Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Sort descending Location(s) Year Awarded
5R01NS102432-02
AIBP and regulation of neuropathic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS Univ. of Calif., U.C. San Diego Miller, Yury La Jolla, CA 2018
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Persistent pain states arising from inflammatory conditions, such as in arthritis, diabetes, HIV, and chemotherapy, exhibit a common feature in the release of damage-associated molecular pattern molecules, which can activate toll-like receptor-4 (TLR4). Previous studies suggest that TLR4 is critical in mediating the transition from acute to persistent pain. TLR4 as well as other inflammatory receptors localize to lipid raft microdomains on the plasma membrane. We have found that the secreted apoA-I binding protein (AIBP) accelerates cholesterol removal, disrupts lipid rafts, prevents TLR4 dimerization, and inhibits microglia inflammatory responses. We propose that AIBP targets cholesterol removal to lipid rafts harboring activated TLR4. The aims of this proposal are to: 1) determine whether AIBP targets lipid rafts harboring activated TLR4; 2) test whether AIBP reduces glial activation and neuroinflammation in mouse models of neuropathic pain; and 3) identify the origin and function of endogenous AIBP in the spinal cord.

3R01NS102432-02S1
AIBP AND REGULATION OF NEUROPATHIC PAIN Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF CALIFORNIA, SAN DIEGO MILLER, YURY; YAKSH, TONY L. LA JOLLA, CA 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Persistent pain states arising from inflammatory conditions, such as in arthritis, diabetes, HIV, and chemotherapy, exhibit a common feature in the release of damage-associated molecular pattern molecules, which can activate toll-like receptor-4 (TLR4). Previous studies suggest that TLR4 is critical in mediating the transition from acute to persistent pain. TLR4 as well as other inflammatory receptors localize to lipid raft microdomains on the plasma membrane. We have found that the secreted apoA-I binding protein (AIBP) accelerates cholesterol removal, disrupts lipid rafts, prevents TLR4 dimerization, and inhibits microglia inflammatory responses. We propose that AIBP targets cholesterol removal to lipid rafts harboring activated TLR4. The aims of this proposal are to: 1) determine whether AIBP targets lipid rafts harboring activated TLR4; 2) test whether AIBP reduces glial activation and neuroinflammation in mouse models of neuropathic pain; and 3) identify the origin and function of endogenous AIBP in the spinal cord.

1R01DA056608-01
Endocannabinoid Targeting for Opioid Induced Respiratory Depression Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA University of Arizona MILNES, TALLY MARIE (contact); VANDERAH, TODD W Tucson, Arizona 2022
NOFO Title: HEAL Initiative: Novel Targets for Opioid Use Disorders and Opioid Overdose (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-22-031
Summary:

This research project will investigate the cannabinoid receptor 2 protein (CB2R) as a novel therapeutic target for opioid-induced respiratory depression caused by fentanyl, oxycodone, and heroin. This study will shed light on how the endocannabinoid system in the brainstem works to control breathing under normal conditions and during opioid-induced respiratory depression. The research aims to determine whether activation of the CB2R with a brain-penetrant CB2R-binding molecule is safe and clinically useful for treating opioid overdose prevention and reversal. This research will pave the way for discovering new medications that activate CB2R to reduce opioid-related deaths.

1R01DA057608-01
Treating Polysubstance Use in Methadone Maintenance: Application of Novel Digital Technology Translation of Research to Practice for the Treatment of Opioid Addiction Improving Delivery of Healthcare Services for Polysubstance Use NIDA FRIENDS RESEARCH INSTITUTE, INC. MITCHELL, SHANNON GWIN Baltimore, MD 2022
NOFO Title: HEAL Initiative: Understanding Polysubstance Use and Improving Service Delivery to Address Polysubstance Use (R01 Clinical Trial Optional)
NOFO Number: DA22-047
Summary:

Although methadone is an effective treatment for opioid use disorder, many individuals drop out of treatment, putting them at risk of relapse and overdose. One of the factors associated with poor retention in methadone treatment is concurrent cocaine use. There is currently no effective medical treatment for cocaine use disorder. However, contingency management, in which individuals receive tangible rewards for desired behaviors such as abstinence, has been shown to be effective for cocaine use. This project will test the value of a digital therapy app, DynamiCare Health Contingency Management, in methadone treatment programs to promote treatment for polysubstance use.

3U54DA038999-05S1
MEDICATION DEVELOPMENT CENTER FOR COCAINE USE DISORDER Novel Therapeutic Options for Opioid Use Disorder and Overdose NIDA VIRGINIA COMMONWEALTH UNIVERSITY MOELLER, FREDERICK GERARD Richmond, VA 2018
NOFO Title: Medications Development Centers of Excellence Cooperative Program (U54)
NOFO Number: RFA-DA-15-003
Summary:

This U54 Center will use translational research from brain to bedside as a tool for medication development in cocaine use disorder. Preclinical and early phase I clinical PK/PD data will provide information for go/no-go decisions on phase II–III clinical trials with medications that show promise for cocaine use disorder. The overall goal of this research is to create a center that can provide important preclinical and early phase I clinical data to NIDA and pharmaceutical industry partners on novel compounds for cocaine use disorder. The aims related to the theme of the center will be achieved through two cores and three projects: The Administrative Core serves as a general resource for the other projects and the Educational Core, including oversight of fiscal and compliance matters, and will oversee interactions with outside entities, including NIDA and the pharmaceutical industry. The Educational Core will focus on training translational researchers for medication development for addictions across the two institutions.

3U01DA040213-05S1
Primary care prevention of stimulant diversion by high school students with ADHD New Strategies to Prevent and Treat Opioid Addiction Preventing Opioid Use Disorder NIDA University of Pittsburgh at Pittsburgh Molina, Brooke S. G. Pittsburgh, PA 2019
NOFO Title: Interventions for Youth who Misuse/Abuse Prescription Stimulant Medications in High School and/or College-Attending Youth (U01)
NOFO Number: RFA-DA-15-010
2R44DA050393-02
Evaluation of the Therapeutic Potential of Exclusive Antagonists of Extrasynaptic NMDA Receptors for the Treatment of Opioid Use Disorder Cross-Cutting Research Small Business Programs NIDA NEURANO BIOSCIENCE MOLOKANOVA, ELENA La Jolla, CA 2023
NOFO Title: Advancing Validated Drug Targets for Substance Use Disorders (R43/R44 - Clinical Trial Not Allowed)
NOFO Number: RFA-DA-22-023
Summary:

New and safe therapeutic targets for treating opioid use disorder are needed. One promising approach is to test drugs currently approved by the U.S. Food and Drug Administration that work independently of the body’s opioid system. The medication memantine targets N-methyl-D-aspartate (NMDA) receptors in the brain, which have been implicated in the development and maintenance of addiction. This project will study a miniature version of multiple memantine molecules bound together that attaches only to NMDA receptors that are not within nerve connections. The research will evaluate the safety, misuse potential, and effectiveness of this molecular assembly in preclinical models. 

1R43DA050393-01
Evaluation of the therapeutic potential of exclusive antagonists of extrasynaptic NMDA receptors for treatment of opioid use disorders Cross-Cutting Research Small Business Programs NIDA NEURANO BIOSCIENCE MOLOKANOVA, ELENA Encinitas,CA 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

Novel therapies that could alleviate the severe symptoms of opioid withdrawal and/or reduce risk of relapse could help address the devastating opioid crisis. Memantine, an FDA-approved NMDA receptor antagonist, has shown encouraging results as an adjunct to existing opioid use therapies. Its therapeutic efficacy likely derives from its preferential binding to NMDA receptors located outside the synapse, since broad spectrum NMDA receptor antagonists are associated with multiple clinical side effects. This project will use a preclinical model to evaluate a nanostructured version of memantine (AuM) that physically prevents its binding to synaptic NMDA receptors but allows activation of extrasynaptic receptors with potency exceeding that of free memantine.

1UG3TR003150-01
Human Microphysiological Model of Afferent Nociceptive Signaling Preclinical and Translational Research in Pain Management Translational Research to Advance Testing of Novel Drugs and Human Cell-Based Screening Platforms to Treat Pain and Opioid Use Disorder NCATS TULANE UNIVERSITY OF LOUISIANA MOORE, MICHAEL J (contact); ASHTON, RANDOLPH S; RAJARAMAN, SWAMINATHAN New Orleans, LA 2019
NOFO Title: HEAL Initiative: Tissue Chips to Model Nociception, Addiction, and Overdose (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-TR-19-003
Summary:

This project will develop a human cell-based model of the afferent pain pathway in the dorsal horn of the spinal cord. The research team’s approach utilizes novel human pluripotent stem cell (hPSC)-derived phenotypes in a model that combines 3D organoid culture with microfabricated systems on an integrated, three-dimensional (3D) microelectrode array. Researchers will establish the feasibility of a physiologically relevant, human 3D model of the afferent pain pathway that will be useful for evaluation of candidate analgesic drugs. They will then improve the physiological relevance of the system by promoting neural network maturation before demonstrating the system’s utility in modeling adverse effects of opioids and screening compounds to validate the model. Completion of the study objective will establish novel protocols for deriving dorsal horn neurons from hPSCs and create the first human microphysiological model of the spinal cord dorsal horn afferent sensory pathway.

1R43NS120410-01A1
Optimization of a Gene Therapy for Chronic Pain in Human DRGs Cross-Cutting Research Small Business Programs NINDS NAVEGA THERAPEUTICS, INC. MORENO, ANA MARIA (contact); ALEMAN GUILLEN, FERNANDO La Jolla, CA 2021
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 - Clinical Trial Not Allowed)
NOFO Number: NS-20-011
Summary:

To avoid the reliance on opioids for treatment of pain, researchers are investigating alternative approaches to disrupt the transmission of pain signals by specialized neurons in the body, such as dorsal root ganglion neurons in the spinal cord. Molecules called voltage-gated sodium channels that are located in the membranes of dorsal root ganglion neurons are essential for transmission of the pain signals. People carrying a specific variant of these channels, NaV1.7, are insensitive to pain; therefore, strategies to block this particular channel might help in the development of non-addictive pain treatment approaches. Navega Therapeutics is developing an innovative gene therapy that specifically targets NaV1.7. Using studies in human cell lines, they will identify the best designs to then test this gene therapy approach in human dorsal root ganglion neurons.

9SB1NS137964-04
Advancing precision pain medicines to the clinic Cross-Cutting Research Small Business Programs NINDS NAVEGA THERAPEUTICS, INC. MORENO, ANA MARIA (contact); ALEMAN GUILLEN, FERNANDO San Diego, CA 2023
NOFO Title: HEAL Commercialization Readiness Pilot (CRP) Program: Embedded Entrepreneurs for Small Businesses in Pain Management (SB1 Clinical Trial Not Allowed)
NOFO Number: PAR-23-069
1R43NS112088-01A1
Repression of Sodium Channels via a Gene Therapy for Treatment of Chronic Neuropathic Pain Cross-Cutting Research Small Business Programs NINDS NAVEGA THERAPEUTICS, INC. MORENO, ANA MARIA; ALEMAN GUILLEN, FERNANDO San Diego, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

Voltage-gated sodium channels are responsible for the transmission of pain signals. Nine genes have been identified, each having unique properties and tissue distribution patterns. Genetic studies have correlated a hereditary loss-of-function mutation in one human Na+ channel isoform – ?Na?V?1.7 – with a rare genetic disorder known as Congenital Insensitivity to Pain (CIP). Individuals with CIP are not able to feel pain without any significant secondary alteration. Thus, selective inhibition of ?Na?V?1.7 in normal humans could recapitulate the phenotype of CIP. This research team developed a non-permanent gene therapy to target pain that is non-addictive (because it targets a non-opioid pathway), highly specific (only targeting the gene of interest), and long-term lasting (around 3 weeks in preliminary assays in mice). During this Phase I , the team will 1) test additional pain targets ?in vitro?, and 2) evaluate the new targets ?in vivo ?in mice models of inflammatory and neuropathic pain. 

1UG3DA047717-01
MOR/DOR Heterodimer Antagonists: A Novel Treatment for Opioid Dependence Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA WASHINGTON STATE UNIVERSITY MORGAN, MICHAEL M Pullman, WA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Tens of thousands of people die each year from opioid overdose. Many of these people began taking opioids for pain. A critical treatment goal is to reduce the development of opioid dependence either by enhancing opioid analgesia so lower doses can be used or by blocking withdrawal symptoms. Current pharmacological treatments in these two categories, although effective, present serious limitations. The recent finding that reducing the signaling through mu-delta opioid heterodimers appears to enhance opioid antinociception and reduce dependence suggests that a blocker of mixed mu-delta receptors (MDOR antagonist) could be effective in reducing dependence by limiting opioid tolerance and preventing opioid withdrawal. This research group has developed a compound with that characteristic, called D24M, which preliminary studies have shown could reduce opioid dependence by enhancing opioid antinociception, reducing opioid tolerance, or directly inhibiting opioid withdrawal. They propose to extend this research by investigating whether it can reduce chronic pain in an animal model that mimics the clinical situation of pain patients who transition to dependence. If these studies are successful, they could lead to the development of an optimized drug ready for Investigational New Drug (IND) application and enable translational and clinical testing.

3UH3AT010621-03S2
Group-Based Mindfulness for Patients with Chronic Low Back Pain in the Primary Care Clinical Research in Pain Management NCCIH BOSTON MEDICAL CENTER MORONE, NATALIA E Boston, MA 2021
NOFO Title: HEAL Initiative: Notice of Special Interest (NOSI) regarding the Availability of Administrative Supplements to Support Strategies to Increase Participant Diversity, Inclusion and Engagement in Clinical Studies
NOFO Number: NOT-NS-21-025
Summary:

Mindfulness has been shown to be effective in treating chronic low back pain, but it has not been embedded into routine clinical care. The OPTIMUM study (Optimizing Pain Treatment In Medical settings Using Mindfulness) will address barriers to delivering mindfulness in primary care and determine the effectiveness in this setting. This project extends the stakeholder engagement efforts of the OPTIMUM study by increasing the size and responsibilities of the Community Advisory Board, adding focus groups for participants in both study arms, and collecting stories from study nonparticipants about their experience seeking care for chronic low back pain and their views on participating in research. This expanded effort will optimize recruitment of a diverse and underrepresented sample, maximize retention, and prepare for future implementation and dissemination.

1UG3AT010621-01
Group-based mindfulness for patients with chronic low back pain in the primary care setting Clinical Research in Pain Management Pragmatic and Implementation Studies for the Management of Pain to Reduce Opioid Prescribing (PRISM) NCCIH BOSTON MEDICAL CENTER MORONE, NATALIA E Boston, MA 2019
NOFO Title: HEAL Initiative: Pragmatic and Implementation Studies for the Management of Pain to Reduce Opioid Prescribing (PRISM)(UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-AT-19-004
Summary:

The opioid crisis has underscored the urgency of alleviating patients’ chronic low back pain (cLBP) with effective therapies, including evidence-based nonpharmacologic approaches. Mindfulness-based stress reduction (MBSR) is now recommended by the American College of Physicians for initial treatment of cLBP. A pragmatic clinical trial (PCT) will inform health care decision makers about whether this program can be implemented in a real-life clinical setting and measure its impact on outcomes. The OPTIMUM (Optimizing Pain Treatment In Medical settings Using Mindfulness) program will integrate and test an evidence-based mindfulness clinical pain program for patients with cLBP in the primary care provider (PCP) setting. It will be conducted with three health care system sites. Four hundred and fifty persons ? 18 years of age with cLBP will be randomized to OPTIMUM + PCP Usual Care or PCP Usual Care.

1U44NS111779-01
DISCOVERY OF NAV1.7 INHIBITORS FOR THE TREATMENT OF PAIN Preclinical and Translational Research in Pain Management NINDS SITEONE THERAPEUTICS, INC. MULCAHY, JOHN VINCENT; ODINK, DEBRA BOZEMAN, MT 2019
NOFO Title: Blueprint Neurotherapeutics Network (BPN): Small Molecule Drug Discovery and Development for Disorders of the Nervous System (U44 Clinical Trial Optional)
NOFO Number: PAR-18-541
Summary:

We propose to develop a safe and effective nonopioid analgesic to treat neuropathic pain that targets an isoform of the voltage-gated sodium ion channel, NaV1.7. Voltage-gated sodium channels are involved in the transmission of nociceptive signals from their site of origin in the peripheral terminals of DRG neurons to the synaptic terminals in the dorsal horn. NaV1.7 is the most abundant tetrodotoxin-sensitive sodium channel in small diameter myelinated and unmyelinated afferents, where it has been shown to modulate excitability and set the threshold for action potentials. Development of systemic NaV1.7 inhibitors has been complicated by the challenge of achieving selectivity over other NaV isoforms expressed throughout the body. We have discovered a series of potent, state-independent NaV1.7 inhibitors that exhibit >1000-fold selectivity over other human isoforms. Work conducted under this program will support advancement of a lead candidate into clinical development as a therapeutic for neuropathic pain.

1R61AT010802-01
A Mindfulness and Peer Mentoring Program to Improve Adherence to Medication Assisted Treatment for Opioid Use Disorders Translation of Research to Practice for the Treatment of Opioid Addiction Behavioral Research to Improve Medication-Based Treatment NCCIH Univ of Alabama MUMBA, MERCY N Tuscaloosa, AL 2019
NOFO Title: HEAL Initiative: Behavioral Research to Improve MAT: Behavioral and Social Interventions to Improve Adherence to Medication Assisted Treatment for Opioid Use Disorders (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-AT-19-006
Summary:

There is evidence that combining mindfulness-based interventions and peer recovery support services with medication-assisted therapy (MAT) to treat opioid use disorders (OUD) reduces substance use, cravings, symptoms of depression and anxiety, and relapse rates, and improves treatment retention, and relationships with treatment providers and social supports. The goal of the present study is to determine the effectiveness of a mindfulness-based intervention that also utilizes peer mentors in addition to professional substance abuse therapists (the Minds and Mentors program [MiMP]) in improving adherence to MAT for OUD and reducing relapse rates in a sample of individuals with OUD who are also on MAT versus a 12-step facilitation (TSF) program. The study hypothesizes that participants in MiMP will demonstrate better adherence; reduced relapse and cravings (primary outcomes measures); reduced depression, anxiety, and stress; improved social support (secondary outcomes measures); and reduced cortisol levels and reactivity to drug cues (exploratory outcome measures).

1R61NS133704-01
Development of Adrb3 Antagonists for the Treatment of Pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS DUKE UNIVERSITY NACKLEY, ANDREA G (contact); JIN, CHUNYANG Durham, NC 2023
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-21-029
Summary:

Common chronic pain syndromes such as fibromyalgia, temporomandibular disorder, and low back pain, are significant health conditions for which safe and effective treatments are needed. Previous studies have identified the adrenergic receptor beta-3 (Adrb3) as a novel target for chronic pain, but past attempts to block this receptor have not worked. This project aims to identify and develop new molecules to attach selectively and block Adrb3 without entering the brain and spinal cord. The research will test these molecules in rodent animal models to determine their ability to block pain without significant side effects.

3U01AA021691-08S1
NATIONAL CONSORTIUM ON ALCOHOL AND NEURODEVELOPMENT IN ADOLESCENCE: OHSU New Strategies to Prevent and Treat Opioid Addiction Preventing Opioid Use Disorder NIAAA Oregon Health & Science University NAGEL, BONNIE J Portland, OR 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
2SB1NS119103-04
Novel non-narcotic analgesic for acute and chronic pain Cross-Cutting Research Small Business Programs NINDS SOUTH RAMPART PHARMA, LLC NAISMITH, ROBERT New Orleans, LA 2023
NOFO Title: HEAL Commercialization Readiness Pilot (CRP) Program: Embedded Entrepreneurs for Small Businesses in Pain Management (SB1 Clinical Trial Not Allowed)
NOFO Number: PAR-23-069
1R43NS132623-01
Optogenetic Pain Modulator for Non-Opioid Chronic Pain Management Cross-Cutting Research Small Business Programs NINDS OPSIN BIOTHERAPEUTICS, INC. NARCISSE, DARRYL Bedford, TX 2023
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 - Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

Optogenetics is a method of controlling nerve or brain activity using light-sensitive cell receptors (opsins). Optogenetics has been used in brain research for decades, allowing researchers to understand the brain and its associated disorders by selectively turning on and off specific nerve cells. This project will develop and refine use of an opsin and a light-stimulation device to control nerve cells contributing to the sensation of pain. 

3UH3DA050174-02S3
Supplement to HOME Trial: Role of Justice Involvement in Implementation and Effectiveness of Housing First for Youth Experiencing Homelessness New Strategies to Prevent and Treat Opioid Addiction Preventing Opioid Use Disorder NIDA OHIO STATE UNIVERSITY NATASHA SLESNICK; KELLY J KELLEHER Columbus, OH 2023
NOFO Title: Notice of Special Interest (NOSI): HEAL Initiative: Regarding the Availability of Administrative Supplements to Support the Addition of Justice Measures
NOFO Number: NOT-DA-23-011
Summary:

Providing housing and prevention services (often referred to as “housing first”) has great potential to prevent opioid use disorder, continued homelessness, and other problem behaviors among youth experiencing homelessness. However, implementation of these services is challenging because criminal justice system involvement (which is common in this population) often prevents or delays access to housing. This project will explore interactions between criminal justice system involvement and the housing first intervention, toward reducing risks for opioid use and death among justice-involved youth experiencing homelessness

1R61NS133217-01
A Novel Assay to Improve Translation in Analgesic Drug Development Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS VIRGINIA COMMONWEALTH UNIVERSITY NEGUS, SIDNEY S Richmond, VA 2023
NOFO Title: Development and Validation of Pain-Related Models and Endpoints to Facilitate Non-Addictive Analgesic Discovery
NOFO Number: NOT-NS-22-095
Summary:

Effective development of non-addictive therapies for pain requires animal models that reflect the human condition. Unfortunately, currently used models have limitations and have not always done a good job of predicting what will work in human patients. This project will refine a new way of measuring pain-related behaviors in mice that takes advantage of more natural mouse behavior and is less influenced by experimenter biases and artifacts. The research will verify that the promising results hold up in several different types of pain and that different classes of clinically used pain medications are effective. They will also make sure the data can be reproduced by an outside laboratory. If successful, this will support the use of this new read-out for future pain therapy development.

1R61DA057683-01
Leveraging Regulatory Flexibility for Methadone Take-Home Dosing to Improve Retention in Treatment for Opioid Use Disorder: A Stepped-wedge Randomized Trial to Facilitate Clinic Level Changes Cross-Cutting Research Translating Data 2 Action to Prevent Overdose NIDA NEW YORK UNIVERSITY SCHOOL OF MEDICINE NEIGHBORS, CHARLES J (contact); BAO, YUHUA ; RAMSEY, KELLY S New York, NY 2022
NOFO Title: HEAL Initiative: HEAL Data2Action Innovation Projects (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-DA-22-051
Summary:

During the COVID-19 public health emergency, the Substance Use and Mental Health Services Administration relaxed regulations for take-home dosing of methadone, offering an opportunity to improve methadone treatment access and address racial and ethnic disparities. This project aims to address regulatory, legal liability, and financial concerns related to clinical practice changes in opioid treatment programs. The project will first review state administrative data and conduct qualitative interviews to inform the intervention approach. The project will then evaluate an opioid treatment program intervention involving take-home methadone and its effect on take-home dosing, retention in care, and health outcomes for Black/African American and Hispanic/Latino individuals who take methadone for opioid use disorder.

4R33DA057683-02
Leveraging regulatory flexibility for methadone take-home dosing to improve retention in treatment for opioid use disorder: A stepped-wedge randomized trial to facilitate clinic level changes Cross-Cutting Research Translating Data 2 Action to Prevent Overdose NIDA NEW YORK UNIVERSITY SCHOOL OF MEDICINE NEIGHBORS, CHARLES J (contact); BAO, YUHUA; RAMSEY, KELLY S New York, NY 2023
NOFO Title: HEAL Initiative: HEAL Data2Action Innovation Projects (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-DA-22-051