Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Sort descending Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded
1UG3TR003150-01 Human Microphysiological Model of Afferent Nociceptive Signaling Preclinical and Translational Research in Pain Management Translational Research to Advance Testing of Novel Drugs and Human Cell-Based Screening Platforms to Treat Pain and Opioid Use Disorder NCATS TULANE UNIVERSITY OF LOUISIANA MOORE, MICHAEL J (contact); ASHTON, RANDOLPH S; RAJARAMAN, SWAMINATHAN New Orleans, LA 2019
NOFO Title: HEAL Initiative: Tissue Chips to Model Nociception, Addiction, and Overdose (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-TR-19-003
Summary:

This project will develop a human cell-based model of the afferent pain pathway in the dorsal horn of the spinal cord. The research team’s approach utilizes novel human pluripotent stem cell (hPSC)-derived phenotypes in a model that combines 3D organoid culture with microfabricated systems on an integrated, three-dimensional (3D) microelectrode array. Researchers will establish the feasibility of a physiologically relevant, human 3D model of the afferent pain pathway that will be useful for evaluation of candidate analgesic drugs. They will then improve the physiological relevance of the system by promoting neural network maturation before demonstrating the system’s utility in modeling adverse effects of opioids and screening compounds to validate the model. Completion of the study objective will establish novel protocols for deriving dorsal horn neurons from hPSCs and create the first human microphysiological model of the spinal cord dorsal horn afferent sensory pathway.

1UH2AR076719-01 Novel imaging of endplate biomarkers in chronic low back pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF CALIFORNIA, SAN FRANCISCO FIELDS, AARON J (contact); KRUG, ROLAND San Francisco, CA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

This project will examine the association between end plate pathology and chronic low back pain (cLBP) and improve patient selection by developing and translating new imaging tools, technologies, and/or methods (iTTM) that provide accurate, noninvasive measures of end plate pathologies. A search for clinically relevant biomarkers of end plate pathology will focus on novel imaging measures of end plate bone marrow lesion (BML) severity with IDEAL MRI and cartilage endplate (CEP) fibrosis/damage with UTE MRI, assess interactions with paraspinal muscles, and identify metrics that associate with pain, disability, and degeneration. The research will refine imaging and post-processing methodologies by leveraging and expanding existing cross-sectional cohorts and then deploy and validate the new end plate iTTM to other BACPAC sites to test the most promising metrics’ clinical utility. These studies will provide validated iTTM that are useful for addressing the end plates pathology’s role in cLBP, identifying sub-phenotypes, discovering pain mechanisms, uncovering treatment targets, and selecting patients.

1UH2AR076723-01 Wearable nanocomposite sensor system for diagnosing mechanical sources of low back pain and guiding rehabilitation Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS BRIGHAM YOUNG UNIVERSITY BOWDEN, ANTON E Provo, UT 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

Chronic low back pain (cLBP) is recurrent and often nonresponsive to conservative treatments. Biomechanists, physical therapists, and surgeons each utilize a variety of tools and techniques to assess and interpret qualitative movement changes to understand potential mechanical and neurological sources of low back pain and as critical elements in their treatment paradigm. However, objectively characterizing and communicating this information is currently impossible, since clinically feasible (i.e., cost-effective, objective, and accurate) tools and quantitative benchmarks do not exist. This research addresses the challenge to improve cLBP outcomes through the use of unique, inexpensive, screen-printable, elastomer-based, nanocomposite, piezoresponsive sensors, which will be integrated into a SPInal Nanosensor Environment (SPINE) sense system to measure lumbar kinematics and provide an objective, quantitative platform for diagnosis, monitoring, and follow-up assessment of cLBP.

1UH2AR076724-01 Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF CALIFORNIA, SAN FRANCISCO MAJUMDAR, SHARMILA San Francisco, CA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

Despite the significance of spine disorders, there are few reliable methods to determine appropriate patient care and evaluate intervention effectiveness. The research and tool development take the critical next step in the clinical translation of faster, quantitative magnetic resonance imaging (MR) of patients with lower back pain. The multidisciplinary Technology Research Site (Tech Site) of BACPAC will develop Phase IV (i.e., technology optimization) technologies and/or methods (TTMs) to leverage two key technical advancements: development of machine learning-based, faster MR acquisition methods and machine learning for image segmentation and extraction of objective disease related features from images. The team will develop, validate, and deploy end-to-end deep learning-based technologies (TTMs) for accelerated image reconstruction, tissue segmentation, and detection of spinal degeneration to facilitate automated, robust assessment of structure-function relationships between spine characteristics, neurocognitive pain response, and patient-reported outcomes.

1UH2AR076729-01 The Spine Phenome Project: Enabling Technology for Personalized Medicine Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS OHIO STATE UNIVERSITY MARRAS, WILLIAM STEVEN (contact); KHAN, SAFDAR N; WEAVER, TRISTAN E Columbus, OH 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

Current diagnostics and treatments of chronic low back pain (cLBP) rely primarily on subjective metrics and do not target all the multidimensional biopsychosocial mechanisms. This multidisciplinary effort will develop and validate a digital health platform and provide meaningful data-driven metrics that enable an integrated approach to clinical evaluation and treatment of cLBP. This platform will facilitate the use of quantitative spinal motion metrics (function), patient-reported outcomes, and patient preference information to enable deep patient phenotyping and inform clinical decision making on personalized treatments in order to improve outcomes. This effort will involve software and hardware development to enable data collection, analysis, and visualization in clinical settings. The outcome of this project will be a digital health platform with data to support regulatory submission for clinical use. At the end of this effort, the researchers will have a validated tool for integration in clinical research studies supported by the BACPAC Consortium.

1UH2AR076731-01 Development, Evaluation and Translation of Robotic Apparel for Alleviating Low Back Pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS HARVARD UNIVERSITY WALSH, CONOR Cambridge, MA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

A primary factor contributing to acute or recurrent back injury is overexertion via excessive peak and cumulative forces on the back and the primary factors involved in the progression of acute low back injury to chronic low back pain (cLBP) include maladaptive motor control strategies, muscle hyperactivity, reduced movement variability, and the development of fear cognitions. This project will focus on the development of robotic apparel with integrated biofeedback components that can reduce exertion; encourage safe, varied movement strategies; and promote recovery. Robotic apparel will be capable of providing supportive forces to the back and hip joints through adaptive control algorithms that respond to dynamic movements and becoming fully transparent when assistance is no longer needed. This technology can be used to prevent cLBP caused by overexertion and provide a new tool to physical therapists and the clinical community to enhance rehabilitation programs.

1UH2AR076736-01 Focused Ultrasound Neuromodulation of Dorsal Root Ganglion for Noninvasive Mitigation of Low Back Pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF UTAH RIEKE, VIOLA (contact); SHAH, LUBDHA Salt Lake City, UT 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

This project's goal is to develop a completely noninvasive, precise, and durable treatment option for low back pain (LBP). Focused ultrasound (FUS) is a lower-risk, completely noninvasive modality that enables the delivery of spatially confined acoustic energy to a small tissue region (dorsal root ganglion [DRG]) under magnetic resonance (MR) imaging guidance to treat axial low back pain by neuromodulation. The central goal of this study is to demonstrate neuromodulation of the DRG with FUS to decrease nerve conduction; this treatment can be used to attenuate pain sensation. This exploratory study will demonstrate FUS neuromodulation of the DRG in pigs as assessed by somatosensory evoked potential and perform unique behavioral assessments indicative of supraspinal pain sensation, with the ultimate goal of translating this technology to patients with LBP. FUS could potentially replace current invasive or systemically detrimental treatment modalities.

1UH2AR076741-01 Imaging Epigenetic Dysregulation in Patients with Low Back Pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS MASSACHUSETTS GENERAL HOSPITAL WEY, HSIAO-YING Boston, MA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

Inhibitors of the epigenetic enzymes histone deacetylases (HDACs) produce analgesic responses and are therefore therapeutic targets for pain. The research team recently resolved a PET imaging agent, [11C]Martinostat, that selectively binds to a subset of HDAC enzymes. A series of initial proof-of-concept clinical validation studies will be conducted to evaluate whether [11C]Martinostat PET is a sensitive biomarker to detect the typical (axial) chronic low back pain (cLBP). The research team will validate [11C]Martinostat PET’s ability to differentiate subtypes of pain by comparing axial cLBP and other cLBP patients with radiculopathy and longitudinally study subacute LBP patients (sLBP) to investigate whether there is a unique imaging signature that differentiates patients who develop cLBP and those who recover from low back pain. Using [11C]Martinostat to understand HDAC expression changes in chronic pain patients will validate an epigenetic drug target, refine patient selection based on HDAC expression, and facilitate proof of mechanism in developing novel analgesics.

1UH3NS113661-01 Deep Brain Stimulation of the Subgenual Cingulate Cortex for the Treatment of Medically Refractory Chronic Low Back Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS UNIVERSITY OF CALIFORNIA LOS ANGELES BARI, AUSAF (contact); POURATIAN, NADER Los Angeles, CA 2019
NOFO Title: HEAL Initiative: Clinical Devices to Treat Pain (UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-19-018
Summary:

This study aims to address critical gaps and unmet therapeutic needs of chronic low back pain (CLBP) patients using a next-generation deep brain stimulation (DBS) device with directional steering capability to engage networks known to mediate the affective component of CLBP. Researchers will utilize patient-specific probabilistic tractography to target the subgenual cingulate cortex (SCC) to engage the major fiber pathways mediating the affective component of chronic pain. The objective is to conduct an exploratory first-in-human clinical trial of SCC DBS for treatment of medically refractory CLBP. The research team aims to: (1) assess the preliminary efficacy of DBS of SCC in treatment of medically refractory CLBP; (2) demonstrate the safety and feasibility of SCC DBS for CLBP; and (3) develop diffusion tensor imaging–based blueprints of response to SCC DBS for CLBP.

1UH3NS115118-01 Transcranial focused ultrasound for head and neck cancer pain. A pilot study Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS UNIVERSITY OF VIRGINIA ELIAS, WILLIAM JEFFREY Charlottesville, VA 2019
NOFO Title: HEAL Initiative: Clinical Devices to Treat Pain (UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-19-018
Summary:

Head and neck cancer is particularly susceptible to nociceptive and neuropathic pains because it is dense with sensitive anatomic structures and richly innervated. Transcranial magnetic resonance imaging–guided focused ultrasound (FUS) is a new stereotactic modality capable of delivering high-intensity energy through the intact human skull with submillimeter precision. This clinical trial will target the spinothalamic and spinoreticular pain circuits by unilateral FUS mesencephalotomy, an effective procedure for cancer pain but limited by the accuracy of its era. The primary aim is to assess the safety and preliminary effectiveness in six head and neck cancer patients with opioid-resistant pain. Researchers will investigate the potential mechanism of pain relief as the mesencephalotomy target involves the confluence of the ascending and descending pain systems. Aims 2 and 3 will investigate these systems with electrophysiology specific for the spinothalamic tract and carfentenil positron emission tomography imaging that measures the brain’s endogenous opioids.

1UH3NS115631-01 Multisite adaptive brain stimulation for multidimensional treatment of refractory chronic pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS UNIVERSITY OF CALIFORNIA, SAN FRANCISCO SHIRVALKAR, PRASAD San Francisco, CA 2019
NOFO Title: HEAL Initiative: Clinical Devices to Treat Pain (UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-19-018
Summary:

The research team will develop stimulation control algorithms to treat chronic pain using a novel device that allows longitudinal intracranial signal recording in an ambulatory setting. Subjects with refractory chronic pain syndromes will undergo bilateral surgical implant of temporary electrodes in the thalamus, anterior cingulate, prefrontal cortex, insula, and amygdala to identify candidate biomarkers of pain and optimal stimulation parameters. Six patients will proceed to chronic implantation of “optimal” brain regions for long-term recording and stimulation. The team will first validate biomarkers of low- and high-pain states to define neural signals for pain prediction in individuals. They will then use these pain biomarkers to develop personalized closed-loop algorithms for deep-brain stimulation (DBS) and test the feasibility of closed-loop DBS for chronic pain in weekly blocks. Researchers will assess the efficacy of closed-loop DBS algorithms against traditional open-loop DBS or sham in a double-blinded cross-over trial and measure mechanisms of DBS tolerance.

1UH3NS115647-01A1 A Double-Blind, Randomized, Controlled Trial of Epidural Conus Medullaris Stimulation to Alleviate Pain and Augment Rehabilitation in Patients with Subacute Thoracic Spinal Cord Injury (SCI) Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS DUKE UNIVERSITY LAD, SHIVANAND P Durham, NC 2020
NOFO Title: HEAL Initiative: Clinical Devices to Treat Pain (UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-19-018
Summary:

Pain is a major problem for spinal cord injury (SCI) patients that tends to persist and even worsen with time. No treatments are currently available to consistently relieve pain in SCI patients. This study will investigate the feasibility of Epidural Electrical Stimulation (EES) using the Abbott Proclaim? SCS system with two electrodes to treat neuropathic pain in patients with thoracic spinal cord injury. In this double-blind, prospective, randomized clinical trial, patients with subacute, traumatic, complete thoracic SCIs with American Spinal Injury Association (ASIA) Impairment Scale A will be randomized to receive either ?EES on? (treatment intervention) or ?EES off? (control intervention) of the target regions for pain control (lead overlying the spinal cord anatomy corresponding with their pain distribution) and neurorestoration (lead overlying the conus medullaris) as an adjunct to physical therapy. This study will help determine whether EES can help patients with SCI neuropathic pain and have more widespread clinical applicability.

1UM1DA049394-01 HEALing Communities Study Data Coordinating Center Translation of Research to Practice for the Treatment of Opioid Addiction HEALing Communities Study NIDA RTI International WILLIAMS, RICK L Research Triangle, NC 2019
NOFO Title: HEALing Communities Study: Developing and Testing an Integrated Approach to Address the Opioid Crisis (Data Coordinating Center) (UM1- Clinical Trials Not Allowed)
NOFO Number: RFA-DA-19-017
Summary:

Although there are effective prevention and treatment programs and services to address opioid misuse, opioid use disorder (OUD), and overdose, gaps remain between those needing and those receiving prevention and treatment, in part because of a need to better understand how to make these programs and services most effective at a local level. The National Institutes of Health (NIH) and the Substance Abuse and Mental Health Services Administration (SAMHSA) launched the HEALing Communities Study to generate evidence about how tools for preventing and treating opioid misuse and OUD are most effective at the local level. This multisite implementation research study will test the impact of an integrated set of evidence-based practices across health care, behavioral health, justice, and other community-based settings. The goal of the study is to reduce opioid-related overdose deaths by 40 percent over three years. As the Data Coordinating Center, RTI will provide coordination and facilitate communications to unite the HEALing Communities Study research centers into a cohesive research cooperative.

1UM1DA049406-01 HEALing Communities Study - Kentucky Translation of Research to Practice for the Treatment of Opioid Addiction HEALing Communities Study NIDA UNIVERSITY OF KENTUCKY WALSH, SHARON L Lexington, KY 2019
NOFO Title: HEALing Communities Study: Developing and Testing an Integrated Approach to Address the Opioid Crisis (Research Sites) (UM1 - Clinical Trial Required)
NOFO Number: RFA-DA-19-016
Summary:

Although there are effective prevention and treatment programs and services to address opioid misuse, opioid use disorder (OUD), and overdose, gaps remain between those needing and those receiving prevention and treatment, in part because of a need to better understand how to make these programs and services most effective at a local level. The National Institutes of Health (NIH) and the Substance Abuse and Mental Health Services Administration (SAMHSA) launched the HEALing Communities Study to generate evidence about how tools for preventing and treating opioid misuse and OUD are most effective at the local level. This multisite implementation research study will test the impact of an integrated set of evidence-based practices across health care, behavioral health, justice, and other community-based settings. The goal of the study is to reduce opioid-related overdose deaths by 40 percent over three years. The University of Kentucky is partnering with academic institutions in three other states to study the impact of these efforts in 67 highly affected communities. The study will also look at the effectiveness of coordinated systems of care designed to increase the number of individuals receiving medication to treat OUD, increase the distribution of naloxone, and reduce high-risk opioid prescribing.

1UM1DA049412-01 HEALing Communities Study - Massachusetts Translation of Research to Practice for the Treatment of Opioid Addiction HEALing Communities Study NIDA BOSTON MEDICAL CENTER SAMET, JEFFREY H Boston, MA 2019
NOFO Title: HEALing Communities Study: Developing and Testing an Integrated Approach to Address the Opioid Crisis (Research Sites) (UM1 - Clinical Trial Required)
NOFO Number: RFA-DA-19-016
Summary:

Although there are effective prevention and treatment programs and services to address opioid misuse, opioid use disorder (OUD), and overdose, gaps remain between those needing and those receiving prevention and treatment, in part because of a need to better understand how to make these programs and services most effective at a local level. The National Institutes of Health (NIH) and the Substance Abuse and Mental Health Services Administration (SAMHSA) launched the HEALing Communities Study to generate evidence about how tools for preventing and treating opioid misuse and OUD are most effective at the local level. This multisite implementation research study will test the impact of an integrated set of evidence-based practices across health care, behavioral health, justice, and other community-based settings. The goal of the study is to reduce opioid-related overdose deaths by 40 percent over three years. Boston Medical Center is partnering with academic institutions in three other states to study the impact of these efforts in 67 highly affected communities. The study will also look at the effectiveness of coordinated systems of care designed to increase the number of individuals receiving medication to treat OUD, increase the distribution of naloxone, and reduce high-risk opioid prescribing.

1UM1DA049415-01 HEALing Communities Study - New York Translation of Research to Practice for the Treatment of Opioid Addiction HEALing Communities Study NIDA COLUMBIA UNIV NEW YORK MORNINGSIDE EL-BASSEL, NABILA New York, NY 2019
NOFO Title: HEALing Communities Study: Developing and Testing an Integrated Approach to Address the Opioid Crisis (Research Sites) (UM1 - Clinical Trial Required)
NOFO Number: RFA-DA-19-016
Summary:

Although there are effective prevention and treatment programs and services to address opioid misuse, opioid use disorder (OUD), and overdose, gaps remain between those needing and those receiving prevention and treatment, in part because of a need to better understand how to make these programs and services most effective at a local level. The National Institutes of Health (NIH) and the Substance Abuse and Mental Health Services Administration (SAMHSA) launched the HEALing Communities Study to generate evidence about how tools for preventing and treating opioid misuse and OUD are most effective at the local level. This multisite implementation research study will test the impact of an integrated set of evidence-based practices across health care, behavioral health, justice, and other community-based settings. The goal of the study is to reduce opioid-related overdose deaths by 40 percent over three years. Columbia University is partnering with academic institutions in three other states to study the impact of these efforts in 67 highly affected communities. The study will also look at the effectiveness of coordinated systems of care designed to increase the number of individuals receiving medication to treat OUD, increase the distribution of naloxone, and reduce high-risk opioid prescribing.

1UM1DA049417-01 HEALing Communities Study - Ohio Translation of Research to Practice for the Treatment of Opioid Addiction HEALing Communities Study NIDA OHIO STATE UNIVERSITY JACKSON, REBECCA D Columbus, OH 2019
NOFO Title: HEALing Communities Study: Developing and Testing an Integrated Approach to Address the Opioid Crisis (Research Sites) (UM1 - Clinical Trial Required)
NOFO Number: RFA-DA-19-016
Summary:

Although there are effective prevention and treatment programs and services to address opioid misuse, opioid use disorder (OUD), and overdose, gaps remain between those needing and those receiving prevention and treatment, in part because of a need to better understand how to make these programs and services most effective at a local level. The National Institutes of Health (NIH) and the Substance Abuse and Mental Health Services Administration (SAMHSA) launched the HEALing Communities Study to generate evidence about how tools for preventing and treating opioid misuse and OUD are most effective at the local level. This multisite implementation research study will test the impact of an integrated set of evidence-based practices across health care, behavioral health, justice, and other community-based settings. The goal of the study is to reduce opioid-related overdose deaths by 40 percent over three years. The Ohio State University is partnering with academic institutions in three other states to study the impact of these efforts in 67 highly affected communities. The study will also look at the effectiveness of coordinated systems of care designed to increase the number of individuals receiving medication to treat OUD, increase the distribution of naloxone, and reduce high-risk opioid prescribing.

2R44DA041912-03 COMPLETION OF IND-PACKAGE FOR A NOVEL, NON-NARCOTIC PAINKILLER Cross-Cutting Research Small Business Programs NIDA Blue Therapeutics, Inc. Yekkirala, Ajay S CAMBRIDGE, MA 2019
NOFO Title: PHS 2017-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-17-302
Summary:

Opioids like morphine and hydrocodone are generally the most effective therapeutics for treatment of moderate to severe pain. However, their use is limited by serious side effects: tolerance, constipation, respiratory depression, physical dependence, and high addictive potential. Alternative pain relievers with the analgesic potency of conventional opioids, but devoid of narcotic side effects, are an immediate need. The goal of this project is to develop and commercialize an alternative to conventional opioid analgesics with reduced side effects and without the addictive properties common to mu-opioid agonists, targeting a new molecule in the central nervous system. This project will perform the necessary preliminary studies to prepare this new molecule for an investigational new drug application with the FDA.

2R44DA043288-02 MINDFULNESS MOBILE APP TO REDUCE ADOLESCENT SUBSTANCE USE Cross-Cutting Research Small Business Programs NIDA Oregon Research Behavioral Intervention Strategies Smith, Dana K Eugene, OR 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Required)
NOFO Number: PA-18-573
Summary:

Adolescents in the juvenile justice system demonstrate very high rates of tobacco, alcohol, and other drug use (ATOD), with rates that are estimated to be three times higher than non-justice-involved youth. Substance-abusing youth are at higher risk than nonusers for mental health problems, including depression, conduct problems, personality disorders, suicidal thoughts, attempted suicide, and completed suicide, as well as detrimental effects on neural development related to substance use. This project aims to adapt and test the feasibility and efficacy of a smartphone application (app) intervention prototype that would help adolescent substance users reduce or quit their substance use. The program, entitled Rewire, is based on the primary substance use cessation components tested in previous work with juvenile justice-involved adolescents and on intervention components shown to be central to smoking cessation, and applies a mindfulness approach as the guiding framework for the intervention.

2R44DA043325-02 SENSITIVE AND PORTABLE PHYSICIAN OFFICE-BASED URINE ANALYZER TO TACKLE PRESCRIPTION DRUG ABUSE Cross-Cutting Research Small Business Programs NIDA BreviTest Technologies, LLC Heffernan, Michael John HOUSTON, TX 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

Current drug-screening immunoassays use benchtop analyzers that require experienced personnel, time, and a laboratory setup. Physicians without access to in-house testing have to send out patient samples for screening, resulting in unacceptable delays in the treatment of patients who are potentially suffering from chronic pain. This project, a partnership with BreviTest Technologies, LLC, aims to develop a low-cost, point-of-care (POC) urine drug testing (UDT) device to detect opioids. The goal is for a portable platform to deliver quantitative performance similar to a standard laboratory test for opioids within a 10-minute run time. If successful, this will provide a technology capable of performing rapid quantifications of urine drug levels in a physician’s office, providing an invaluable tool to render more effective pain management dosing to patients, thus paving the way toward lower toxicity and a better quality of life.

2R44DA044062-02 LEVERAGING PREDICTIVE ANALYTICS WITHIN SOCIAL NETWORKS TO MAXIMIZE DRUG ANDALCOHOL TREATMENT EFFICACY AND RELAPSE PREVENTION Cross-Cutting Research Small Business Programs NIDA Sober Grid Pesce, Christopher Neil Boston, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Required)
NOFO Number: PA-18-573
Summary:

Sober Grid™ has developed a smartphone-based mobile application currently in use by more than 120,000 individuals worldwide who are in, or seeking, recovery from drug and alcohol addiction. The “Grid,” as it is known, is a mobile-based, social recovery community providing rapid context-specific peer support, efficient help seeking, motivational enhancement exercises, and member ratings of support content—all aimed to prevent relapse. The overarching goal of this phase II project is to extend the current capabilities of the Sober Grid app to achieve a comprehensive social recovery support app featuring intelligent, context-appropriate resource matching and 24/7 rapid-response peer coaching that is effective in reducing disordered substance use and is cost-effective. This projects tests whether providing this functionality to high-risk members will be acceptable, feasible, increase access to and engagement with resources, and have a positive effect in increasing time to relapse and days of consecutive abstinence.

2R44DA045410-02 Peripherally-Restricted Long-Acting Somatostatin Receptor 4 (LA-SSTR4) Agonists for Pain Cross-Cutting Research Small Business Programs NIDA PEPTIDE LOGIC, LLC RIVIERE, PIERRE San Diego, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

The proposed SBIR Phase II program seeks to select a first-in-class, peripherally-restricted, and long-acting somatostatin receptor 4 (LA-SSTR4) agonist clinical candidate for development as a novel non-addictive analgesic able to replace opioids for the treatment of moderate-to-severe chronic pain. The program is based on strong scientific evidence showing that activation of peripheral SSTR4 produces broad spectrum analgesic activity and pursues a unique therapeutic strategy.   Unlike opioids, SSTR4 agonists do not induce constipation, respiratory depression, dependence, addiction, or abuse. Finally, unlike SSTR2 and SSTR5, SSTR4 expression in the pituitary and pancreas is very low, supporting that selective SSTR4 agonists are unlikely to perturb peripheral endocrine functions. The preceding SBIR Phase I program has already established the feasibility of conjugating a short-acting, potent, and selective peptide SSTR4 agonist to the antibody carrier. The resulting LA-SSTR4 agonist lead series has high agonist potency and selectivity for SSTR4 and has demonstrated antinociceptive activity in an animal pain model. The proposed SBIR Phase II program seeks to: optimize the existing lead series and select a clinical candidate for development,  validate and prioritize the indication(s) for clinical development using disease-relevant mouse pain models, and characterize the pharmacokinetics and safety/toxicology profile of the clinical candidate in rat and non-human primates to help design subsequent investigational new drug (IND)-enabling studies.

2R44DA048689-02 Beacon-OUD: Behavioral Economic Screening Tool of Opioid Use Disorder (OUD) for Use in Clinical Practice Cross-Cutting Research Small Business Programs NIDA BEAM DIAGNOSTICS, INC. SNIDER, SARAH EMILY Roanoke, VA 2023
NOFO Title: PHS 2021-2 Omnibus Solicitation of the NIH, CDC and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-21-259
Summary:

Current clinical screening measures for opioid misuse are underused and susceptible to bias. This project will develop Beacon-OUD, a digital opioid misuse assessment. The tool generates an automated, standardized score, preventing potential judgements related to patient’s status and circumstances, limiting stigma. The research will further advance Beacon-OUD into a commercial product for use both as a stand-alone tool and as an electronic health record-integrated solution to encourage objective opioid misuse screening in large health care systems. 

2R44DA049300-02 Prapela™ SVS: A cost-effective stochastic vibrotactile stimulation device to improve the clinical course of infants with neonatal abstinence syndrome Cross-Cutting Research Small Business Programs NIDA PRAPELA, INC. KONSIN, JOHN PHILLIP Biddeford, ME 2021
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

Infants exposed to opioids in the womb may suffer from neonatal opioid withdrawal syndrome (NOWS). They experience symptoms such as excessive crying, irritability, rapid breathing, elevated heart rates, tremors, and sometimes seizures. There is no accepted standard treatment for NOWS; infants are treated with pharmacological (opioid administration and gradual weaning) and nonpharmacological measures. Nonpharmacological care such as swaddling, rocking, frequent feedings, and skin contact, are time consuming, placing a substantial burden on hospitals with limited resources. Prapela, Inc. previously developed a hospital bassinette pad that, using stochastic vibrotactile stimulation (SVS) technology, very gently rocks infants with NOWS to reduce irritability and other symptoms without disturbing sleep patterns. This project will conduct an additional clinical study to determine the SVS bassinette pad’s efficacy in reducing breathing and heart rate, its safety, and its acceptability with clinical staff and parents caring for infants with NOWS.

2R44DA049640-02 Virtual Reality as a Opioid Sparing Intervention for Acute Postoperative Pain Management Cross-Cutting Research Small Business Programs NIDA APPLIEDVR, INC MADDOX, WILLIAM TODD (contact); AYAD, SABRY ; SUK, MICHAEL Los Angeles, CA 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

Millions of Americans undergo surgery each year, with fewer than half of patients reporting adequate postoperative pain relief and approximately 75 percent reporting moderate to severe postoperative pain. Gaps in postoperative pain management that lead to the unnecessary introduction and over-prescription of opioids continue to exacerbate the opioid crisis, but virtual reality (VR) has been demonstrated to be an effective strategy for pain management. This project will enhance and improve the functionality of a VR-based technology, AppliedVR, to provide acute perioperative pain management through a new software-based VR medical device, RelieVRx™. As a non-opioid alternative intended to reduce postoperative pain, RelieVRx can potentially reduce the need for and utilization of opioids in the postoperative setting.