or twice a month dosing while maintaining the drug’s efficacy and reducing potential side effects, and test the resulting molecule in animal models.

1R44DA058431-01
Development of an AI-Empowered Device that Utilizes Multimodal Data-Visualization to Aid in the Diagnosis, and Treatment, of OUD Cross-Cutting Research Small Business Programs NIDA WAVI COMPANY ARESE LUCINI, FRANCESCA Englewood, CO 2023
NOFO Title: Developing Regulated Therapeutic and Diagnostic Solutions for Patients Affected by Opioid and/or Stimulants use Disorders (OUD/StUD) (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-23-021
Summary:

There are a lack of clinical tools to effectively identify and monitor opioid use disorder (OUD). This project will develop and test a clinically usable device that uses a range of data inputs and an artificial intelligence (AI) algorithm to help health care providers diagnose and treat OUD. The research aims to help providers choose treatment plans and monitor the timing of release from rehabilitation clinics.

3R42HD088325-02A1S1
Mobile Augmented Screening Tool to Increase Adolescent HIV Testing and Linkage to Care Cross-Cutting Research Small Business Programs NIDA DIGITAL HEALTH EMPOWERMENT, INC. ARONSON, IAN DAVID BROOKLYN, NY 2019
NOFO Title: PHS 2016-02 Omnibus Solicitation of the NIH, CDC, FDA, and ACF for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-16-302
Summary:

Adolescents face increased HIV risk, infrequent testing, inconsistent linkage to care, and a lack of prevention-related knowledge. We propose to complete and evaluate the Mobile Augmented Screening (MAS) tool to privately and discretely offer routine HIV testing and counseling, including prevention education, to high-need, diverse adolescent and young adult populations at a low cost. The MAS will consist of a tablet-based intervention including a brief video designed to increase adolescent HIV testing, automated text messages to facilitate linkage to care for those who test positive, and text-based education for those who test negative or decline testing. Phase I was conducted with young emergency department (ED) patients. Preliminary evaluations indicate the video led to significant knowledge increases and encouraged testing. In phase II, we seek to complete intervention development and evaluate through a randomized controlled trial with ED patients, with qualitative interviews for a subset of young patients and ED staff.

2R44DA050349-02
Development of a Novel Chemokine Receptor Antagonist as a Treatment for Opioid Use Disorder Cross-Cutting Research Small Business Programs NIDA CREATIVE BIO-PEPTIDES, INC. RUFF, MICHAEL R Potomac, MD 2021
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

Chemokines (hormones of the immune system that mediate innate immune inflammation) enhance pain, reduce opioid analgesia, and promote drug-seeking behavior and addiction, giving them a central role at the crossroads of chronic pain and the opioid crisis. Blocking chemokines (rather than opioid receptors) provides an exciting treatment opportunity for both pain and opioid use disorder. This research continues previous work studying the efficacy of RAP-103, a small, orally stable chemokine receptor blocker. The previous research has shown that RAP-103 is safety and effective in preclinical models that mimic human drug-taking. This research will now optimize the dose required to achieve decreased motivation to maintain opioid use, establish manufacturing scale-up feasibility, provide RAP-103 for safety testing in animals, and conduct stability testing of RAP-103 toward the goal of submitting an Investigational New Drug application to the FDA.

1R43DA049616-01
Development and Evaluation of Computerized Chemosensory-Based Orbitofrontal Cortex Training (CBOT) for relapse preventionin patients with Opioid Use (OUD) Cross-Cutting Research Small Business Programs NIDA EVON MEDICS, LLC SETH, SUMEET (contact); NWULIA, EVARISTUS A Elkridge, MD 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

The orbitofrontal cortex (OFC) plays an important role in regulation of addiction, and OFC impairment from cocaine and opioids use leads to repetitive drug use. Brief optogenetic activation of the OFC reduces self-administration of drugs in neurobiology studies. However, the OFC is less accessible for noninvasive stimulation using direct transcutaneous current stimulation or transcranial magnetic stimulation. The small business EvON Medics LLC and Howard University have created a home-based olfactory pulsing prototype, called computerized chemosensory-based orbitofrontal cortex training (CBOT), using a high-fidelity chemosensory and computerized olfactory training approach to enable home-based neuromodulation of the OFC for treatment of opioid use disorder (OUD). A pilot feasibility study in OUD samples suggests that CBOT can minimize withdrawal symptoms, reduce drug cravings, enhance positive affect, and reduce rate of positive urine drug tests. The project seeks to establish CBOT stimulation parameters needed to maximally improve outcome inference and emotion regulation in OUD.

2R44DA045410-02
Peripherally-Restricted Long-Acting Somatostatin Receptor 4 (LA-SSTR4) Agonists for Pain Cross-Cutting Research Small Business Programs NIDA PEPTIDE LOGIC, LLC RIVIERE, PIERRE San Diego, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

The proposed SBIR Phase II program seeks to select a first-in-class, peripherally-restricted, and long-acting somatostatin receptor 4 (LA-SSTR4) agonist clinical candidate for development as a novel non-addictive analgesic able to replace opioids for the treatment of moderate-to-severe chronic pain. The program is based on strong scientific evidence showing that activation of peripheral SSTR4 produces broad spectrum analgesic activity and pursues a unique therapeutic strategy.   Unlike opioids, SSTR4 agonists do not induce constipation, respiratory depression, dependence, addiction, or abuse. Finally, unlike SSTR2 and SSTR5, SSTR4 expression in the pituitary and pancreas is very low, supporting that selective SSTR4 agonists are unlikely to perturb peripheral endocrine functions. The preceding SBIR Phase I program has already established the feasibility of conjugating a short-acting, potent, and selective peptide SSTR4 agonist to the antibody carrier. The resulting LA-SSTR4 agonist lead series has high agonist potency and selectivity for SSTR4 and has demonstrated antinociceptive activity in an animal pain model. The proposed SBIR Phase II program seeks to: optimize the existing lead series and select a clinical candidate for development,  validate and prioritize the indication(s) for clinical development using disease-relevant mouse pain models, and characterize the pharmacokinetics and safety/toxicology profile of the clinical candidate in rat and non-human primates to help design subsequent investigational new drug (IND)-enabling studies.

1R41DA050386-01
Prevention of renarcotization from synthetic opioids Cross-Cutting Research Small Business Programs NIDA CONSEGNA PHARMA, INC. AVERICK, SAADYAH Pittsburgh, PA 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

While the mu opioid receptor (MOR) antagonist naloxone has proven invaluable as an opioid overdose antidote, naloxone suffers from a very short duration of action (half-life is approximately 1 hour) and has been found to be less effective against newer, long-acting opioids, including fentanyl (half-life is approximately 7–10 hours). This leads to a highly lethal and increasingly prevalent phenomenon known as “renarcotization,” wherein an overdose patient revived with naloxone can re-enter an overdose state from residual fentanyl in the body. Thus, there is a critical need to develop a long-acting MOR antagonist formulation that can address renarcotization by providing multi-hour protection. The goal of this project is to reformulate naloxone using FDA-approved microencapsulation technology into a long-acting injectable (LAI) that can provide 12–24 hours of sustained antagonist activity in vivo. It will employ a proprietary Computational Drug Delivery™ software, called ADSR™, to perform in silico formulation optimization as well as to predict its in vitro dissolution and in vivo pharmacokinetic behavior.

1R43DA050395-01
Fixed dose analgesic combination with non-opioid mechanism to prevent opioid misuse Cross-Cutting Research Small Business Programs NIDA SYNVENTA, LLC GOMTSIAN, ARTOUR Tucson, AZ 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

With nearly 116 million people suffering from chronic pain in the United States, there is a need for new analgesics without the risks posed by opioids. Antagonists acting at TRPV1 receptor have long been recognized as one of the most promising novel classes of non-opioid analgesics. Initial tests in humans have confirmed that this class of drugs produces analgesia and is safe and well-tolerated, but side effects include hyperthermia and partial loss of heat sensitivity, leading to most research being halted. This project will conduct a set of preclinical proof-of-concept studies in rats to support the claims that, at doses that have minimal, clinically acceptable, or negligible impact on cardiovascular function, a2 adrenoceptor agonists can diminish thermoregulatory effects of TRPV1 receptor antagonists.

2R44DA049300-02
Prapela™ SVS: A cost-effective stochastic vibrotactile stimulation device to improve the clinical course of infants with neonatal abstinence syndrome Cross-Cutting Research Small Business Programs NIDA PRAPELA, INC. KONSIN, JOHN PHILLIP Biddeford, ME 2021
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

Infants exposed to opioids in the womb may suffer from neonatal opioid withdrawal syndrome (NOWS). They experience symptoms such as excessive crying, irritability, rapid breathing, elevated heart rates, tremors, and sometimes seizures. There is no accepted standard treatment for NOWS; infants are treated with pharmacological (opioid administration and gradual weaning) and nonpharmacological measures. Nonpharmacological care such as swaddling, rocking, frequent feedings, and skin contact, are time consuming, placing a substantial burden on hospitals with limited resources. Prapela, Inc. previously developed a hospital bassinette pad that, using stochastic vibrotactile stimulation (SVS) technology, very gently rocks infants with NOWS to reduce irritability and other symptoms without disturbing sleep patterns. This project will conduct an additional clinical study to determine the SVS bassinette pad’s efficacy in reducing breathing and heart rate, its safety, and its acceptability with clinical staff and parents caring for infants with NOWS.

1R44DA049629-01
Connected Pharmacy Platform to Improve Adherence to Buprenorphine-Naloxone Prescription Treatment of Opioid Use Disorder Cross-Cutting Research Small Business Programs NIDA PILLSY INC. LEBRUN, JEFFREY (contact); MCPHERSON, STERLING M Seattle, WA 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

Opioid agonist therapy (OAT), such as buprenorphine/naloxone (BUP/NAL), is proven effective against opioid use disorder (OUD), but poor medication adherence is a major barrier. This project aims to substantially increase adherence to oral BUP/NAL with Pillsy, a smart technology platform, which acts like a digital medication coach, providing education and reminders using a mobile app, text messages, and automated phone calls. The platform is built around a Bluetooth-based smart pill bottle cap that automatically tracks doses and timing, and sends intelligent reminders to create a unique feedback loop, which allows constant optimization of the incentive/reminder messages to meet user needs to increase adherence. A dashboard enables providers to easily track medication use and patient engagement. The Pillsy platform only nominally increases the cost of oral BUP/NAL treatment, and physicians can bill for monitoring time (CPT code 99091). The project team will adapt the current Pillsy platform and perform a randomized efficacy trial of BUP/NAL adherence.

1R43DA058430-01
Predicting and Preventing Adverse Maternal and Child Outcomes of Opioid Use Disorder in Pregnancy Cross-Cutting Research Small Business Programs NIDA OPALGENIX, INC. PLUMP, STEVEN R (contact); SADHASIVAM, SENTHILKUMAR Carmel, IN 2023
NOFO Title: Developing Regulated Therapeutic and Diagnostic Solutions for Patients Affected by Opioid and/or Stimulants use Disorders (OUD/StUD) (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-23-021
Summary:

There is an urgent and unmet clinical need for a reliable technology to prevent maternal opioid use relapse and neonatal opioid withdrawal syndrome (NOWS) in their infants. This project aims to assess risk for these outcomes based on individual genetic and clinical factors. The research will expand previous studies of genetic and clinical predictors of opioid-related adverse outcomes. The goal is to develop a risk predictor algorithm and software tool for use in an electronic health record, toward personalized risk assessment and prevention of maternal relapse and NOWS.