Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Sort descending Year Awarded
1R01DA059177-01
Strategies to Define and Mitigate the Placental and Fetal Alterations Caused by Maternal Oxycodone Exposure Enhanced Outcomes for Infants and Children Exposed to Opioids The Biology of Opioid Exposure During Pregnancy and Effects on Early Neuro-Behavioral Development NIDA UNIVERSITY OF NEBRASKA MEDICAL CENTER HARRIS, LYNDA KATHERINE (contact); PENDYALA, GURUDUTT N Omaha, NE 2023
NOFO Title: HEAL Initiative: Opioid Exposure and Effects on Placenta Function, Brain Development, and Neurodevelopmental Outcomes (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-HD-23-033
Summary:

Exposure to prescription opioids during pregnancy can alter growth of the fetus and cause persistent neurological problems during childhood. This project will identify biological underpinnings of oxycodone exposure on health of the placenta, brain development of the fetus, and behavioral problems observed in early infancy. This research will also assess whether melatonin supplementation can limit these harmful outcomes. Overall, the research aims to characterize the health effects of oxycodone used during pregnancy, as well as to point to new tools and molecular indicators (biomarkers) for diagnosing, treating, and preventing opioid harm to the fetus and mother.

1R21NS132590-01
Structure-Function and Signaling of Glutamate Delta 1 in Pain Mechanism Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS CREIGHTON UNIVERSITY DRAVID, SHASHANK MANOHAR Omaha, NE 2023
NOFO Title: Emergency Awards: HEAL Initiative-Early-Stage Discovery of New Pain and Opioid Use Disorder Targets Within the Understudied Druggable Proteome (R21 Clinical Trial Not Allowed)
NOFO Number: RFA-TR-22-011
Summary:

There is an urgent need to find new ways to treat chronic pain through better targeting of underlying biological processes. Research shows that flexible synapses within the amygdala brain region play a role in the progression of pain from acute to chronic, but the details are not fully understood. The receptor glutamate delta 1 helps to form and maintain synapses in the amygdala in inflammatory and neuropathic pain. This project will study how the shape and characteristics of glutamate delta 1 affect pain conditions that involve the amygdala, toward informing future development of pain medications. 

1UG3TR003081-01
Multi-organ human-on-a-chip system to address overdose and acute and chronic efficacy and off-target toxicity Preclinical and Translational Research in Pain Management Translational Research to Advance Testing of Novel Drugs and Human Cell-Based Screening Platforms to Treat Pain and Opioid Use Disorder NCATS UNIVERSITY OF CENTRAL FLORIDA HICKMAN, JAMES J (contact); SHULER, MICHAEL L Orlando, FL 2019
NOFO Title: HEAL Initiative: Tissue Chips to Model Nociception, Addiction, and Overdose (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-TR-19-003
Summary:

This project will build overdose models for fentanyl, methadone, codeine, and morphine in a multi-organ system and evaluate the acute and repeat dose, or chronic effects, of overdose treatments as well as off-target toxicity. Researchers developed a system using human cells in a pumpless multi-organ platform that allows continuous recirculation of a blood surrogate for up to 28 days. They will develop two overdose models for male and female phenotypes based on pre-B?tzinger Complex neurons and will integrate functional immune components that enable organ-specific or systemic monocyte actuation. Models for cardiomyopathy and infection will be utilized. Researchers will establish a pharmacokinetic/pharmacodynamic model of overdose and treatment to enable prediction for a range of variables. We will use a serum-free medium with microelectrode arrays and cantilever systems integrated on chip that allow noninvasive electronic and mechanical readouts of organ function.

3R44TR001326-03S1
Automation and validation of human on a chip systems for drug discovery Cross-Cutting Research Small Business Programs NCATS HESPEROS, LLC SHULER, MICHAEL L; HICKMAN, JAMES J Orlando, FL 2019
NOFO Title: PHS 2017-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-17-302
Summary:

Hesperos uses microphysiological systems in combination with functional readouts to establish systems capable of analysis of chemicals and drug candidates for toxicity and efficacy during pre-clinical testing, with initial emphasis on predictive toxicity. The team constructed physiological systems that represent cardiac, muscle and liver function, and demonstrated a multi-organ functional cardiac/liver module for toxicity studies as well as metabolic activity evaluations. In addition, the team demonstrated multi-organ toxicity in a 4-organ system composed of neuronal, cardiac, liver and muscle components. While much is known about the cells and neural circuitry regulating pain modulation there is limited knowledge regarding the precise mechanism by which peripheral and spinal level antinociceptive drugs function, and no available human-based model reproducing this part of the pain pathway. The ascending pain modulatory pathways provide a well characterized neural architecture for investigating pain regulatory physiology. In this project, the research team propose a human-on-a-chip neuron tri-culture system composed of nociceptive neurons, GABAergic interneurons and glutamatergic dorsal projection neurons (DPN) integrated with a MEMS construct. Using this model, investigators will interrogate pain signaling physiology at three levels, 1) at the site of origin by targeting nociceptive neurons with pain modulating compounds including noxious stimuli and inflammatory mediators, 2) at the inhibitory GABAergic interneuron, and 3) at the ascending spinal level by targeting glutamatergic DPNs. These circuits will be integrated utilizing expertise in patterning neurons as well as integration with BioMEMs devices. This system provides scientists with a better understanding of ascending pain pathway physiology and enable clinicians to consider alternative indications for treating pain at peripheral and spinal levels. 

3R44DA044053-02S1
DEVELOPMENT AND EVALUATION OF VIDEO-BASED DIRECTLY OBSERVED THERAPY FOR OFFICE-BASED TREATMENT OF OPIOID USE DISORDERS WITH BUPRENORPHINE Cross-Cutting Research Small Business Programs NIDA emocha Mobile Health, Inc. Seiguer, Sebastian Owings Mills, MD 2019
NOFO Title: PHS 2016-02 Omnibus Solicitation of the NIH, CDC, FDA, and ACF for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-16-302
Summary:

Since 2002, persons with opioid use disorders who desire medication-assisted treatment can be treated with buprenorphine, which has been shown to be efficacious. Buprenorphine treatment can occur in any medical office-based setting, is prescribed by any physician who seeks to become waivered, and is taken by patients at home unsupervised. However, without visual confirmation of medication ingestion, providers remain unsure if patients divert part or all of their buprenorphine medication. This project will develop the technical and logistical workflow needed to implement a video-­based application, miDOT, for office-­based buprenorphine monitoring during the initial months of care, which will allow health care providers to monitor whether patients ingest the drug and adhere to treatment. The project will configure a video-based DOT platform, evaluate its effectiveness in securing medication ingestion and care retention for illicit opiate users, and solidify routes of sustainable commercial viability with commercial partners.

3R44DA044053-03S1
DEVELOPMENT AND EVALUATION OF VIDEO-BASED DIRECTLY OBSERVED THERAPY FOR OFFICE-BASED TREATMENT OF OPIOID USE DISORDERS WITH BUPRENORPHINE Cross-Cutting Research Small Business Programs NIDA emocha Mobile Health, Inc. Seiguer, Sebastian Owings Mills, MD 2019
NOFO Title: PHS 2016-02 Omnibus Solicitation of the NIH, CDC, FDA, and ACF for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-16-302
Summary:

Since 2002, persons with opioid use disorders who desire medication-assisted treatment can be treated with buprenorphine, which has been shown to be efficacious. Buprenorphine treatment can occur in any medical office-based setting, is prescribed by any physician who seeks to become waivered, and is taken by patients at home unsupervised. However, without visual confirmation of medication ingestion, providers remain unsure if patients divert part or all of their buprenorphine medication. This project will develop the technical and logistical workflow needed to implement a video-­based application, miDOT, for office-­based buprenorphine monitoring during the initial months of care, which will allow health care providers to monitor whether patients ingest the drug and adhere to treatment. The project will configure a video-based DOT platform, evaluate its effectiveness in securing medication ingestion and care retention for illicit opiate users, and solidify routes of sustainable commercial viability with commercial partners.

1R01NS117340-01
B Lymphocyte-Mediated Autoimmunity in Pain After Trauma Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS PALO ALTO VETERANS INSTIT FOR RESEARCH CLARK, DAVID J Palo Alto, CA 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

A major recent advancement for the field of pain research is the recognition of immune system dysregulation as a contributor to the most serious adverse consequences of pain from injury. Accumulating data from clinical and laboratory studies place the activation of B lymphocytes at the center of much of this work, particularly with respect to chronic pain and disability-related outcomes. Validation of this B cell hypothesis could lead directly to trials testing the efficacy of novel or existing immunomodulating agents on posttraumatic pain. To achieve these goals a well-validated core mouse model of limb fracture will be employed with additional studies to be conducted in incisional and nerve injury models to broaden the assessment of B cell mediated effects on pain. Age and sex will be included as variables to enhance rigor.

1R43DA049617-01
At-Home Virtual Reality Guided Imagery Intervention for Chronic Pain Cross-Cutting Research Small Business Programs NIDA LIMBIX HEALTH, INC. LEWIS, BENJAMIN (contact); RICHEIMER, STEVEN H Palo Alto, CA 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

Chronic pain affects more than 100 million adults in the United States, resulting in disability, loss of work productivity, and overall reductions in health, making chronic pain a major public health problem with an economic burden estimated at $560–635 billion annually. Opioids, the most frequently prescribed class of drugs to control pain, lack evidence supporting their long-term efficacy and carry a 15% to 26% risk of misuse and abuse among pain patients. Guided imagery (GI) is an effective non-pharmacological intervention for reducing pain, but its effectiveness is limited by patients’ imaging abilities. This project will develop and assess the feasibility of an at-home virtual reality system, Limbix VR Kit, to reduce chronic pain and opioid reliance, as well as improve other functional outcomes, by delivering an immersive GI experience.

3R35NS105092-03S1
The biophysics of skin-neuron sensory tactile organs and their sensitivity to mechanical and chemical stress Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS STANFORD UNIVERSITY GOODMAN, MIRIAM B Palo Alto, CA 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

This project will establish a rapid research pipeline for linking plant-derived compounds to nociception (pain) and to G Protein-Coupled Receptors (GPCRs) and ion channels in the druggable human genome. As more than 80% of these membrane proteins are conserved in the C. elegans nematodes, the study will screen for compounds and genes affecting nociception as well as to identify novel ligand-receptor pairs using this model organism. The study will test which understudied GPCRs and ion channels are involved in nociception as well as attraction or repulsion behaviors. This research has the potential to reveal novel ligand-receptor pairs that could serve as new entry points for improved or alternative pain treatments.

3R21DA041489-02S1
IMPROVING ACCESS TO PHARMACOTHERAPY FOR OPIOID USE DISORDER AMONG JUSTICE INVOLVED VETERANS Translation of Research to Practice for the Treatment of Opioid Addiction NIDA PALO ALTO VETERANS INSTIT FOR RESEARCH FINLAY, ANDREA K Palo Alto, CA 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Justice-involved veterans have lower access to opioid use disorder (OUD) pharmacotherapy and need an effective transition from the justice system to the Department of Veterans Affairs (VA) and community health care systems to improve drug addiction treatment and outcomes. We will quantitatively evaluate patient and facility characteristics associated with differences in receipt of OUD pharmacotherapy among justice-involved veterans compared with non-justice-involved veterans and within-facility changes over time; qualitatively identify drivers of higher or lower access to OUD pharmacotherapy among justice-involved veterans compared with other veterans with OUD at the same facility; evaluate stakeholders’ perceptions of factors that explain within-facility changes in access to OUD pharmacotherapy over time; and develop and conduct a formative evaluation of implementation strategies to improve access to OUD pharmacotherapy. Results will be used to design and select implementation strategies that address identified barriers to improve access to OUD pharmacotherapy for justice-involved veterans.

1R43NS110117-01
Development of a novel anti-migraine therapeutics Cross-Cutting Research Small Business Programs NINDS ADEPTHERA, LLC HSU, SHEAU-YU TEDDY Palo Alto, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

New approaches that can effectively ameliorate acute and chronic migraine pain are urgently needed. Due to its critical roles in inducing migraine pain, CGRP and its receptor complex, the calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1) have been targeted for migraine treatment. A new strategy for targeting the CGRP-mediated signaling pathway is needed to meet the medical need of migraine patients. The team developed a group of long-acting CGRP/RAMP1-specific peptide super-antagonists that form gels in situ in aqueous solution. Based on this exciting finding, the investigators propose to develop and identify the most potent antagonistic analog candidates (Aim 1), and characterize the pharmacokinetics of gel depots made of the selected candidates in vivo (Aim 2). This feasibility study is needed to explore the translational potential of these newly invented super-antagonists for the treatment of chronic migraine in combination with conventional migraine agents. 

1R44DA049630-01
Opioid-Sparing pain management for Chronic Low Back Pain patients using TMC-CP01 - A VANISH (Virtual Autonomic Neuromodulation Induced Systemic Healing) based program Cross-Cutting Research Small Business Programs NIDA TAMADÉ, LLC TIEN, CELINE (contact); LUCAS, GALE ; MAHAJAN, AMAN Pasadena, CA 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

Opioids have been found to be ineffective for chronic lower back pain (CLBP), yet they are still commonly prescribed. TAMADÉ, LLC aims to leverage a novel and validated technology based on virtual reality (VR) to provide therapy to CLBP patients on a daily opioid dosage with an opioid-sparing pain management tool aiming to increase pain management efficacy and decrease health complications. The intervention uses VR to stimulate patients’ visual, auditory, and haptic fields in order to simultaneously distract and actively engage patients in biofeedback therapy, where patients consciously self-regulate their nervous system by paring down their sympathetic tone through exercises in controlling respiration and heart rate. The study will compare patients receiving the proposed VR-based intervention with a group receiving either just opioids or opioids with sham VR. All groups will receive the same opioid tapering guidelines.

1R44DA058531-01
BoostPrime, A Novel Digital Therapeutic for Craving Mitigation in Opioid Use Disorder Cross-Cutting Research Small Business Programs NIDA NXTECH, INC. PATEL, SALIL Patchogue, NY 2023
NOFO Title: Developing Regulated Therapeutic and Diagnostic Solutions for Patients Affected by Opioid and/or Stimulants use Disorders (OUD/StUD) (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-23-021
Summary:

Cravings and impulsivity are key contributors that lead people to return to opioid misuse, but are not addressed by currently available treatments and tools. This project will develop and validate BoostPrime, a customized digital therapeutic software tool that delivers novel cognitive training exercises. The tool aims to help address cravings and strengthen momentary self-control for people with opioid use disorder by incorporating.

3R44DA044083-03S1
CLINICAL DATA INTELLIGENCE & ADVANCED ANALYTICS TO REDUCE DRUG DIVERSION ACROSS THE CARE DELIVERY CYCLE AND DRUG SUPPLY CHAIN IN HEALTH SYSTEMS Cross-Cutting Research Small Business Programs NIDA Invistics Corporation Knight, Thomas Peachtree Corners, GA 2019
NOFO Title: PHS 2016-02 Omnibus Solicitation of the NIH, CDC, FDA, and ACF for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-16-302
Summary:

There are alarming rates of substance abuse and diversion in hospitals, with multiple studies finding that roughly 10% of our nation’s nurses, anesthesiologists, and pharmacists are currently diverting drugs in their workplaces. Diversion continues even though most hospitals already lock addictive drugs in Automated Dispensing Machines (ADMs) and run monthly “anomalous usage” computer reports to try to detect diversion. This SBIR project will research mechanisms to detect when health care workers (HCWs) in hospitals steal or “divert” legal drugs, either to abuse themselves or to illegally sell to others, by building a computer system with (a) automated data feeds from multiple existing hospital computer systems and (b) advanced analytics to flag potential diversion for investigation. This research has the potential to reduce injuries to HCWs who are becoming addicted, destroying their careers, jeopardizing their patients’ safety, and increasingly dying from drug diversion overdoses.

1R44DA047866-01
NEONATAL OPIOID SCREENING USING APTAMERS AND COMPENSATED INTERFEROMETRY Cross-Cutting Research Small Business Programs NIDA Base Pair Biotechnologies, Inc. Jackson, George W PEARLAND, TX 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

Newborn Abstinence Syndrome, which results from maternal opioid drug use prior to birth, is a serious condition that affects approximately 6% of all neonates born today in the U.S. and which is increasing rapidly in incidence because of this epidemic. Availability of a rapid screening test that can be administered at the point of care to all neonates would allow for early intervention, reducing costs of treatment and reducing pain and suffering for this vulnerable and helpless patient population. Providing a platform to accurately monitor actual levels of these drugs and their metabolites in such patients would allow better-controlled use of these pain management treatments, personalized to the needs of the individual neonate, and would reduce the probability of addiction and resulting complications, which include deleterious neurological effects. The purpose of this FastTrack SBIR project is to expand upon preliminary results that a device can sensitively and accurately detect opioids and their primary urinary metabolites in one-microliter urine samples, in less than a minute after sample introduction into the device, and adapt the device into a point-of-care instrument for use in hospitals, clinics, and other venues in which such tests are likely to be deployed.

1UG1HD107631-01
Neonatal Treatment Trial Enhanced Outcomes for Infants and Children Exposed to Opioids Advancing Clinical Trials in Neonatal Opioid Withdrawal (ACT NOW) NICHD CHILDREN'S HOSP OF PHILADELPHIA  (PA) LORCH, SCOTT A  Philadelphia, PA 2021
NOFO Title: HEAL Initiative: Neonatal Opioid Withdrawal Syndrome Pharmacological Treatments Comparative Effectiveness Trial - Clinical Sites (UG1 Clinical Trial Required)
NOFO Number: RFA-HD-21-031
Summary:

Neonatal Opioid Withdrawal Syndrome (NOWS) is a condition that occurs when newborns are exposed to opioids during pregnancy. Symptoms often include tremors, excessive crying, sleep deprivation, and swallowing difficulties. Cases are rising, with a newborn affected by NOWS approximately every 15 minutes. Currently, healthcare providers in the United States lack standard, evidence-based treatments for NOWS. 

This project is part of a multi-center, randomized controlled clinical trial that directly compares NOWS treatments—morphine, methadone, and buprenorphine—and takes into account other types of non-drug therapies, such as behavioral interventions. The goal is to generate results that can inform clinical practice guidelines and give newborns with NOWS the best start possible. 

This site includes newborn nurseries and intensive care nurseries at 4 large
maternity centers across the Children’s Hospital of Philadelphia (CHOP) Newborn Care Network, each with a dedicated follow-up clinic, ensuring access to a large and diverse patient population for long-term study. CHOP also has a long history of successfully conducting multi-center clinical studies.

5R01NS097880-02
Regulation of neuropathic pain by exercise: effects on nociceptor plasticity and inflammation Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS DREXEL UNIVERSITY DETLOFF, MEGAN R Philadelphia, PA 2018
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Spinal cord injury (SCI) impairs sensory transmission leading to chronic, debilitating neuropathic pain. While our understanding of the molecular basis underlying the development of chronic pain has improved, the available therapeutics provide limited relief. In the lab, we have shown the timing of exercise is critical to meaningful sensory recovery. Early administration of a sustained locomotor exercise program in spinal cord–injured rats prevents the development of neuropathic pain, while delaying similar locomotor training until pain was established was ineffective at ameliorating it. The time elapsed since the injury occurred also indicates the degree of inflammation in the dorsal horn. We have previously shown that chronic SCI and the development of neuropathic pain correspond with robust increases in microglial activation and the levels of pro-inflammatory cytokines. This proposal seeks to lengthen the therapeutic window where rehabilitative exercise can successfully suppress neuropathic pain by pharmacologically reducing inflammation in dorsal root ganglia.

3R01NS097880-02S1
VALIDATION OF TARGETING MACROPHAGE-MEDIATED EVENTS IN THE DRG TO ALLEVIATE CHRONIC SPINAL CORD INJURY PAIN Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS DREXEL UNIVERSITY DETLOFF, MEGAN R PHILADELPHIA, PA 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Spinal cord injury (SCI) impairs sensory transmission and leads to chronic, debilitating neuropathic pain. While our understanding of the development of chronic pain has improved, the available therapeutics provide limited relief. We will examine the peripheral immune and inflammatory response. Secondary inflammation in response to SCI is a series of temporally ordered events: an acute, transient upregulation of chemokines, followed by the recruitment of monocytes/macrophages and generation of an inflammatory environment at the lesion site in the spinal cord, but also surrounding primary nociceptors in the dorsal root ganglia (DRG). These events precede neuropathic pain development. Previous work indicates that after SCI, macrophage presence in the DRG correlates with neuropathic pain. We propose to study: 1) whether the phenotype of macrophages that infiltrate the DRG is different than those that persist chronically after SCI and 2) how manipulation of macrophage phenotype affects nociceptor activity and pain development.

1UG3DA049694-01
Combining Pregabalin with Lofexidine: Can it Increase the Success of Transition to Naltrexone? Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA University of Pennsylvania Kampman, Kyle Philadelphia, PA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Extended-release naltrexone (XR-NTX) reduces overdose risk; however, transitioning to XR-NTX requires detoxification, which is a major hurdle. Non-opioid detoxification with an alpha-2 adrenergic receptor agonist, such as lofexidine, may shorten detoxification time, but it does not reduce the subjective effects of withdrawal. Pregabalin potentiates the activity of glutamic acid decarboxylase, inhibits calcium influx and release of excitatory neurotransmitters, raises GABA levels, and is approved for neuropathic pain, for fibromyalgia, and as an adjunctive therapy for adults with partial onset seizures. The study will test whether pregabalin can be combined with lofexidine to better reduce the subjective effects of opioid withdrawal than lofexidine alone and increase the proportion of patients that transition to XR-NTX. Such a dosing combination could lower the detoxification hurdle for patients who are interested in antagonist treatment or who are in settings where it is unavailable or difficult to access.

1U24NS115691-01
UPENN HEAL - Pain Clinical Trial Network Specialized Clinical Center Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS UNIVERSITY OF PENNSYLVANIA FARRAR, JOHN T (contact); ASHBURN, MICHAEL ALAN Philadelphia, PA 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-036
Summary:

EPPIC-Net will provide a robust and readily accessible infrastructure for the rapid implementation and performance of high-quality comprehensive studies of patients with well-defined pain conditions, and the rapid design and performance of high-quality Phase 2 clinical trials to test promising novel therapeutics for pain. Using the Hospital of the University of Pennsylvania as a hub and five additional centers that are part of the UPenn Health System and the Children’s Hospital of Philadelphia (CHOP) as spokes, studies will be conducted as designed by the expertise of the EPPIC Network, which intends to bring intense focus to relatively small numbers of patients with clinically well-defined pain conditions and high unmet therapeutic needs. The UPenn Specialized Clinical Center (SCC) will test novel, efficient study designs including adaptive and platform designs, validation studies of biomarkers, and biomarker-informed proof of principle or target engagement studies in Phase 2 trials of interventions from academic and industry partners.

1R43NS124421-01A1
Development of Nav1.7 Monoclonal Antibodies for Treating Pain Cross-Cutting Research Small Business Programs NINDS INTEGRAL MOLECULAR RUCKER, JOSEPH BENJAMIN Philadelphia, PA 2021
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 - Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

Many current pain relief treatments rely on use of opioid drugs. This research is conducting preclinical development on a non-addictive, non-opioid therapeutic that uses antibodies to target the sodium channel Nav1.7. This channel is known to be one of the primary routes for generating pain signals – thus it is a target for reducing pain. The antibody approach offers potential for greater specificity than small molecule approaches, potentially resulting in fewer side effects.

3U24NS115691-01S1
UPENN HEAL - Pain Clinical Trial Network Specialized Clinical Center Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS UNIVERSITY OF PENNSYLVANIA FARRAR, JOHN T Philadelphia, PA 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

A significant gap exists in understanding of the barriers blocking access to specialized care for children of color who experience headaches, as well as to understand and appreciate the impact of undertreatment on a child’s functional ability and quality of life. Long-term, this research aims to understand these barriers to care and test interventions to remedy disparities. As the first step, this project's primary objective is to identify socioeconomic and clinical factors that lead children experiencing headache to seek care in an emergency department in lieu of outpatient neurology care. The results of this research will help to inform efforts to reduce the negative effects of emergency department overuse in this population and guide them to potentially more appropriate outpatient care.

3U01DA055365-03S1
HBCD Study Biospecimens Administrative Supplement: Resource Generation for Delivery Specimens Enhanced Outcomes for Infants and Children Exposed to Opioids HEALthy Brain and Child Development Study (HBCD) NIDA CHILDREN'S HOSP OF PHILADELPHIA HUANG, HAO (contact); DEMAURO, SARA BONAMO Philadelphia, PA 2023
NOFO Title: Notice of Special Interest (NOSI): HEAL Initiative: Biospecimen Collection in Pregnancy
NOFO Number: NOT-DA-23-005
Summary:

Opioid use during pregnancy is associated with adverse outcomes for pregnant individuals and offspring. The mechanisms through which these outcomes arise and the consequences of prenatal opioid exposure on child health and development remain largely unexplored. The HEALthy Brain and Child Development (HBCD) Study is a nationwide longitudinal prospective study of early child development that will assess a broad spectrum of biological, behavioral, social, and health factors among 7,500 pregnant women and their children from pregnancy to mid-childhood. This supplement will expand the biospecimen collection of the HBCD protocol at the University of North Carolina at Chapel Hill to include delivery specimens (placenta, cord tissue, and cord blood). This will provide an unprecedented resource-generating opportunity for the larger scientific community to comprehensively evaluate mechanisms that mediate the connection between substance use during pregnancy and adverse neonatal, infant, and/or maternal health outcomes and inform innovative preventive strategies.

1R01DA059371-01
The Impact of Community Infrastructure Reinvestment Programs on Opioid Misuse and Opioid Overdose New Strategies to Prevent and Treat Opioid Addiction Preventing Opioid Use Disorder NIDA UNIVERSITY OF PENNSYLVANIA NESOFF, ELIZABETH Philadelphia, PA 2023
NOFO Title: HEAL Initiative: Preventing Opioid Misuse and Co-Occurring Conditions by Intervening on Social Determinants (R01 - Clinical Trials Optional)
NOFO Number: RFA-DA-23-051
Summary:

Urban neighborhood deterioration (also known as blight) can affect individual and community health. Interventions have shown positive effects on neighborhood crime, gun violence, and mental health. In Philadelphia, government and community partnerships have remediated vacant lots and abandoned buildings to improve living conditions. This project will investigate the degree to which neighborhood improvement interventions in Philadelphia affect opioid misuse and overdose risk for residents. Results from this research could inform similar public health-based policy and community-level health interventions in other cities.

2R44NS115460-02
Drug Free Nerve Block Device for the Relief of Pain and Symptoms in Migraines and other Headaches Cross-Cutting Research Small Business Programs NINDS THERMAQUIL, INC. POPIELARSKI, STEPHEN (contact); YUAN, HSIANGKUO Philadelphia, PA 2021
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 - Clinical Trial Required)
NOFO Number: RFA-NS-20-010
Summary:

Migraines and other headaches are often debilitating for patients, yet few treatment options providing sustained relief exist. All available therapies, including frequently prescribed opioids, have considerable side effects or limitations. Therefore, novel treatment approaches are needed to reduce or eliminate the need to use opiates and other systemic pharmaceuticals. Thermaquil Inc. has developed a new way of stopping migraine and other headache pain by noninvasively blocking pain signal transmission in the head, which in initial studies allowed patients to discontinue use of opioids and other addictive pain medications. Thermaquil will now be conducting a larger randomized controlled trial to demonstrate the safety and effectiveness of this novel approach. After a baseline period, patients will be randomly assigned to the active or control condition and receive a single treatment. The study will continue for 12 weeks with the active versus control arms, before all patients will be given active therapy for an additional 12 weeks.