Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Sort ascending Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded
3U2COD023375-05S1
ECHO ADMINISTRATIVE SUPPLEMENT - NEONATAL OPIOID TRIALS Enhanced Outcomes for Infants and Children Exposed to Opioids Advancing Clinical Trials in Neonatal Opioid Withdrawal (ACT NOW) OD Duke University Phillip Brian Smith Durham, NC 2020
NOFO Number: N/A
Summary:

Due to the opioid misuse epidemic across the nation, more infants are being exposed to narcotics during fetal life and developing neonatal opioid withdrawal syndrome (NOWS) in the neonatal period. Critical gaps remain in our knowledge with respect to best practices for identifying and managing infants with NOWS and no large-scale studies have been published on treatments undertaken and later outcomes of infants with NOWS. To address these gaps in knowledge, the Advancing Clinical Trials in Neonatal Opioid Withdrawal Syndrome (ACT NOW) study will evaluate treatment options and improve clinical care of infants with NAS/NOWS. This collaborative effort will conduct two trials: 1) Eating, Sleeping, Consoling for Neonatal Withdrawal (ESC-NOW): a Function-Based Assessment and Management Approach (ESC Study); and 2) Pragmatic, Randomized, Blinded Trial to Shorten Pharmacologic Treatment of Newborns With Neonatal Opioid Withdrawal Syndrome (NOWS) (Weaning Study).

1U24NS113847-01
Early Phase Pain Investigation Clinical Network: Greater New York Clinical Center Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS NEW YORK UNIVERSITY SCHOOL OF MEDICINE DOAN, LISA (contact); LIPTON, RICHARD B New York, NY 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trials Not Allowed)
NOFO Number: RFA-NS-19-025
Summary:

The Greater New York Clinical Center (GNYCC) aims to engage experts in pain research and pain practice to build the infrastructure required to support the objectives of the Early Phase Pain Investigation Clinical Network (EPPIC-Net). The GNYCC will provide expertise and resources to perform phase 2 clinical trials to test the efficacy of novel pain treatments, as well as phenotyping and biomarker studies that will enable customized treatments. The consortium comprises four major academic centers in New York City, one of the most diverse cities in the United States and the nation’s largest metropolitan area. We will 1) build infrastructure to rapidly access clinical trial resources and a network of investigators and clinical leaders, 2) develop a plan for swift evaluation and launch of proposed studies, and 3) optimize patient retention and monitor sites to ensure protocol adherence, data quality, and efficiency.

1U24NS114416-01
Duke Pain Early-phase Research Clinical Center (PERC) Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS DUKE UNIVERSITY LIMKAKENG, ALEXANDER TAN (contact); PORTER, LAURA S Durham, NC 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trials Not Allowed)
NOFO Number: RFA-NS-19-025
Summary:

Managing persistent pain has long been a difficult challenge, one that is heightened by the recent opioid crisis. Although many potential solutions may exist, demonstrating their efficacy in a multicenter trial is a considerable obstacle. There is broad consensus that a nationwide clinical research network is necessary to promote innovation. A hub-spoke complex of academic medical centers with considerable experience in pain management clinical trials and biomarker validation will leverage existing resources to make clinical trial execution efficient and rapid. Together, spokes will provide maximum flexibility, ready to accommodate studies in any well-characterized pain condition.

1U01HL150551-01
Dual-orexin antagonism as a mechanism for improving sleep and drug abstinence in opioid use disorder New Strategies to Prevent and Treat Opioid Addiction Sleep Dysfunction as a Core Feature of Opioid Use Disorder and Recovery NHLBI Wayne State University GREENWALD, MARK K (contact); ROEHRS, TIMOTHY A Detroit, MI 2019
NOFO Title: HEAL Initiative: Sleep and Circadian-Dependent Mechanisms Contributing to Opiate Use Disorder (OUD) and Response to Medication Assisted Treatment (MAT) (U01 Clinical Trial Optional)
NOFO Number: RFA-HL-19-029
Summary:

FDA-approved medications for treating opioid use disorder are effective, but there is a significant unmet need for alternatives, especially relapse prevention. NIDA and the FDA have encouraged investigators to expand the range of therapeutic outcomes, beyond measurement of abstinence. Insomnia is a clinically significant, but understudied, correlate/predictor of relapse to substance use. Yet most medications for treating insomnia have limited efficacy and can produce side effects. The orexin (OX) system plays a key role in sleep and substance use, offering a promising avenue for study. This project will address whether OX-1/2 antagonism is a mechanism that can directly improve outpatient opioid abstinence, or whether OX antagonism corrects sleep deficiencies and indirectly improves opioid abstinence. Specific aims are to determine whether nightly treatment with the OX-1/2 antagonist suvorexant, relative to placebo, 1) increases outpatient opioid abstinence and 2) improves sleep efficiency on the residential detoxification unit. The study will also determine 3) whether improved sleep efficiency predicts greater opioid abstinence (regardless of group assignment).

3UG3DA044830-02S1
DRUG INJECTION SURVEILLANCE AND CARE ENHANCEMENT FOR RURAL NORTHERN NEW ENGLAND (DISCERNNE) New Strategies to Prevent and Treat Opioid Addiction NIDA Baystate Medical Center FRIEDMANN, PETER D SPRINGFIELD, MA 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

This study will examine the epidemiology of injection drug use, its infectious consequences, and service accessibility among young persons who inject drugs (PWID) in 15 rural counties in Maine, New Hampshire, and Vermont, then implement an integrated telemedicine approach to treat opioid use disorder (OUD) and reduce infections and overdose. The UG3 phase will characterize the risk environment and epidemiology of OUD, its infectious complications, opioid overdose, risk behaviors, service use, and needs in young PWID in these counties. An environmental assessment of policy and infrastructure will examine available services, needs, and gaps. The UH3 phase will evaluate the effectiveness of a regionalized integrated model of expanded service delivery for rural PWID. This project will provide in-depth understanding of high-risk rural PWID, inform community response strategies, and implement a comprehensive, integrated approach to treat OUD and reduce overdose and infectious complications among PWID in the rural United States.

2R44NS115460-02
Drug Free Nerve Block Device for the Relief of Pain and Symptoms in Migraines and other Headaches Cross-Cutting Research Small Business Programs NINDS THERMAQUIL, INC. POPIELARSKI, STEPHEN (contact); YUAN, HSIANGKUO Philadelphia, PA 2021
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 - Clinical Trial Required)
NOFO Number: RFA-NS-20-010
Summary:

Migraines and other headaches are often debilitating for patients, yet few treatment options providing sustained relief exist. All available therapies, including frequently prescribed opioids, have considerable side effects or limitations. Therefore, novel treatment approaches are needed to reduce or eliminate the need to use opiates and other systemic pharmaceuticals. Thermaquil Inc. has developed a new way of stopping migraine and other headache pain by noninvasively blocking pain signal transmission in the head, which in initial studies allowed patients to discontinue use of opioids and other addictive pain medications. Thermaquil will now be conducting a larger randomized controlled trial to demonstrate the safety and effectiveness of this novel approach. After a baseline period, patients will be randomly assigned to the active or control condition and receive a single treatment. The study will continue for 12 weeks with the active versus control arms, before all patients will be given active therapy for an additional 12 weeks.

1R01DA056675-01
Domain-Specific Inhibition of Angiotensin-Converting Enzyme as a Therapeutic Strategy for Opioid Use Disorders Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA University of Minnesota ROTHWELL, PATRICK (contact); MORE, SWATI S Minneapolis, MN 2022
NOFO Title: HEAL Initiative: Novel Targets for Opioid Use Disorders and Opioid Overdose (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-22-031
Summary:

Novel treatments for opioid use disorder are urgently needed. Previous research has shown that angiotensin-converting enzyme (ACE) can control levels and activity of natural, “endogenous,” opioids in a way that might reduce the rewarding effects of opioids like fentanyl. ACE inhibitors have been used to treat hypertension for decades, with no evidence of addiction or dependence. This research will evaluate ACE effects on endogenous opioids toward generating new, domain-specific ACE inhibitors with optimized properties for treating opioid use disorder. The research will also test the behavioral impact of these compounds in preclinical models of opioid use disorder. 

1UG3DA050252-01
Does Treating Young Persons Psychopathology Prevent the Onset of Opioid and other Substance Use Disorders? New Strategies to Prevent and Treat Opioid Addiction Preventing Opioid Use Disorder NIDA Massachussetts General Hospital WILENS, TIMOTHY E (contact); YULE, AMY Boston, MA 2019
NOFO Title: HEAL Initiative: Preventing Opioid Use Disorder in Older Adolescents and Young Adults (ages 16–30) (UG3/UH3 Clinical Trial Required
NOFO Number: RFA-DA-19-035
Summary:

Despite psychopathology robustly increasing the risk for later substance use disorders (SUD), remarkably few studies have examined the impact of treating psychopathology on reducing rates of opioid use disorder (OUD), nicotine, and SUD. The main aims of this study are to implement a pragmatic set of office-based instrumentation using patient related outcome measures linked to electronic health records (EPIC) for intake and follow-up assessments to evaluate psychopathology, OUD, nicotine use disorder, and other SUDs in young people aged 16-30 years old who are receiving psychopathology treatment as part of routine outpatient clinical care. The study will also examine similar age patients with non-opioid SUD in outpatient SUD treatment settings to examine the impact of treatment in mitigating the development of OUD. Data derived from this study will help inform clinical guidelines and public health policy and provide important secondary outcomes for further work on the prevention of OUD, nicotine use disorder, and other SUDs in relation to early-onset psychopathology.

1RF1NS113256-01
Dnmt3a as an epigenetic target for chronic pain treatment Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TX MD ANDERSON CAN CTR PAN, ZHIZHONG Z Houston, TX 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

It is unclear what changes in the brain mediate the development of chronic pain from acute pain and how chronic pain may change responses to opioid reward for the altered liability of opioid abuse under chronic pain. Preliminary studies have found that Dnmt3a, a DNA methyltransferase that catalyzes DNA methylation for gene repression, is significantly downregulated in the brain in a time-dependent manner during the development of chronic pain and after repeated opioid treatment. This project will investigate whether Dnmt3a acts as a key protein in the brain for the development of chronic pain, and whether Dnmt3a could be a novel epigenetic target for the development of new drugs and therapeutic options for the treatment of chronic pain while decreasing abuse liability of opioids.

3R01NS118563-01A1S1
Diversity Supplement to FKBP51 Antagonism to Prevent Chronic Pain: Optimizing Efficacy & Evaluating Safety and Mechanisms Cross-Cutting Research Training the Next Generation of Researchers in HEAL NINDS UNIV OF NORTH CAROLINA CHAPEL HILL LINNSTAEDT, SARAH; MCLEAN, SAMUEL A Chapel Hill, NC 2022
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107; PA-21-071
Summary:

Current evidence indicates that chronic pain after a traumatic injury is influenced by the body’s response to stress. This project will conduct a comprehensive analysis of gene expression after traumatic stress exposure in a range of animal models in various body regions including the brain (amygdala, hippocampus, hypothalamus) and spinal cord, as well as nerves and immune cells throughout the body. These studies will be conducted in animals with no stress exposure as well as in animals treated with a molecule (FKBP51) known to block the stress response. This research will enhance understanding of how FKBP51 and post-injury stress affect pain processes.

3R01DA057605-01S1
Diversity Supplement - Rapid Actionable Data for Opioid Response in Kentucky (RADOR-KY) Cross-Cutting Research Increasing Participant Diversity, Inclusion, and Engagement in HEAL Research NIDA UNIVERSITY OF KENTUCKY SLAVOVA, SVETLA STEFANOVA (contact); TALBERT, JEFFERY C Lexington, KY 2023
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

RADOR-KY is a near real-time, state-wide surveillance system to monitor prevention and treatment services for opioid use disorder (OUD). This project will fill gaps in this system by capturing data from agencies receiving state funding to provide treatment and support services for people with OUD. Access to the additional data will help expand and improve surveillance dashboards being used to coordinate and target resources for preventing overdose deaths.

3U19TW008163-10S1
DIVERSE DRUG LEAD COMPOUNDS FROM BACTERIAL SYMBIONTS IN PHILIPPINE MOLLUSKS Preclinical and Translational Research in Pain Management FIC UNIVERSITY OF UTAH HAYGOOD, MARGO GENEVIEVE Salt Lake City, UT 2018
NOFO Title: Limited Competition: International Cooperative Biodiversity Groups (U19)
NOFO Number: RFA-TW-13-001
Summary:

The Philippine Mollusk Symbiont International Cooperative Biodiversity Group harnesses the vast biodiversity of the Philippines to discover new drugs to treat bacterial infections, parasitic infections, pain, and other neurological conditions and cancer, all of which are serious health problems in both the Philippines and the United States. The Republic of the Philippines represents a unique nexus of exceptional biodiversity, dense human population with pressing societal needs, consequent urgent need for conservation, and government commitment to education and technology to harness national human and natural resources for a sustainable future. Mollusks are one of the most diverse groups of marine animals, and their associated bacteria represent an unexplored trove of chemical diversity. Researchers will use an increasing understanding of the interactions between mollusk symbionts and their hosts to discover the most novel and useful molecules. The project will document and describe Philippine mollusk biodiversity and support training and infrastructure that provide the foundation for conservation of Philippine biodiversity.

1R01DA057556-01
Disrupting Social Determinants of Health to Improve Substance Use and Mental Health Outcomes for Parents in Rural Regions New Strategies to Prevent and Treat Opioid Addiction Preventing Opioid Use Disorder NIDA OREGON SOCIAL LEARNING CENTER, INC. SALDANA, LISA Eugene, OR 2022
NOFO Title: NIH HEAL Initiative: Preventing Opioid Misuse and Co-Occurring Conditions by Intervening on Social Determinants (R01 Clinical Trials Optional)
NOFO Number: RFA-DA-22-036
Summary:

Social determinants of health are individual and environmental factors that affect health, the ability to function, and quality of life. This project will study the impact of the family-focused Families Actively Improving Relationships (FAIR) prevention intervention currently offered in rural Oregon counties to parents experiencing substance use and mental health challenges. Through the FAIR program, participants receive substance use treatment services; mental health treatment services; parent management training; and support to access employment, housing, education or to mitigate exposure to violence and discrimination. This research will examine how the FAIR intervention affects substance use and societal determinants of health, toward informing payors and decision makers about the cost and value of FAIR prevention services in rural communities.

1RF1NS113991-01
Disrupting ion channel scaffolding to treat neuropathic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS STATE UNIVERSITY OF NEW YORK AT BUFFALO BHATTACHARJEE, ARINDAM Buffalo, NY 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Dorsal root ganglion (DRG) neuronal hyperexcitability is central to the pathology of neuropathic pain and is a target for local anesthetics, even though the efficacy of local anesthetic patches has been mixed. The coordinated movement of ion channels, especially voltage-dependent sodium channels, from intracellular pools to the sites of nerve injury has been suggested to be an underlying cause of electrogenesis and ectopic firing in neuropathic pain conditions. Recent studies identified Magi1 as a scaffold protein responsible for sodium channel targeting and membrane stabilization in DRG neurons. This project will determine whether reducing the expression Magi1 could disrupt intracellular trafficking of sodium channels in DRG neurons under neuropathic injury conditions, and could therefore serve as a potential therapeutic target for neuropathic pain.

4UH3NS123964-02
Disease Modifying Analgesia with CA8 Gene Therapy Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS UNIVERSITY OF MIAMI SCHOOL OF MEDICINE LEVITT, ROY C Coral Gables, FL 2023
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
1UG3NS123964-01
Disease Modifying Analgesia with CA8 Gene Therapy Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS UNIVERSITY OF MIAMI SCHOOL OF MEDICINE LEVITT, ROY C Coral Gables, FL 2021
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Efforts to identify non-opioid analgesics for treatment of chronic pain have identified a protein, carbonic anhydrase-8 (CA8), in pain-sensing nerve cells in the spinal cord (dorsal root ganglion cells) whose expression regulates analgesic responses. Gene therapy delivering CA8 to dorsal root ganglion cells through clinically relevant routes of administration functions as a “local anesthetic” that induces long-lasting pain relief in animal models of chronic pain. This project will further develop CA8 gene therapy with the goal of treating chronic knee osteoarthritis pain. It will assess several gene therapy constructs to determine the doses needed, safety, efficacy, and specificity to nerve cells for each construct. It will then select the safest and most effective construct that can be administered via the least invasive route for further development. The project will include all steps necessary to identify one candidate gene therapy construct that will be suitable to begin clinical trials in patients with chronic knee osteoarthritis pain.

1R21NS132565-01
Discovery of the Novel Targets for Post-Traumatic Headache Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS WASHINGTON UNIVERSITY CAO, YUQING Saint Louis, MO 2023
NOFO Title: Emergency Awards: HEAL Initiative-Early-Stage Discovery of New Pain and Opioid Use Disorder Targets Within the Understudied Druggable Proteome (R21 Clinical Trial Not Allowed)
NOFO Number: RFA-TR-22-011
Summary:

Chronic post-traumatic headache (PTH) is highly debilitating, poorly understood, and difficult to treat. This project aims to identify proteins located in the membrane of certain neurons that are critical for the development, maintenance, and/or resolution of PTH. These proteins may be targets for novel treatment approaches that are nonaddictive and have minimal side effects.

1R61NS113341-01
Discovery of the Biomarker Signature for Neuropathic Corneal Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS Tufts Medical Center HAMRAH, PEDRAM Boston, MA 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Neuropathic corneal pain (NCP) causes patients to have severe discomfort and a compromised quality of life (QoL). The lack of signs observed by standard examination has resulted in misdiagnosis as dry eye disease (DED). An optical biopsy using laser in vivo confocal microscopy (IVCM) revealed that microneuromas (bulbs at the ends of severed nerves caused by buildup of molecular constituents) are present in NCP but not DED and may serve as a biomarker for NCP. The aims are to (1) use a database of more than 2,000 DED/NCP subjects and more than 500,000 IVCM images to confirm that the presence of microneuromas is an appropriate biomarker for NCP, (2) provide biological validation of microneuromas, (3) develop a validated artificial intelligence (AI) program for automated identification of microneuromas, and (4) establish the clinical utility of microneuromas observed by IVCM as a biomarker for NCP in a prospective, multicenter study.

1R41NS116784-01
Discovery of T-type Calcium Channel Antagonists from Multicomponent Reactions and Their Application in Paclitaxel-induced Peripheral Neuropathy Cross-Cutting Research Small Business Programs NINDS REGULONIX, LLC KHANNA, RAJESH Tucson, AZ 2019
NOFO Title: PHS 2017-02 Omnibus Solicitation of the NIH for Small Business Technology Transfer Grant Applications (Parent STTR [R41/R42])
NOFO Number: PA-17-303
Summary:

Chemotherapy-induced peripheral neuropathy (CIPN) is detected in 64% of cancer patients during all phases of cancer. CIPN can result in chemotherapy dose reduction or discontinuation, and can also have long-term effects on the quality of life. Taxanes (like Paclitaxel) may cause structural damage to peripheral nerves, resulting in aberrant somatosensory processing in the peripheral and/or central nervous system. Dorsal root ganglia (DRG) sensory neurons as well as neuronal cells in the spinal cord are key sites in which chemotherapy induced neurotoxicity occurs. T-type Ca2+ channels are critical determinants of increased neuronal excitability and neurotransmission accompanying persistent neuropathic pain. Though Cav3.2 has been targeted clinically with small molecule antagonists, no drugs targeting these channels have advanced to phase II human clinical trials. This proposal aims to explore multicomponent reaction products, for the rapid identification of potent and selective T-type Ca2+ channel antagonists. The work proposed here is the first step in developing non-opioid pain treatments for CIPN. The team anticipates success against paclitaxel-induced chronic pain will translate into other chronic pain types as well, but CIPN provides focus for early stage proof-of-concept.

1R21TR004333-01
Discovery of Novel Openers of the Understudied Human Drug Target Kir6.1 Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NCATS NEW YORK UNIVERSITY SCHOOL OF MEDICINE CARDOZO, TIMOTHY J New York, NY 2022
NOFO Title: Emergency Awards: HEAL Initiative-Early-Stage Discovery of New Pain and Opioid Use Disorder Targets Within the Understudied Druggable Proteome (R21 Clinical Trial Not Allowed)
NOFO Number: TR22-011
Summary:

Routine treatment of pain with prescription opioid medications may evolve into opioid use disorder, addiction, and potentially overdose. New, non-opioid molecular targets for pain are needed as a key element of responding to the opioid and overdose crisis. Ion channels are molecular gateways that convert electrical signals into physiological responses, and many have been implicated in transmitting pain signals. The ion channel Kir6.1/KCNJ8 has been linked to the control of postoperative and cancer pain. Studies in animal models show that low levels of this ion channel are evident after an injury. This research will identify compounds that can open the Kir6.1/KCNJ8 channel as potential treatment strategy for pain.

1U44NS111779-01
DISCOVERY OF NAV1.7 INHIBITORS FOR THE TREATMENT OF PAIN Preclinical and Translational Research in Pain Management NINDS SITEONE THERAPEUTICS, INC. MULCAHY, JOHN VINCENT; ODINK, DEBRA BOZEMAN, MT 2019
NOFO Title: Blueprint Neurotherapeutics Network (BPN): Small Molecule Drug Discovery and Development for Disorders of the Nervous System (U44 Clinical Trial Optional)
NOFO Number: PAR-18-541
Summary:

We propose to develop a safe and effective nonopioid analgesic to treat neuropathic pain that targets an isoform of the voltage-gated sodium ion channel, NaV1.7. Voltage-gated sodium channels are involved in the transmission of nociceptive signals from their site of origin in the peripheral terminals of DRG neurons to the synaptic terminals in the dorsal horn. NaV1.7 is the most abundant tetrodotoxin-sensitive sodium channel in small diameter myelinated and unmyelinated afferents, where it has been shown to modulate excitability and set the threshold for action potentials. Development of systemic NaV1.7 inhibitors has been complicated by the challenge of achieving selectivity over other NaV isoforms expressed throughout the body. We have discovered a series of potent, state-independent NaV1.7 inhibitors that exhibit >1000-fold selectivity over other human isoforms. Work conducted under this program will support advancement of a lead candidate into clinical development as a therapeutic for neuropathic pain.

1R61NS113329-01
Discovery of Biomarker Signatures Prognostic for Neuropathic Pain after Acute Spinal Cord Injury Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS UNIVERSITY OF TEXAS HLTH SCI CTR HOUSTON HERGENROEDER, GEORGENE W Houston, TX 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Debilitating neuropathic pain occurs in 40 percent to 70 percent of people who suffer from spinal cord injury (SCI). There are no distinguishing characteristics to identify who will develop neuropathic pain. The objective of this research is to develop a biomarker signature prognostic of SCI-induced neuropathic pain (NP). The aims of the project are to (1) identify autoantibodies in plasma samples from acute SCI patients to CNS autoantigens and determine the relationship between autoantibodies levels to the development of NP, (2) identify the autoantibody combination with maximal prognostic accuracy for the development of NP at six months after SCI, and (3) develop and optimize an assay to simultaneously measure several autoantibodies and independently validate the prognostic efficacy for NP using plasma samples collected prospectively. Establishing a panel will refine the prognostic value of these autoantibodies as biomarkers to detect who are vulnerable to NP and may be used to for development of nonaddictive pain therapeutics.

1R01NS113257-01
Discovery and validation of a novel orphan GPCR as a target for therapeutic intervention in neuropathic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS St. Louis University SALVEMINI, DANIELA St. Louis, MO 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Neuropathic pain conditions are exceedingly difficult to treat, and novel non-opioid analgesics are desperately needed. Receptomic and unbiased transcriptomic approaches recently identified the orphan G-protein coupled receptor (oGPCR), GPR160, as a major oGPCR whose transcript is significantly increased in the dorsal horn of the spinal cord (DH-SC) ipsilateral to nerve injury, in a model of traumatic nerve-injury induced neuropathic pain caused by constriction of the sciatic nerve in rats (CCI). De-orphanization of GPR160 led to the identification of cocaine- and amphetamine-regulated transcript peptide (CARTp) as a ligand which activates pathways crucial to persistent pain sensitization. This project will test the hypothesis that CARTp/GPR160 signaling in the spinal cord is essential for the development and maintenance of neuropathic pain states. It will also validate GPR160 as a non-opioid receptor target for therapeutic intervention in neuropathic pain, and characterize GPR160 coupling and downstream molecular signaling pathways underlying chronic neuropathic pain.

1RF1NS113881-01
Discovery and validation of a new long noncoding RNA as a novel target for neuropathic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS RBHS-NEW JERSEY MEDICAL SCHOOL TAO, YUAN-XIANG Newark, NJ 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Identification of new targets and mechanisms underlying chronic neuropathic pain is essential for the discovery of novel treatments and preventative tactics for better neuropathic pain management. A recent exploration of next-generation RNA sequencing identified a large, native, full-length long noncoding RNA (lncRNA) in mouse and human dorsal root ganglion (DRG). It was named as nerve injury-specific lncRNA (NIS-lncRNA), since its expression was found increased in injured DRGs, in response to peripheral nerve injury, but not in response to inflammation. Preliminary findings revealed that blocking the nerve injury-induced increases in DRG NIS-lncRNA levels ameliorated neuropathic pain. This project will validate NIS-lncRNA as a therapeutic target in animal models of neuropathic pain and in cell-based functional assays utilizing human DRG neurons. Completion of this proposal will advance neuropathic pain management and might provide a novel, non-opioid pain therapeutic target.

1R61NS113316-01
Discovery and analytical validation of Inflammatory bio-signatures of the human pain experience Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS THE UNIVERSITY OF TEXAS HEALTH SCIENCE CENTER AT HOUSTON PROSSIN, ALAN RODNEY Houston, TX 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Postoperative pain is a major contributor to the current opioid epidemic. Novel objective measures capable of personalizing pain care will enhance medical precision in prevention and treatment of postoperative pain. This project seeks to discover and validate a novel biosignature of the human pain experience, based on underlying IL-1 family cytokine activity and associated brain endogenous opioid function, that is readily quantifiable and clinically translatable to prevention and treatment of postoperative pain states. Specific aims will assess whether the novel biosignature will predict 1) experimentally induced pain during an experimental nociceptive pain challenge; 2) postoperative pain states with accuracy >75%, accounting for a wide range of variance in the human pain experience; and 3) postoperative pain states in an expanded clinically enriched sample.