Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Sort descending Investigator(s) Location(s) Year Awarded
1U2CDA057717-01
HD2A Research Adoption Support Center (RASC) Cross-Cutting Research Translating Data 2 Action to Prevent Overdose NIDA STANFORD UNIVERSITY MCGOVERN, MARK P (contact); BECKER, SARA J; BECKER, WILLIAM C; BROWN, C HENDRICKS Redwood City, CA 2022
NOFO Title: HEAL Initiative: HEAL Data2Action Research Adoption Support Center (U2C Clinical Trial Optional)
NOFO Number: RFA-DA-22-050
Summary:

This project creates the HEAL Data2Action Research Adoption Support Center to support the HEAL Data2Action Innovation Projects. It will provide supportive evidence for prevention and treatment practices, form implementation strategies, assess outcomes, obtain feedback from the projects, and assess readiness for scalability. This center will offer on-demand technical assistance, host a learning collaborative, harmonize dissemination and implementation data, provide implementation support, and help with stakeholder engagement. The research will also catalogue evidence-based and emerging opioid use disorder and pain management practices as a resource to the field. The center will address timely, high-priority implementation challenges.

1UG3NS115637-01
Clinical Translation of Ultrasonic Ketamine Uncaging for Non-Opioid Therapy of Chronic Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS STANFORD UNIVERSITY AIRAN, RAAG D (contact); WILLIAMS, NOLAN R Stanford, CA 2019
NOFO Title: HEAL Initiative: Translational Devices to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-19-016
Summary:

The research team has developed ultrasonic drug uncaging for neuroscience, in which neuromodulatory agents are uncaged from ultrasound-sensitive biocompatible and biodegradable drug-loaded nanocarriers. This project will clinically translate ultrasonic ketamine uncaging for chronic pain therapy. In the UG3 phase, the research team will scale our nanoparticle production processes to human scales and adapt them to pharmaceutical standards. In the UH3 phase, they will complete a first-in-human evaluation of the safety and efficacy of ultrasonic ketamine uncaging by quantifying how much ketamine is released relative to the ultrasound dose and assessing whether the uncaged ketamine can modulate the sensitivity and affective response to pain, in patients suffering from chronic osteoarthritic pain. This project aims to yield a novel, noninvasive, non-opioid therapy for chronic pain that maximizes the therapeutic efficacy of ketamine over its side effects, by targeting its action to a critical hub of pain processing.

3R35NS105092-03S1
The biophysics of skin-neuron sensory tactile organs and their sensitivity to mechanical and chemical stress Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS STANFORD UNIVERSITY GOODMAN, MIRIAM B Palo Alto, CA 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

This project will establish a rapid research pipeline for linking plant-derived compounds to nociception (pain) and to G Protein-Coupled Receptors (GPCRs) and ion channels in the druggable human genome. As more than 80% of these membrane proteins are conserved in the C. elegans nematodes, the study will screen for compounds and genes affecting nociception as well as to identify novel ligand-receptor pairs using this model organism. The study will test which understudied GPCRs and ion channels are involved in nociception as well as attraction or repulsion behaviors. This research has the potential to reveal novel ligand-receptor pairs that could serve as new entry points for improved or alternative pain treatments.

1R01HL150566-01
Arousal circuitry and opiate-associated memories New Strategies to Prevent and Treat Opioid Addiction Sleep Dysfunction as a Core Feature of Opioid Use Disorder and Recovery NHLBI Stanford University DE LECEA, LUIS (contact); CHEN, XIAOKE Stanford, CA 2019
NOFO Title: HEAL Initiative: Sleep and Circadian-Dependent Mechanisms Contributing to Opiate Use Disorder (OUD) and Response to Medication Assisted Treatment (MAT) (R01 - Clinical Trial Not Allowed)
NOFO Number: RFA-HL-19-028
Summary:

Repetitive drug use forms powerful memories associating drug-evoked experiences with its proximal environmental cues. Memories are major obstacles for successfully treating addiction, since even after a prolonged period of abstinence, reexposure to such cues often triggers craving that promotes relapse. A polysynaptic pathway from the paraventricular nucleus of the thalamus (PVT) to the lateral hypothalamus (LH) has been shown to play a role in the maintenance of the opioid-associated memories. Hypocretin (Hcrt) neurons in the LH strongly innervate the PVT, required for maintaining wakefulness and involved in drug seeking. These factors may link sleep disorders in opioid addicts with their long-lasting drug-associated memories. This study will (1) determine whether Hcrt neurons in the LH are the major target; (2) examine whether manipulating the LH (Hcrt)-PVT pathway can effectively prevent relapse; and (3) test whether sleep intervention could be an effective strategy to prevent relapse.

1RF1NS113991-01
Disrupting ion channel scaffolding to treat neuropathic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS STATE UNIVERSITY OF NEW YORK AT BUFFALO BHATTACHARJEE, ARINDAM Buffalo, NY 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Dorsal root ganglion (DRG) neuronal hyperexcitability is central to the pathology of neuropathic pain and is a target for local anesthetics, even though the efficacy of local anesthetic patches has been mixed. The coordinated movement of ion channels, especially voltage-dependent sodium channels, from intracellular pools to the sites of nerve injury has been suggested to be an underlying cause of electrogenesis and ectopic firing in neuropathic pain conditions. Recent studies identified Magi1 as a scaffold protein responsible for sodium channel targeting and membrane stabilization in DRG neurons. This project will determine whether reducing the expression Magi1 could disrupt intracellular trafficking of sodium channels in DRG neurons under neuropathic injury conditions, and could therefore serve as a potential therapeutic target for neuropathic pain.

1R44DA051272-01
A patient self-assessment software combining compliance protocols to improve prescriber confidence, reduce liability, and improve patient outcomes New Strategies to Prevent and Treat Opioid Addiction NIDA SURE MED COMPLIANCE HARTZEMA, ABRAHAM G Mobile, AL 2020
NOFO Title: HEAL Initiative: America?s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

The current overdose epidemic is being fueled by widespread, non-medical use of opioids prescribed by mostly well-meaning physicians who often lack adequate training on how to properly initiate, monitor, and discontinue opioid therapy. It is very difficult for physicians to fully assess a new patient?s risk of substance misuse and possible future overdose in the limited amount of time of a typical evaluation. The Care Continuity Program (CCP) is a novel, online patient self-assessment used by prescribers of opioids to better identify patient risk factors and therapy benefit. The CCP tool is completed by the patient, outside of the office, using an internet enabled device and follows a compliance-driven protocol. The results are instantly transmitted to the prescriber?s electronic health records (EHR), mitigating the prescriber?s civil and criminal liabilities. The study aims to validate the protocol and delivery system of the CCP by measuring patient outcomes, prescriber confidence, and completeness of documentation in the patient chart in primary care and pain management settings. If successful, this project can significantly expand the benefits of CCP to even a broader network of providers and help mitigate the impact of the opioid crisis

1R44DA046316-01A1
A Phase 1 Randomized Single Oral Dose Four Period Cross-Over Study Investigating Omnitram Dose Proportionality and Food Effect in Normal Human Subjects Cross-Cutting Research Small Business Programs NIDA SYNTRIX BIOSYSTEMS, INC. Kahn, Stuart J Auburn, WA 2019
NOFO Title: PHS 2017-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-17-302
Summary:

From 2009 to 2013, the utilization of the Schedule II opioids codeine, OxyContin, and fentanyl declined significantly, down about 14 percent for all three drugs. In sharp contrast, the use of tramadol, a Schedule IV controlled substance, increased by 32.5 percent. Schedule IV substances have lower potential for abuse and harm than Schedule II substances, and the fortuitous trend to tramadol has reduced the use of the relatively unsafe Schedule II opioids dramatically. However, tramadol is less effective in some individuals with a particular gene variant that makes them unable to metabolize it well. A new analgesic, omnitram, uses similar mechanisms to tramadol but is not as dependent on this gene. This SBIR Fast-Track project will conduct a Phase 1 clinical trial of Omnitram in normal human subjects. Success in this in-patient Phase 1 clinical trial will provide direct support for Omnitram’s continued clinical development toward FDA approval.

1R43DA050395-01
Fixed dose analgesic combination with non-opioid mechanism to prevent opioid misuse Cross-Cutting Research Small Business Programs NIDA SYNVENTA, LLC GOMTSIAN, ARTOUR Tucson, AZ 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

With nearly 116 million people suffering from chronic pain in the United States, there is a need for new analgesics without the risks posed by opioids. Antagonists acting at TRPV1 receptor have long been recognized as one of the most promising novel classes of non-opioid analgesics. Initial tests in humans have confirmed that this class of drugs produces analgesia and is safe and well-tolerated, but side effects include hyperthermia and partial loss of heat sensitivity, leading to most research being halted. This project will conduct a set of preclinical proof-of-concept studies in rats to support the claims that, at doses that have minimal, clinically acceptable, or negligible impact on cardiovascular function, a2 adrenoceptor agonists can diminish thermoregulatory effects of TRPV1 receptor antagonists.

1R41NS115460-01
Minimally Invasive Intercostal Nerve Block Device to Treat Severe Pain and Reduce Usage of Opiates Cross-Cutting Research Small Business Programs NINDS TAI, CHANGFENG; POPIELARSKI, STEVE THERMAQUIL, INC. Philadelphia, PA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Technology Transfer Grant Applications (Parent STTR [R41/R42] Clinical Trial Not Allowed)
NOFO Number: PA-18-575
Summary:

Most of the 200k Americans who undergo thoracotomy each year receive opiates to reduce postoperative pain because clinicians have few non-addictive, cost-effective choices to control the severe pain patients often experience in the first two weeks after surgery. Managing pain post-thoracotomy is critical to enable patients to take deep breaths and remove (via coughing) lung secretions that otherwise significantly increase risk of pneumonia and collapsed lung, hospital re-admission and morbidity. The most severe pain associated with thoracotomy is transmitted along the intercostal nerves, but no long-term analgesic or nerve block device exists that can provide safe and effective long-term reduction of pain. A reversible, patient-controlled, non- addictive, intercostal nerve block device would reduce suffering due to thoracotomy, broken ribs and herpes zoster. In this Phase I project, the team will develop a minimally invasive thermal nerve block device that can control nerve conduction by gently warming and cooling a short nerve segment between room temperature and warm water temperature. This novel approach is based on the discovery that warm and cool temperature mechanisms of nerve block are different and additive, enabling moderate-temperature nerve block by cycling neural tissues slightly above and below body temperature. Reversible thermal nerve blocks represent a completely new approach to managing pain.  

1R44DA049630-01
Opioid-Sparing pain management for Chronic Low Back Pain patients using TMC-CP01 - A VANISH (Virtual Autonomic Neuromodulation Induced Systemic Healing) based program Cross-Cutting Research Small Business Programs NIDA TAMADÉ, LLC TIEN, CELINE (contact); LUCAS, GALE ; MAHAJAN, AMAN Pasadena, CA 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

Opioids have been found to be ineffective for chronic lower back pain (CLBP), yet they are still commonly prescribed. TAMADÉ, LLC aims to leverage a novel and validated technology based on virtual reality (VR) to provide therapy to CLBP patients on a daily opioid dosage with an opioid-sparing pain management tool aiming to increase pain management efficacy and decrease health complications. The intervention uses VR to stimulate patients’ visual, auditory, and haptic fields in order to simultaneously distract and actively engage patients in biofeedback therapy, where patients consciously self-regulate their nervous system by paring down their sympathetic tone through exercises in controlling respiration and heart rate. The study will compare patients receiving the proposed VR-based intervention with a group receiving either just opioids or opioids with sham VR. All groups will receive the same opioid tapering guidelines.

1UG3NS128439-01
Allosteric Targeting of Cannabinoid CB1 Receptor to Develop Non-Addictive Small Molecule Analgesics Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS Texas A&M Health Science Center LU, DAI (contact); SELLEY, DANA E; TAO, FENG College Station, TX 2022
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Overreliance on opioids to treat chronic pain has been a contributor to the increase in individuals experiencing opioid addiction. This project aims to develop an innovative treatment approach for chronic pain that targets the cannabinoid receptor 1 (CB1R) to block the sensation of pain. The approach seeks to identify molecules that interact with a different part of the CBR1 receptor than do endocannabinoids and the primary active component of cannabis, tetrahydrocannabinol. Molecules that bind to and activate CBR1 in this different way (at an “allosteric” site) may produce nerve signaling that might differ from the effects of cannabis and endocannabinoids. This redirection of signaling pathways could help eliminate the risk of adverse effects observed with natural cannabinoids and other CBR1-binding molecules. The goal of this project is to identify a CB1R allosteric molecule, conduct studies toward obtaining federal permission to develop it as a medication, and to test it in a Phase I clinical study.

1UG3DA050250-01
Preventing Opioid Use Among Justice-Involved Youth as They Transition to Adulthood: Leveraging Safe Adults (LeSA) New Strategies to Prevent and Treat Opioid Addiction Preventing Opioid Use Disorder NIDA Texas Christian University Knight, Danica K. Fort Worth, TX 2019
NOFO Title: HEAL Initiative: Preventing Opioid Use Disorder in Older Adolescents and Young Adults (ages 16–30) (UG3/UH3 Clinical Trial Required
NOFO Number: RFA-DA-19-035
Summary:

Juvenile justice (JJ)-involved youth represent a particularly vulnerable population for substance use and substance use disorders (SUDs), because they often experience mental health disorders, dysfunctional family/social relationships, and complex trauma. This study will adapt and test an intervention for preventing initiation and/or escalation of opioid misuse among older JJ-involved youth aging out of JJ (16-18 years), who are transitioning to their communities after a period of detainment in a secure treatment or correctional facility. Trust-Based Relational Intervention® (TBRI®, a relational, attachment-based intervention that promotes emotional regulation through interaction with responsive adults) will be adapted as a prevention intervention targeting youth at risk for substance use, especially non-medical use of opioids. Safe adults (e.g., parent/guardian) will be trained in behavior management techniques for empowering youth to appropriately express their needs, connecting them with others in pro-social ways, and correcting or reshaping undesirable behavior.

1UG1DA050074-01
Justice Community Opioid Innovation Network (JCOIN): TCU Clinical Research Center Translation of Research to Practice for the Treatment of Opioid Addiction Justice Community Opioid Innovation Network (JCOIN) NIDA TEXAS CHRISTIAN UNIVERSITY KNIGHT, KEVIN (contact); KNIGHT, DANICA K; OLSON, DAVID ; PAINTER DAVIS, NOAH Fort Worth, TX 2019
NOFO Title: HEAL Initiative: Justice Community Opioid Innovation Network (JCOIN) Clinical Research Centers (UG1 Clinical Trial Optional)
NOFO Number: RFA-DA-19-025
Summary:

NIH is supporting the Justice Community Opioid Innovation Network (JCOIN), a collaboration of justice and behavioral health stakeholders that will study approaches to increase high-quality care for people with opioid misuse and opioid use disorder in justice populations. This multi-site clinical research center aims to improve local community public health and safety outcomes for reentering justice- involved individuals who have a history of (or are at risk for) using opioids by comparing two implementation strategies and two interventions at the client and system levels. The study will also examine which implementation strategy is most effective for increasing service linkage and initiation, services retention, and improved opioid-related public health safety outcomes.

1R61NS113316-01
Discovery and analytical validation of Inflammatory bio-signatures of the human pain experience Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS THE UNIVERSITY OF TEXAS HEALTH SCIENCE CENTER AT HOUSTON PROSSIN, ALAN RODNEY Houston, TX 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Postoperative pain is a major contributor to the current opioid epidemic. Novel objective measures capable of personalizing pain care will enhance medical precision in prevention and treatment of postoperative pain. This project seeks to discover and validate a novel biosignature of the human pain experience, based on underlying IL-1 family cytokine activity and associated brain endogenous opioid function, that is readily quantifiable and clinically translatable to prevention and treatment of postoperative pain states. Specific aims will assess whether the novel biosignature will predict 1) experimentally induced pain during an experimental nociceptive pain challenge; 2) postoperative pain states with accuracy >75%, accounting for a wide range of variance in the human pain experience; and 3) postoperative pain states in an expanded clinically enriched sample.

1UG3DA050317-01
Targeting the Ghrelin System for Novel Opioid Use Disorder Therapeutics Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA The University of Texas Medical Branch at Galveston Cunningham, Kathryn Galveston, TX 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

To address the need for novel therapeutics for opioid use disorder (OUD), this research group identified ghrelin as an endogenous regulator of the mesocorticostriatal circuit, which contributes to the enhanced motivational attributes of addictive drugs and drug-associated cues. Ghrelin binds to the growth hormone secretagogue receptor 1? (GHS1?R) to transduce several physiological and behavioral processes, including the reward-related effects of opioid agonists. Systemic administration of a GHS1?R antagonist/inverse agonist dose-dependently attenuated self-administration of the addictive opioid analgesic oxycodone as well as oxycodone-seeking. This project proposes to employ a suite of validated rodent OUD models to define the preclinical profile for PF5190457, a selective GHS1?R antagonist/inverse agonist. PF5190457’s abuse liability, ability to suppress withdrawal and relapse-like behaviors, drug metabolism and pharmacokinetics, and brain penetrability in rats will be assessed. Phase 1 clinical studies in non–treatment seeking OUD participants will follow to assess the safety and tolerability of PF5190457.

1R43DA049623-01
Non-invasive Neuromodulation Device for Decreasing Withdrawal Symptoms and Craving during Treatment of Opioid Use Disorder Cross-Cutting Research Small Business Programs NIDA THERANOVA, LLC JAASMA, MICHAEL San Francisco, CA 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

Opioid use disorder (OUD) can be lethal, with opioid overdose causing more than 115 deaths in the U.S. each day. Although medications are effective at reducing illicit opioid use and overdose deaths, it is well-established that withdrawal and craving are highest in the initial weeks, making this a high-risk period for treatment dropout, relapse, and overdose. Adjunct therapies that can reduce early opioid withdrawal and craving may improve retention in treatment with buprenorphine-naloxone, and recent research has shown that stimulation of a peripheral nerve significantly modulates withdrawal- and craving-related responses for opioids and other drugs. This project will test the effectiveness of the EMPOWER Neuromodulation System, a portable, non-invasive transcutaneous electrical nerve stimulation (TENS) device developed by TheraNova for the treatment of OUD.

2R44NS115460-02
Drug Free Nerve Block Device for the Relief of Pain and Symptoms in Migraines and other Headaches Cross-Cutting Research Small Business Programs NINDS THERMAQUIL, INC. POPIELARSKI, STEPHEN (contact); YUAN, HSIANGKUO Philadelphia, PA 2021
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 - Clinical Trial Required)
NOFO Number: RFA-NS-20-010
Summary:

Migraines and other headaches are often debilitating for patients, yet few treatment options providing sustained relief exist. All available therapies, including frequently prescribed opioids, have considerable side effects or limitations. Therefore, novel treatment approaches are needed to reduce or eliminate the need to use opiates and other systemic pharmaceuticals. Thermaquil Inc. has developed a new way of stopping migraine and other headache pain by noninvasively blocking pain signal transmission in the head, which in initial studies allowed patients to discontinue use of opioids and other addictive pain medications. Thermaquil will now be conducting a larger randomized controlled trial to demonstrate the safety and effectiveness of this novel approach. After a baseline period, patients will be randomly assigned to the active or control condition and receive a single treatment. The study will continue for 12 weeks with the active versus control arms, before all patients will be given active therapy for an additional 12 weeks.

1UG1HD107628-01
Thomas Jefferson University Hospital Clinical Site for HEAL NOWS Pharmacologic Trial Enhanced Outcomes for Infants and Children Exposed to Opioids Advancing Clinical Trials in Neonatal Opioid Withdrawal (ACT NOW) NICHD THOMAS JEFFERSON UNIVERSITY  (PA) KRAFT, WALTER K (contact); ADENIYI-JONES, SUSAN Philadelphia, PA 2021
NOFO Title: HEAL Initiative: Neonatal Opioid Withdrawal Syndrome Pharmacological Treatments Comparative Effectiveness Trial - Clinical Sites (UG1 Clinical Trial Required)
NOFO Number: RFA-HD-21-031
Summary:

Neonatal Opioid Withdrawal Syndrome (NOWS) is a condition that occurs when newborns are exposed to opioids during pregnancy. Symptoms often include tremors, excessive crying, sleep deprivation, and swallowing difficulties. Cases are rising, with a newborn affected by NOWS approximately every 15 minutes. Currently, healthcare providers in the United States lack standard, evidence-based treatments for NOWS. 

This project is part of a multi-center, randomized controlled clinical trial that directly compares NOWS treatments—morphine, methadone, and buprenorphine—and takes into account other types of non-drug therapies, such as behavioral interventions. The goal is to generate results that can inform clinical practice guidelines and give newborns with NOWS the best start possible. 

Thomas Jefferson University has more than 40 years of experience optimizing approaches to the care of opioid use disorder in pregnancy and conducts clinical research on NOWS treatments. The hospital provides a robust continuum of care that supports women with opioid use disorders before, during, and after delivery. This supportive culture has resulted in a relatively high rate of clinical trial participation that will enable long-term follow up of mothers and infants.

1UG3DA047707-01
Nalmefene Implant for the Long-Term Treatment of Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA TITAN PHARMACEUTICALS, INC. BEEBE DEVARNEY, KATHERINE L South San Francisco, CA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

There is a need for an opioid use disorder (OUD) treatment that can prevent relapse in detoxified subjects. Titan's proprietary subdermal implants can provide long-term, non-fluctuating therapeutic levels of drug continuously following a single office-based insertion procedure. The non-biodegradable solid matrix implant formulation virtually eliminates the risk of accidental drug dumping and associated serious toxicity, and its subdermal location assures patient compliance for the 6-month treatment duration. Nalmefene hydrochloride (nalmefene) is an opioid receptor antagonist approved for the management and reversal of opioid overdose. Prototype nalmefene implants inserted subdermally in rats delivered nalmefene continuously for months without any observable safety concerns. This proposed study will develop a 6-month implantable device that delivers nalmefene at a steady rate to prevent relapse to opioid dependence following opioid detoxification. This project will manufacture nalmefene implants, complete nonclinical safety and pharmacology studies, and conduct clinical studies in OUD subjects to support a New Drug Application.

1R43DA049495-01
Removing implementation obstacles and tailoring reward-based technology programs to patient psychographic characteristics to sustainably increase adherence to substance use disorder pharmacotherapies Cross-Cutting Research Small Business Programs NIDA TRANSCENDENT INTERNATIONAL, LLC Grosso, Ashley Lynn New York, NY 2019
NOFO Title: Loyalty and Reward-Based Technologies to Increase Adherence to Substance Use Disorder Pharmacotherapies (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-014
Summary:

While effective treatments exist for substance use disorders, adhering to treatment and retaining patients in treatment can be a challenge. The objectives of this project are to facilitate the implementation of loyalty/reward-based programs to increase adherence to medical treatment among patients with substance use disorders through innovative solutions to common challenges. Building on experience developing software to promote patient appointment attendance, the project will build a new tool to test on a sample of 10 providers and 10 patients who are prescribed but not fully adherent to substance use disorder treatment. Patients will receive tailored text messages (in English or Spanish) encouraging adherence, self-report their treatment adherence (which will be verified through smart pill caps and biological testing), earn points for adherence that can be exchanged for rewards customized for them based on a baseline survey, and report their satisfaction with the program and process at the end of the 4-week study. This pilot will assess the feasibility and perceived usefulness of the product in support of eventual larger-scale testing in a clinical trial.

1R61NS113341-01
Discovery of the Biomarker Signature for Neuropathic Corneal Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS Tufts Medical Center HAMRAH, PEDRAM Boston, MA 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Neuropathic corneal pain (NCP) causes patients to have severe discomfort and a compromised quality of life (QoL). The lack of signs observed by standard examination has resulted in misdiagnosis as dry eye disease (DED). An optical biopsy using laser in vivo confocal microscopy (IVCM) revealed that microneuromas (bulbs at the ends of severed nerves caused by buildup of molecular constituents) are present in NCP but not DED and may serve as a biomarker for NCP. The aims are to (1) use a database of more than 2,000 DED/NCP subjects and more than 500,000 IVCM images to confirm that the presence of microneuromas is an appropriate biomarker for NCP, (2) provide biological validation of microneuromas, (3) develop a validated artificial intelligence (AI) program for automated identification of microneuromas, and (4) establish the clinical utility of microneuromas observed by IVCM as a biomarker for NCP in a prospective, multicenter study.

1UG3TR003150-01
Human Microphysiological Model of Afferent Nociceptive Signaling Preclinical and Translational Research in Pain Management Translational Research to Advance Testing of Novel Drugs and Human Cell-Based Screening Platforms to Treat Pain and Opioid Use Disorder NCATS TULANE UNIVERSITY OF LOUISIANA MOORE, MICHAEL J (contact); ASHTON, RANDOLPH S; RAJARAMAN, SWAMINATHAN New Orleans, LA 2019
NOFO Title: HEAL Initiative: Tissue Chips to Model Nociception, Addiction, and Overdose (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-TR-19-003
Summary:

This project will develop a human cell-based model of the afferent pain pathway in the dorsal horn of the spinal cord. The research team’s approach utilizes novel human pluripotent stem cell (hPSC)-derived phenotypes in a model that combines 3D organoid culture with microfabricated systems on an integrated, three-dimensional (3D) microelectrode array. Researchers will establish the feasibility of a physiologically relevant, human 3D model of the afferent pain pathway that will be useful for evaluation of candidate analgesic drugs. They will then improve the physiological relevance of the system by promoting neural network maturation before demonstrating the system’s utility in modeling adverse effects of opioids and screening compounds to validate the model. Completion of the study objective will establish novel protocols for deriving dorsal horn neurons from hPSCs and create the first human microphysiological model of the spinal cord dorsal horn afferent sensory pathway.

1R61AT010606-01
Adapting the HOPE Online Support Intervention to Increase MAT Uptake Among OUD Patients Translation of Research to Practice for the Treatment of Opioid Addiction Behavioral Research to Improve Medication-Based Treatment NCCIH UCLA YOUNG, SEAN Los Angeles, CA 2019
NOFO Title: HEAL Initiative: Behavioral Research to Improve MAT: Behavioral and Social Interventions to Improve Adherence to Medication Assisted Treatment for Opioid Use Disorders (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-AT-19-006
Summary:

Online peer-led support interventions may increase medication-assisted therapy (MAT) initiation and sustainment among participants with opioid use disorder (OUD) because they can leverage peers to widely and rapidly scale changes in social norms (e.g., interest in using MAT) throughout people’s natural, real-world, virtual environments. Harnessing Online Peer Education (HOPE), an online peer support community intervention designed to reduce stigma and increase health behavior change, has effectively changed health behaviors among stigmatized populations, such as for HIV. This study will determine how to adapt the HOPE online support intervention to increase MAT initiation and sustainment among participants with OUD, assess the intervention’s effectiveness at increasing MAT use among OUD participants recruited online who are not using MAT, and use an implementation science approach to determine the relationship between social network dynamics (e.g., network size), topics discussed on the online community, and behavior change.

1R61AT010800-01
Effectiveness of a CBT-based mHealth Intervention Targeting MOUD Retention, Adherence, and Opioid Use Cross-Cutting Research Small Business Programs NCCIH UCLA GLASNER-EDWARDS, SUZETTE V Los Angeles, CA 2019
NOFO Title: HEAL Initiative: Behavioral Research to Improve MAT: Behavioral and Social Interventions to Improve Adherence to Medication Assisted Treatment for Opioid Use Disorders (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-AT-19-006
Summary:

Medications for the treatment of opioid use disorders (MOUD) are effective at reducing opioid use, opioid overdose risk, and opioid-related deaths; however, retention and adherence to MOUD treatment, particularly buprenorphine (BUP), are discouragingly low. The objective of the current research is to adapt and extend a cognitive behavioral therapy-based short message system (SMS) intervention (TXT-CBT) to address MOUD treatment retention and adherence using the imFREE (Interactive Messaging for Freedom from Opioid Addiction) platform. imFREE builds upon the efficacious SMS-based TXT-CBT intervention, with content addressing retention and adherence to BUP, including mitigating risk factors for dropout, and features to notify social and provider support contacts in the face of treatment discontinuation and/or other indicators of relapse and overdose risk. By providing support to maximize BUP treatment adherence, coupled with skills to prevent relapse, imFREE may provide a cost-effective, easily deployable strategy for OUD treatment and prevention of overdose deaths.

1R61AT010802-01
A Mindfulness and Peer Mentoring Program to Improve Adherence to Medication Assisted Treatment for Opioid Use Disorders Translation of Research to Practice for the Treatment of Opioid Addiction Behavioral Research to Improve Medication-Based Treatment NCCIH Univ of Alabama MUMBA, MERCY N Tuscaloosa, AL 2019
NOFO Title: HEAL Initiative: Behavioral Research to Improve MAT: Behavioral and Social Interventions to Improve Adherence to Medication Assisted Treatment for Opioid Use Disorders (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-AT-19-006
Summary:

There is evidence that combining mindfulness-based interventions and peer recovery support services with medication-assisted therapy (MAT) to treat opioid use disorders (OUD) reduces substance use, cravings, symptoms of depression and anxiety, and relapse rates, and improves treatment retention, and relationships with treatment providers and social supports. The goal of the present study is to determine the effectiveness of a mindfulness-based intervention that also utilizes peer mentors in addition to professional substance abuse therapists (the Minds and Mentors program [MiMP]) in improving adherence to MAT for OUD and reducing relapse rates in a sample of individuals with OUD who are also on MAT versus a 12-step facilitation (TSF) program. The study hypothesizes that participants in MiMP will demonstrate better adherence; reduced relapse and cravings (primary outcomes measures); reduced depression, anxiety, and stress; improved social support (secondary outcomes measures); and reduced cortisol levels and reactivity to drug cues (exploratory outcome measures).