Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Sort descending Institution(s) Investigator(s) Location(s) Year Awarded
1R01DE029074-01A1
Novel Target Identification for Treatment of Chronic Overlapping Pain Using Multimodal Brain Imaging Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF MARYLAND BALTIMORE TRAUB, RICHARD J; MELEMEDJIAN, OHANNES KEVORK Baltimore, MD 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

As many as 64% of patients with Temporomandibular Joint Disorders (TMJDs) report symptoms consistent with Irritable Bowel Syndrome (IBS). However the underlying connection between these comorbid conditions is unclear and treatment options are poor. As such, pain management for these Chronic Overlapping Pain Conditions (COPCs) is a challenge for physicians and patients. This project will determine whether the convergence of pain from different peripheral tissues and perceived stress occurs in the brain and elicits a change in central neural processing of painful stimuli. This project will identify and validate specific lipids, enzymes and metabolic pathways that change expression in the brain during the transition from acute to chronic overlapping pain that can be therapeutically targeted to treat COPCs. Multi-disciplinary approaches will be used to combine brain imaging, visualization of spatial distribution of molecules, genetics, pharmacological and behavioral research techniques.

1DP2NS130454-01
Using Mouse Pain Scales to Discover Unusual Pain Sensitivity and New Pain Targets Cross-Cutting Research Training the Next Generation of Researchers in HEAL NINDS COLUMBIA UNIV NEW YORK MORNINGSIDE ABDUS-SABOOR, ISHMAIL JOHN New York, NY 2022
NOFO Title: Emergency Awards: HEAL Initiative- New Innovator Award (DP2 Clinical Trial Not Allowed)
NOFO Number: RFA-TR-22-013
Summary:

Acute and chronic pain vary widely across patients, due in large part to genetic differences between individuals. The same variation occurs in preclinical animal models with diverse genetic backgrounds. The development of automated mouse “pain scales” using high-speed videography, machine learning, and custom software allows pain to be assessed in a quantitative manner in nonverbal animals. This technology will be used to identify genetically different mice with high or low pain sensitivity, which will facilitate the development of new therapeutic strategies to treat pain and reduce reliance on opioids.

1R21NS132565-01
Discovery of the Novel Targets for Post-Traumatic Headache Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS WASHINGTON UNIVERSITY CAO, YUQING Saint Louis, MO 2023
NOFO Title: Emergency Awards: HEAL Initiative-Early-Stage Discovery of New Pain and Opioid Use Disorder Targets Within the Understudied Druggable Proteome (R21 Clinical Trial Not Allowed)
NOFO Number: RFA-TR-22-011
Summary:

Chronic post-traumatic headache (PTH) is highly debilitating, poorly understood, and difficult to treat. This project aims to identify proteins located in the membrane of certain neurons that are critical for the development, maintenance, and/or resolution of PTH. These proteins may be targets for novel treatment approaches that are nonaddictive and have minimal side effects.

1U24NS113844-01
EPPIC-NET DCC Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS NEW YORK UNIVERSITY SCHOOL OF MEDICINE PETKOVA, EVA (contact); TROXEL, ANDREA B New York, NY 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Data Coordinating Center (U24 Clinical Trials Not Allowed)
NOFO Number: RFA-NS-19-024
Summary:

The Data Coordinating Center (DCC) of the Early Phase Pain Investigation Clinical Network (EPPIC-Net) will be the data and biospecimen manager for pain research within the HEAL Partnership. As such, it will host, manage, standardize, curate, and provide a sharing platform for data and biospecimens for HEAL initiatives, such as the Acute to Chronic Pain Signatures initiative and the BACPAC, in addition to EPPIC-Net studies. The DCC will develop and maintain a databank for depositing data, will link these data with a repository for biological samples, and will create a platform for teams to work together to analyze and interpret data. Further, the DCC will provide leadership in the statistical design and analysis of EPPIC-Net studies and will deploy advanced systems and processes for data collection, management, quality assurance, and reporting. The DCC will create, sustain, and continually advance a robust organization for the rapid design, implementation, and performance of high-quality rigorous Phase II clinical trials to test promising therapeutics for pain.

1K24NS126570-01
Mentorship in Precision Pain Medicine via the Early Phase Pain Investigation Clinical Network Clinical Research in Pain Management NINDS Brigham and Women's Hospital Edwards, Robert R Boston, MA 2021
NOFO Title: Midcareer Investigator Award in Patient-Oriented Research (Parent K24 Independent Clinical Trial Required)
NOFO Number: PA-20-193
Summary:

Throughout clinical pain research, there is a need to increase the workforce of researchers familiar with individualized treatment strategies known as precision pain medicine. This mentoring award will leverage EPPIC-Net’s Clinical Coordinating Center resources to encourage interest in clinical pain management, in particular through multidisciplinary pain research projects. A selected clinician-researcher  will mentor early career investigators and provide them with hands-on training activities and other skill-building experiences in clinical pain research, with a focus on precision pain medicine, biomarker development, and pain assessment. Mentoring activities will include formal educational coursework, inclusion in EPPIC-Net working groups, and collaborative writing experiences.

3U24NS114416-01S2
Pre-Trial Implementation Study for Ketamine in Sickle Cell Disease Cross-Cutting Research Training the Next Generation of Researchers in HEAL NINDS Duke University LIMKAKENG, ALEXANDER TAN Durham, NC 2022
NOFO Title: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp Clinical Trial Not Allowed)
NOFO Number: PA21-071
Summary:

There are significant and persistent gaps in knowledge about effective pain management for acute and chronic sickle cell pain. This is an area of relevant interest for the NIH HEAL Initiative's Early Phase Pain Investigation Clinical Network (EPPIC-Net). In order to provide guidance for hospital-based administration of the medication ketamine, this project will conduct a cross-sectional survey study of healthcare professionals within EPPIC-Net who provide care for people with sickle cell disease. This information can be used to design a clinical protocol for a multisite, randomized clinical trial of sub-anesthetic (low) doses of ketamine for challenging vaso-occlusive episodes (“pain crises”) in people with sickle cell disease.

3R01NS045594-14S1
Study of Activity Dependent Sympathetic Sprouting Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF CINCINNATI JUN-MING, Zhang Cincinnati, OH 2019
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Many chronic pain conditions are dependent upon activity of the sympathetic nervous system. Sympathetic blockade is used clinically in chronic pain conditions, but the clinical and preclinical evidence for this practice is incomplete. We propose that certain pathological pain conditions require intact sympathetic innervation of the sensory nervous system at the level of the dorsal root ganglion (DRG) and that release of sympathetic transmitters enhances local inflammation and leads to pain. Our preliminary data show large, rapid, and long-lasting reduction of pain behaviors and inflammatory responses following a"microsympathectomy" (mSYMPX) in both neuropathic and inflammatory pain models. Our aims are to: 1) characterize the effects of mSYMPX on pain and on local inflammation in the DRG; 2) explore the molecular mechanisms for sympathetic regulation of inflammatory responses in the DRG; and 3) assess the functional role of sympathetic transmitters in the sympathetically mediated inflammatory responses in the DRG.

1U24NS113784-01
University of Rochester Hub and Spokes for the EPPIC Network - Specialized Clinical Center Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS UNIVERSITY OF ROCHESTER MARKMAN, JOHN DOUGLAS (contact); GEWANDTER, JENNIFER Rochester, NY 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trials Not Allowed)
NOFO Number: RFA-NS-19-025
Summary:

The NIH’s HEAL Initiative aims to support collaboration between clinical research experts in academia and industry to accelerate the development of highly efficacious, nonaddictive analgesics for well-defined chronic pain syndromes. The University of Rochester (UR), and its leadership for the UR Hub and Spokes within Early Phase Pain Investigation Clinical Network (EPPIC-Net), will recruit subjects with a broad range of pain conditions, with a focus on leveraging clinical trial infrastructure to support patient recruitment and retention, timely and accurate data entry, and regulatory documentation, as well as recruit additional Spoke sites through a national network of analgesic researchers.

3R01DE029187-01S2
LIGHT and Lymphotoxin targeting for the treatment of chronic orofacial pain conditions Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TEXAS HLTH SCIENCE CENTER AKOPIAN, ARMEN N; RUPAREL, SHIVANI B; TUMANOV, ALEXEI V San Antonio, TX 2020
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-18-906 Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-023
Summary:

Chronic orofacial pain during Temporomandibular Disorders (TMD) and oral cancer is a significant health problem with scarce non-opioid treatment options. This study aims to validate critical regulators of the balance between protective immunity and immunopathology during chronic inflammatory diseases?tumor necrosis factor alpha superfamily members, LIGHT (TNFSF14) and lymphotoxin-beta (LT?) and their receptors, LT?R and Herpes Virus Entry Mediator (HVEM)?as novel therapeutic targets. The study also seeks to determine whether inhibition of LIGHT and LT? signaling prevents the development and inhibits maintenance of chronic TMD and oral cancer pain via peripheral mechanisms involving plasticity of immune, muscle and tumor cells as well as sensory neurons. The study will define the contribution of LIGHT and LT? signaling to TMD-induced excitability of trigeminal sensory neurons innervating the masseter muscle and joint. New validated therapeutic targets for prevention and treatment of orofacial pain that can be peripherally targeted would reduce side effects of current pain medicates related to drug dependence or tolerance.

1UG3NS123958-01
Development of a CCKBR-targeting scFv as Therapy for Chronic Pain Patients Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS UNIVERSITY OF NEW MEXICO HEALTH SCIS CTR WESTLUND-HIGH, KARIN N (contact); ALLES, SASCHA R Albuquerque, NM 2021
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Cholecystokinin B receptor (CCKBR) is a molecule found in the brain that helps regulate anxiety and depression but also influences the development of tolerance to opioids. CCKBR levels are also increased in models of nerve injury-induced (neuropathic) pain. Therefore, targeting CCKBR may offer a new approach to treating neuropathic pain and the associated anxiety and depression. Researchers have developed mouse antibodies that can inactivate CCKBR. However, to be usable in humans without causing an immune response, these antibodies need to be modified to include more human sequences. This project will use a fragment of the CCKBR antibody, modify it with the addition of human antibody sequences, and then select the clones that bind most strongly and specifically to human CCKBR. These will then be tested in cell and animal models of neuropathic pain to identify the most promising candidates for further evaluation in humans.

1RF1NS113991-01
Disrupting ion channel scaffolding to treat neuropathic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS STATE UNIVERSITY OF NEW YORK AT BUFFALO BHATTACHARJEE, ARINDAM Buffalo, NY 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Dorsal root ganglion (DRG) neuronal hyperexcitability is central to the pathology of neuropathic pain and is a target for local anesthetics, even though the efficacy of local anesthetic patches has been mixed. The coordinated movement of ion channels, especially voltage-dependent sodium channels, from intracellular pools to the sites of nerve injury has been suggested to be an underlying cause of electrogenesis and ectopic firing in neuropathic pain conditions. Recent studies identified Magi1 as a scaffold protein responsible for sodium channel targeting and membrane stabilization in DRG neurons. This project will determine whether reducing the expression Magi1 could disrupt intracellular trafficking of sodium channels in DRG neurons under neuropathic injury conditions, and could therefore serve as a potential therapeutic target for neuropathic pain.

1RF1NS113840-01
Nrf2 Activation for Addiction-Free Treatment of Neuropathic Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TX MD ANDERSON CAN CTR GRACE, PETER MICHAEL Houston, TX 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Effective treatments are elusive for the majority of patients with neuropathic pain. Reactive oxygen and nitrogen species (ROS/RNS) are involved in neuropathic pain, because they drive mitochondrial dysfunction, cytokine production, and neuronal hyperexcitability; therefore, stimulation of endogenous antioxidants is predicted to simultaneously resolve multiple neuropathic pain mechanisms. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that is a potential therapeutic target because it regulates the expression of a large number of endogenous antioxidant-related genes and can be activated with a single drug. This project will test the hypothesis that Nrf2 activation increases multiple endogenous antioxidants, therefore reversing neuropathic pain behaviors and counteracting neuropathic pain mechanisms that are driven by ROS/RNS and could provide an effective pain therapy, with minimal abuse/addictive potential.

1UG3NS127251-01A1
Development of Pathology-Activated Drugs for Treatment of Neuropathic Pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS UNIVERSITY OF TX MD ANDERSON CAN CTR GRACE, PETER M (contact); ABELL, ANDREW Houston, TX 2022
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

The medication monomethyl fumarate, approved for treating multiple sclerosis, has pain-relieving properties, but it also has side effects that affect the digestive tract and decrease levels of white blood cells, a problem known as leukopenia. This project will limit the availability of monomethyl fumarate to areas in the central nervous system associated with pain. Targeting the delivery of this drug to pain-related regions may improve its safety profile for treating neuropathic pain.

1RF1NS134549-01
Validation of a New Large-Pore Channel as a Novel Target for Neuropathic Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS JOHNS HOPKINS UNIVERSITY QIU, ZHAOZHU (contact); GUAN, YUN Baltimore, MD 2023
NOFO Title: HEAL Initiative: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-22-034
Summary:

Activation of immune cells (microglia) in the central nervous system and neuroinflammation have emerged as key drivers of neuropathic pain. These processes can be triggered by release of ATP, the compound that provides energy to many biochemical reactions. The source and mechanism of ATP release are poorly understood but could be targets of novel treatment approaches for neuropathic pain. This project will use genetic, pharmacological, and electrophysiological approaches to determine whether a large pore channel called Swell 1 that spans the cell membrane is the source of ATP release and resulting neuropathic pain and thus could be a treatment target.

5R01NS097880-02
Regulation of neuropathic pain by exercise: effects on nociceptor plasticity and inflammation Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS DREXEL UNIVERSITY DETLOFF, MEGAN R Philadelphia, PA 2018
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Spinal cord injury (SCI) impairs sensory transmission leading to chronic, debilitating neuropathic pain. While our understanding of the molecular basis underlying the development of chronic pain has improved, the available therapeutics provide limited relief. In the lab, we have shown the timing of exercise is critical to meaningful sensory recovery. Early administration of a sustained locomotor exercise program in spinal cord–injured rats prevents the development of neuropathic pain, while delaying similar locomotor training until pain was established was ineffective at ameliorating it. The time elapsed since the injury occurred also indicates the degree of inflammation in the dorsal horn. We have previously shown that chronic SCI and the development of neuropathic pain correspond with robust increases in microglial activation and the levels of pro-inflammatory cytokines. This proposal seeks to lengthen the therapeutic window where rehabilitative exercise can successfully suppress neuropathic pain by pharmacologically reducing inflammation in dorsal root ganglia.

1UG3NS115108-01A1
Home-based transcutaneous electrical acustimulation for abdominal pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS JOHNS HOPKINS UNIVERSITY CHEN, JIANDE Baltimore, MD 2020
NOFO Title: HEAL Initiative: Translational Devices to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-19-016
Summary:

Currently, there are no adequate therapies for abdominal pain in patients with Irritable Bowel Syndrome (IBS), a gastrointestinal disorder affecting 14-20% of the US population. More than 40% of IBS patients regularly use opioid narcotics. An alternative treatment for IBS that has been shown to be an effective pain management strategy is electroacupuncture. However its drawbacks include infrequent administration, unclear mechanistic understanding, and lack of methodology optimization. This study will use a noninvasive method of transcutaneous electrical acustimulation (TEA) by replacing needles with surface electrodes and testing acupoints that target peripheral nerves. Based on prior mechanistic and clinical studies, two stimulation parameters and effective acupoints will be tested. In the UG3 phase, the TEA device and a cell phone app will be optimized for use in IBS abdominal pain, and an acute clinical study will determine the best stimulation locations and parameters. During the UH3 phase, an early feasibility clinical study will be performed in 160 IBS patients in treating abdominal pain. Participants will self-administer the therapy at home/work and will be randomized across four treatment groups to determine the therapeutic potential of the TEA system.

1K24NS126861-01
Promoting high-quality chronic pain treatment trials through mentorship of junior investigators: A focus on study conduct and method development Clinical Research in Pain Management NINDS UNIVERSITY OF ROCHESTER Gewandter, Jennifer Rochester, NY 2021
NOFO Title: Midcareer Investigator Award in Patient-Oriented Research (Parent K24 Independent Clinical Trial Required)
NOFO Number: PA-20-193
Summary:

Enhancing the workforce of pain investigators and practitioners is a key goal of the NIH HEAL Initiative. This mentoring award leverages the resources at one of EPPIC-Net’s Specialized Clinical Centers to encourage interest in clinical pain management, in particular through multidisciplinary pain research projects. A selected investigator will train early career clinical researchers on how to develop and validate relevant pain measures and outcomes in chronic pain conditions, including chemotherapy-induced peripheral neuropathy and neuropathic chronic low back pain. Mentoring activities will include formal research and analysis, active inclusion in EPPIC-Net working groups, and collaborative writing experiences.

3UG3NS123958-01S1
Neuroimmune Mechanisms of a Humanized CCK-B Receptor scFv as Therapy for Chronic Pain Patients Cross-Cutting Research Training the Next Generation of Researchers in HEAL NINDS University of New Mexico WESTLUND-HIGH, KARIN N Albuquerque, NM 2022
NOFO Title: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp Clinical Trial Not Allowed)
NOFO Number: PA21-071
Summary:

There are currently few effective therapies available for chronic nerve injury-induced pain, associated anxiety, and depression. This project aims to extend previous research aiming to uncover the mechanism of action of artificially modified immune molecules (humanized cholecystokinin-2 receptor [CCKBR] single-chain variable fragments [scFv]) on human neurons and how it reverses chronic pain and anxiety-like behaviors in mouse models. This potential treatment approach offers important advantages over existing therapies, including extreme specificity, higher affinity, brain/nerve penetrance, safety, and reduced self-immunogenicity.

1UH3NS113661-01
Deep Brain Stimulation of the Subgenual Cingulate Cortex for the Treatment of Medically Refractory Chronic Low Back Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS UNIVERSITY OF CALIFORNIA LOS ANGELES BARI, AUSAF (contact); POURATIAN, NADER Los Angeles, CA 2019
NOFO Title: HEAL Initiative: Clinical Devices to Treat Pain (UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-19-018
Summary:

This study aims to address critical gaps and unmet therapeutic needs of chronic low back pain (CLBP) patients using a next-generation deep brain stimulation (DBS) device with directional steering capability to engage networks known to mediate the affective component of CLBP. Researchers will utilize patient-specific probabilistic tractography to target the subgenual cingulate cortex (SCC) to engage the major fiber pathways mediating the affective component of chronic pain. The objective is to conduct an exploratory first-in-human clinical trial of SCC DBS for treatment of medically refractory CLBP. The research team aims to: (1) assess the preliminary efficacy of DBS of SCC in treatment of medically refractory CLBP; (2) demonstrate the safety and feasibility of SCC DBS for CLBP; and (3) develop diffusion tensor imaging–based blueprints of response to SCC DBS for CLBP.

1R44NS113740-01
An Instrument to Assess the Functional Impact of Chronic Pain Cross-Cutting Research Small Business Programs NINDS BARRON ASSOCIATES, INC. CLARK, BRIAN R Charlottesville, VA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

The proposed Fast Track SBIR effort will develop and validate the reliable, low-cost KnowPain instrument. KnowPain will objectively and quantitatively assess the functional impact of chronic pain using measures derived from six degrees-of-freedom motion, heart rate, skin surface temperature, and skin conductivity collected via a specially designed, ergonomic wrist-worn biometric sensing instrument. The new assessment instrument will apply advanced psychometric methods to both physiologic and kinematic data to provide precise scores for functional impairment due to chronic pain. The assessment results will be presented to the clinician in an easy-to-understand report and will include longitudinal results, confidence estimates, and normative data to enable comparisons both within and between patients. The system will include provision to interface with electronic medical records. Accurate functional assessment is a crucial component in the effective treatment of chronic pain. The proposed approach will supplement existing methods for assessing patient function by providing novel and highly complementary information for a more complete (and often unobserved) picture of the impact of chronic pain on patient function. KnowPain measures will provide important data on the practical consequences of pain and on treatment efficacy. 

3UH3NS113661-02S1
Deep Brain Stimulation of the Subgenual Cingulate Cortex for the Treatment of Medically Refractory Chronic Low Back Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS UNIVERSITY OF CALIFORNIA LOS ANGELES BARI, AUSAF; POURATIAN, NADER Los Angeles, CA 2020
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-18-906 Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-023
Summary:

A current obstacle to developing more effective therapies for chronic low back pain is the lack of clinical trials assessing the feasibility and potential effectiveness of promising new targets for neuromodulation. This project will explore the feasibility of using deep brain stimulation of a new brain target for treating chronic low back pain. The study will also explore imaging biomarkers in patients with chronic low back pain that can be used to predict whether someone is a candidate or may respond to deep brain stimulation therapy, to guide programming and patient selection for this therapy in the future.

1UG3NS115718-01
Development of MRGPRX1 positive allosteric modulators as non-addictive therapies for neuropathic pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS JOHNS HOPKINS UNIVERSITY TSUKAMOTO, TAKASHI Baltimore, NC 2019
NOFO Title: Optimization of Non-addictive Therapies [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-010
Summary:

Although opioid-based analgesics have been proven effective in reducing the intensity of pain for many neuropathic pain conditions, their clinical utility is grossly limited due to the substantial risks involved in such therapy, including nausea, constipation, physical dependence, tolerance, and respiratory depression. Cumulative evidence suggests that human Mas-related G protein-coupled receptor X1 (MRGPRX1) is a promising target for pain with limited side effects due to its restricted expression in nociceptors within the peripheral nervous system; however, direct activation of MRGPRX1 at peripheral terminals is expected to induce itch side effects, limiting the therapeutic utility of orthosteric MRGPRX1 agonists. This finding led to the exploration of positive allosteric modulators (PAMs) of MRGPRX1 to potentiate the effects of the endogenous agonists at the central terminals of sensory neurons without activating peripheral MRGPRX1. An intrathecal injection of a prototype MRGPRX1 PAM, ML382, effectively attenuated evoked, persistent, and spontaneous pain without causing itch side effects. The goal of this study is to develop a CNS-penetrant small-molecule MRGPRX1 PAM that can be given orally to treat neuropathic pain conditions.

1UG3NS127258-01A1
A First-in-Class, Mechanism-Guided, Cell-Based Therapy for Complex Regional Pain Syndrome Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS CLEVELAND CLINIC LERNER COM-CWRU CHENG, JIANGUO Cleveland, OH 2022
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Complex regional pain syndrome is one of the most disabling and difficult-to-treat chronic pain conditions. This project seeks to develop a novel, biological treatment for the condition using injected human bone marrow cells. that can form and repair skeletal tissues and control nervous and immune system activity. The research will determine the dose and source of clinical-grade bone marrow cells needed, toward the goal of submitting an Investigational New Drug Application to the U.S. Food and Drug Administration that will enable further clinical study.

1RF1NS135504-01
Development and Validation of a Porcine Model of Spinal Cord Injury-Induced Neuropathic Pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS EMORY UNIVERSITY FLOYD, CANDACE L (contact); DATTA, SANDEEP R; GENSEL, JOHN C Atlanta, GA 2023
NOFO Title: HEAL Initiative: Development and Validation of Non-Rodent Mammalian Models of Pain (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-22-070
Summary:

One of the most debilitating consequences of spinal cord injury is the development of chronic neuropathic pain, which is difficult to manage with existing pain treatments. Animal models and behavioral assays that better reflect the conditions in humans are urgently needed to help in identification of novel pain treatments. This project aims to develop a new model of spinal cord injury-related neuropathic pain using pigs, because they are similar to humans in anatomy, size, metabolism, physiology, and the way their bodies process drugs.

3R01NS097880-02S1
VALIDATION OF TARGETING MACROPHAGE-MEDIATED EVENTS IN THE DRG TO ALLEVIATE CHRONIC SPINAL CORD INJURY PAIN Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS DREXEL UNIVERSITY DETLOFF, MEGAN R PHILADELPHIA, PA 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Spinal cord injury (SCI) impairs sensory transmission and leads to chronic, debilitating neuropathic pain. While our understanding of the development of chronic pain has improved, the available therapeutics provide limited relief. We will examine the peripheral immune and inflammatory response. Secondary inflammation in response to SCI is a series of temporally ordered events: an acute, transient upregulation of chemokines, followed by the recruitment of monocytes/macrophages and generation of an inflammatory environment at the lesion site in the spinal cord, but also surrounding primary nociceptors in the dorsal root ganglia (DRG). These events precede neuropathic pain development. Previous work indicates that after SCI, macrophage presence in the DRG correlates with neuropathic pain. We propose to study: 1) whether the phenotype of macrophages that infiltrate the DRG is different than those that persist chronically after SCI and 2) how manipulation of macrophage phenotype affects nociceptor activity and pain development.