Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Sort ascending Institution(s) Investigator(s) Location(s) Year Awarded
3U24HD095254-03S1
DATA COORDINATING CENTER FOR THE NICHD NEONATAL RESEARCH NETWORK (U24) Enhanced Outcomes for Infants and Children Exposed to Opioids Advancing Clinical Trials in Neonatal Opioid Withdrawal (ACT NOW) NICHD Research Triangle Institute Abhik Das Research Triangle Park, NC 2020
NOFO Number: PA-18-591
Summary:

Neonatal opioid withdrawal syndrome (NOWS) has emerged as a tragic by-product of the opioid epidemic. Newborns whose mothers used opioids while pregnant can experience symptoms of opioid withdrawal in the days following birth, such as tremors, irritability, seizures, sleep, digestive, and feeding problems. However, little is known about the effect of antenatal opioid exposure on longer-term infant development over time. To address this gap in understanding, the ACT NOW Longitudinal study is examining a crucial developmental period from birth to two years of life through a comprehensive battery of assessments, including MRI imaging, neurodevelopmental behavioral assessments, and family report measures. This longitudinal cohort study is projected to include a total of 375 infants, 250 who were exposed to opioids and 125 matched controls.

1UG1HD107653-01
Incorporating nonpharmacologic approaches into a comparative effectiveness pharmacologic trial for neonates with neonatal opioid withdrawal syndrome (NOWS) Enhanced Outcomes for Infants and Children Exposed to Opioids Advancing Clinical Trials in Neonatal Opioid Withdrawal (ACT NOW) NICHD INDIANA UNIV-PURDUE UNIV AT INDIANAPOLIS (IN) SOKOL, GREGORY M Indianapolis, IN 2021
NOFO Title: HEAL Initiative: Neonatal Opioid Withdrawal Syndrome Pharmacological Treatments Comparative Effectiveness Trial - Clinical Sites (UG1 Clinical Trial Required)
NOFO Number: RFA-HD-21-031
Summary:

Neonatal Opioid Withdrawal Syndrome (NOWS) is a condition that occurs when newborns are exposed to opioids during pregnancy. Symptoms often include tremors, excessive crying, sleep deprivation, and swallowing difficulties. Cases are rising, with a newborn affected by NOWS approximately every 15 minutes. Currently, healthcare providers in the United States lack standard, evidence-based treatments for NOWS.

3U10HD036801-21S1
MFMU HEAL Initiative Opportunity: Opioid Prescription Protocols at Discharge after cesarean delivery Clinical Research in Pain Management Pain Management Effectiveness Research Network (ERN) NICHD George Washington University Clifton, Rebecca Washington, DC 2019
NOFO Title: Data Coordinating Center for the NICHD Cooperative Multicenter Maternal Fetal Medicine Units Research Network (U10)
NOFO Number: RFA-HD-13-014
Summary:

Cesarean deliveries are the most commonly performed surgical procedure in the United States. Opioids are almost universally used for post-cesarean analgesia management. Studies suggest that most women are prescribed more tablets at discharge than needed. These often go unused, providing an important reservoir contributing to the opioid crisis. Physicians struggle to prescribe and dose postoperative opioids appropriately while tackling the real needs of acute pain from surgery. Without literature to guide obstetric providers on appropriate amounts of opioids to prescribe upon discharge, actual prescription amounts nationally vary widely by up to 65 tablets. To improve post-cesarean opioid prescribing practices without compromising pain management, the study will test an individualized, patient-empowered approach for pain management and opioid prescription quantity. This is a noninferiority randomized trial of 5,500 women with a cesarean delivery who will be randomized prior to discharge.

1R43HD112219-01A1
Targeted Temperature Modulation with Smart Radiometric Monitoring for Effective and Long-Lasting Opioid-Free Pelvic Pain Relief: A Novel Low-Cost, Portable, Tampon-Sized Thermal Transfer Device Cross-Cutting Research Small Business Programs NICHD H3PELVIC THERAPY SYSTEMS, INC. LYON, ZACHARY W Lewisville, NC 2023
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-23-006
Summary:

Pelvic pain (PP) includes more than 20 different painful and debilitating conditions, such as urinary tract infections, menstrual cramps, endometriosis, overactive bladder, and interstitial cystitis, and affects millions of people. Globally, pelvic pain affects 1 in 5 women and 1 in 12 men. This project will develop an instrument to monitor and treat pain-associated temperature changes in the pelvic region to reduce chronic pelvic pain. This novel system is intended to be used at home with personalized settings.

1R01HD096796-01
PHARMACOLOGICALLY-BASED STRATEGIES FOR BUPRENORPHINE TREATMENT DURING PREGNANCY Enhanced Outcomes for Infants and Children Exposed to Opioids NICHD Magee-Women's Research Institute and Foundation CARITIS, STEVE N Pittsburgh, PA 2018
NOFO Title: Opioid Use Disorder in Pregnancy (R01)
NOFO Number: RFA-HD-18-036
Summary:

This study will challenge current clinical approaches to managing the pregnant woman with opioid use disorder. Dosing of buprenorphine (BUP) in pregnant women is based on studies in non-pregnant subjects, which suggests that symptoms of withdrawal occur when plasma BUP concentrations are < 1ng/ml. No such data exist for pregnant women, but this is a prerequisite for defining an appropriate dosing regimen of BUP in pregnant women. We will define this threshold by monitoring women undergoing mild, medically directed withdrawal. The Clinical Opioid Withdrawal Scale score and the Finnegan score for NAS are key to defining when withdrawal occurs and thus dictate treatment in mother and baby. Neither scoring system is based on plasma BUP concentrations and thus, may not reflect true opioid withdrawal. This proposal aims to develop physiologic-based scoring systems that refine the accuracy of diagnosis and optimize treatment.

5U24HD095254-02
ACT NOW Clinical Trials: ESC and Weaning Protocols Enhanced Outcomes for Infants and Children Exposed to Opioids Advancing Clinical Trials in Neonatal Opioid Withdrawal (ACT NOW) NICHD RESEARCH TRIANGLE INSTITUTE Das, Abhik Research Triangle Park, NC 2019
NOFO Title: Data Coordinating Center for the NICHD Neonatal Research Network (U24)
NOFO Number: RFA-HD-18-010
Summary:

The ACT NOW Eat, Sleep, Console (ESC) Clinical Trial approach to the management of neonatal opioid withdrawal syndrome (NOWS) emphasizes parental involvement, simplifies the assessment of infants with NOWS and focuses interventions on non-pharmacologic therapies. Although outcomes following implementation of the ESC care approach, inclusive of the ESC Care Tool, appear promising and initial accounts suggest that it is safe, there has yet to be a rigorous randomized clinical trial to demonstrate the safety, efficacy and generalizability of its use in the care of infants with NOWS. The ESC Clinical Trial leverages the infrastructure and collaborations of the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network and the IDeA States Pediatric Clinical Trials Network to reach the populations most affected by the opioid epidemic. The trial will provide answers to numerous critical gaps in our knowledge with respect to the best practices for the identification and management of infants with NOWS, as well as our understanding of the outcomes of these infants.

1R01HD096798-01
SAFETY, PHARMACOKINETICS AND EFFICACY OF EXTENDED-RELEASE NALTREXONE IN PREGNANT WOMEN WITH OPIOID USE DISORDER Enhanced Outcomes for Infants and Children Exposed to Opioids NICHD Boston Medical Center WACHMAN, ELISHA Boston, MA 2018
NOFO Title: Opioid Use Disorder in Pregnancy (R01)
NOFO Number: RFA-HD-18-036
Summary:

Opioid use disorders (OUDs) in pregnancy are a U.S. public health crisis; the current standard of care is treatment with an opioid agonist such as buprenorphine (BPH), which has an associated risk for neonatal abstinence syndrome (NAS) and possible long-term neurodevelopmental consequences. As a novel treatment option for OUD in pregnancy, naltrexone would not expose the developing fetus to opioids, greatly reducing the risk for NAS and potentially improving maternal and infant outcomes. This study will evaluate the safety, efficacy, pharmacokinetics, and pharmacogenomics of naltrexone for pregnant women with OUDs, evaluating comprehensive mother-infant outcomes throughout the pregnancy and first year after birth. It will enroll 50 pregnant women stabilized pre-pregnancy on extended-release naltrexone (XR-NTX) and 50 comparison women on BPH from Boston Medical Center and the University of North Carolina in this multi-center prospective comparative cohort study.

1R44HD107822-01
A Novel Medical System for Quantitative Diagnosis and Personalized Precision Botulinum Neurotoxin Injection in Chronic Pelvic Pain Management Cross-Cutting Research Small Business Programs NICHD HILLMED, INC. DIAS, NICHOLAS Katy, TX 2021
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 - Clinical Trial Required)
NOFO Number: RFA-NS-20-010
Summary:

Chronic pelvic pain affects social and sexual quality of life in up to 20% of women in the United States. It is often managed with physical therapy approaches, but when these measures fail, injection therapies may be indicated. These include injection of botulinum neurotoxin, which leads to muscle relaxation in the pelvic floor and thus pain relief. However, botulinum neurotoxin has dose-dependent side effects and is expensive. Therefore, a precision injection technique to administer botulinum neurotoxin so that it remains effective while minimizing adverse effects and costs is needed. Hillmed Inc. has developed a technique to assess the pelvic floor and choose the optimal injection site, which has improved treatment outcome in initial analyses. They are now aiming to develop a commercializable, personalized precision injection medical device for botulinum toxin and software package that will enable clinicians to optimize botulinum neurotoxin injection. They will then assess the system’s efficacy in a clinical trial of women with chronic pelvic pain and healthy women.

1R01HD096800-01
EFFECTS OF OPIOID USE DISORDER IN PREGNANCY ON LONG-TERM MATERNAL AND CHILD OUTCOMES Enhanced Outcomes for Infants and Children Exposed to Opioids NICHD Indiana University - Purdue University Indianapolis SADHASIVAM, SENTHILKUMAR Indianapolis, IN 2018
NOFO Title: Opioid Use Disorder in Pregnancy (R01)
NOFO Number: RFA-HD-18-036
Summary:

Neonatal abstinence syndrome (NAS) rates have increased since 2000. To determine multifactorial genetic, psychosocial predictors of opioid-related maternal and infant outcomes using rigorous prospective longitudinal design, innovative combinatorial pharmacogenetic approach, fetal MRI, and neonatal brain resting state functional MRI analysis, we hypothesize that a combination of maternal and infant genetic profiles, maternal psychosocial factors, maternal opioid treatment response, fetal and neonatal neurodevelopment, and NAS treatment will affect maternal and childhood outcomes with prenatal opioid exposure. The specific aims are to (1) Identify high-risk genetic profiles and psychosocial factors in pregnant women with opioid use disorder (OUD) and predisposing to poor maternal opioid maintenance treatment outcomes; (2) Determine maternal-infant genetic profiles and maternal opioid treatment factors predicting adverse fetal development, severity of NAS, and neonatal brain function; and (3) Develop predictive models for maternal opioid relapse and poor long-term neurodevelopmental outcomes in children with in utero opioid exposure.

1R43HD111082-01A1
Novel Venous Device for the Treatment of Chronic Pelvic Pain Cross-Cutting Research Small Business Programs NICHD V-FLOW MEDICAL, INC. BRENNEMAN, RODNEY San Juan Capistrano, CA 2023
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 - Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

Pelvic venous compression is a common cause of chronic pelvic pain in women. Because many women do not receive an accurate diagnosis for the cause of their pelvic pain, some take opioids to help manage their symptoms. This project will further develop a new diagnostic system specifically designed to treat limited blood flow in pelvic region. This system visualizes pelvic veins toward development of a method to relieve pressure that causes pain. 

1R43HD107727-01A1
Novel Approach to Personalize and Monitor Therapeutic Training At Home in Chronic Pelvic Pain Management Cross-Cutting Research Small Business Programs NICHD Hillmed, Inc. DIAS, NICHOLAS Katy, TX 2022
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

Chronic pelvic pain is a debilitating condition that negatively affects the social and sexual quality of life for up to 20% of American women. Pelvic floor muscle (PFM) pain is caused by many factors, as well as by incorrect posture and excessive sensitization of the peripheral nervous system. This project will introduce a prototype of the Chronic Pelvic Pain (CPP) HomeTrainer that monitors, quantitatively and in real time, both PFM activation capacity and muscle interactions between the PFM and hip/trunk muscles and adapts the PFM training to the user’s needs in their own home. The proposed CPP HomeTrainer offers biofeedback to aid myofascial physical therapy and movement pattern training by tailoring the protocol to specifically correct interactions between the PFM and problematic hip/trunk muscles.

1UG3HD102038-01
Effectiveness of an mHealth psychosocial intervention to prevent transition from acute to chronic postsurgical pain in adolescents Clinical Research in Pain Management Pain Management Effectiveness Research Network (ERN) NICHD SEATTLE CHILDREN'S HOSPITAL RABBITTS, JENNIFER (contact); PALERMO, TONYA M Seattle, WA 2019
NOFO Title: HEAL Initiative: Pain Management Effectiveness Research Network: Clinical Trial Planning and Implementation Cooperative Agreement (UG3/UH3 Clinical Trial Required)
NOFO Number: RFA-NS-19-021
Summary:

The study team developed an mHealth pain self-management intervention for the perioperative period (SurgeryPal) to target psychosocial risk factors and teach pain self-management skills. The goal of this proposal is to establish the effectiveness of the SurgeryPal psychosocial intervention to improve clinically meaningful outcomes in adolescents undergoing major musculoskeletal surgery, and to identify the optimal timing of intervention delivery. The study team will plan for the efficient implementation of a multisite randomized clinical trial at 25 centers in 500 youth ages 12–18 years undergoing spinal fusion surgery and their parents. Participants will be randomized to receive SurgeryPal or attention control condition during the preoperative and postoperative phases. Self-reported pain severity and interference and secondary outcomes will be assessed at baseline, 3-, and 6-months. If effective, this scalable, low cost intervention will allow broad implementation to prevent chronic postsurgical pain in youth.

1U24HD107621-01
Data Coordinating Center (DCC) for the Neonatal Opioid Withdrawal Syndrome Pharmacological Treatments Comparative Effectiveness Trial (NOWS PhaCET) Enhanced Outcomes for Infants and Children Exposed to Opioids Advancing Clinical Trials in Neonatal Opioid Withdrawal (ACT NOW) NICHD RESEARCH TRIANGLE INSTITUTE (NC) DAS, ABHIK Research Triangle Park, NC 2021
NOFO Title: HEAL Initiative: Data Coordinating Center for the Neonatal Opioid Withdrawal Syndrome Pharmacological Treatments Comparative Effectiveness Trial (U24 Clinical Trial Required)
NOFO Number: RFA-HD-21-032
Summary:

Neonatal Opioid Withdrawal Syndrome (NOWS) is a condition that occurs when newborns are exposed to opioids during pregnancy. Symptoms often include tremors, excessive crying, sleep deprivation, and swallowing difficulties. Cases are rising, with a newborn affected by NOWS approximately every 15 minutes. Currently, healthcare providers in the United States lack standard, evidence-based treatments for NOWS. 

This project is part of a multi-center, randomized controlled clinical trial that directly compares NOWS treatments—morphine, methadone, and buprenorphine—and takes into account other types of non-drug therapies, such as behavioral interventions. The goal is to generate results that can inform clinical practice guidelines and give newborns with NOWS the best start possible. 

This site will serve as the Data Coordinating Center for the clinical trial to provide high-quality and impartial biostatistical expertise for all the study sites.

3U54EB020404-05S1
CENTER OF EXCELLENCE FOR MOBILE SENSOR DATA-TO-KNOWLEDGE (MD2K) - OVERALL New Strategies to Prevent and Treat Opioid Addiction NIBIB University of Memphis KUMAR, SANTOSH MEMPHIS, TN 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Rapid technological advances are leading to field-deployable mobile sensing devices that can quantify complex dynamics of key physical, biological, behavioral, social, and environmental factors, enabling us to understand causation in complex disorders. Significant new investment is needed to develop and disseminate data analytics tools. The Center of Excellence for Mobile Sensor Data-to-Knowledge (MD2K) will generate generalizable theory, methods, tools, and software to address major barriers to processing complex mobile sensor data and its use in biomedical knowledge discovery and just-in-time care delivery. We will develop and implement a standards-based, interoperable, extensible, and open-source big data software platform for efficient implementation of MD2K data analytics. MD2K will demonstrate the feasibility, utility, and generalizability of this approach by implementing the entire MD2K data analytics system in the context of two biomedical applications: reducing relapse among abstinent daily smokers and reducing readmission among congestive heart failure patients

1U18EB029251-01
The Injectrode - A Truly Injectable Electrode for Dorsal Root Ganglion Stimulation to Treat Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB UNIVERSITY OF WISCONSIN-MADISON LUDWIG, KIP A (contact); WEBER, DOUGLAS J Madison, WI 2019
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

While traditional epidural spinal cord stimulation (SCS) for intractable pain has been very efficacious for the patients responsive to it, the success rate has held at approximately 55%. Dorsal root ganglion (DRG) stimulation has shown promise in early trials to provide greater pain relief. Although the decrease in back pain at 3 months was significantly greater in the DRG arm vs. SCS, the adverse event rate related to the device or implant procedure was significantly higher in the DRG arm. Researchers will develop the “Injectrode” system to make the procedure simpler and safer by using an alternative to implantation: using an injectable pre-polymer liquid composite that cures quickly after injection adjacent to the DRG. They will compare an Injectrode-based system with traditional electrode stimulation at the DRG as an alternative to opioid administration. Researchers will perform benchtop characterization and refinement as a precursor to a clinical study, use modeling and animal testing to refine the efficiency of energy transfer from a transcutaneous electrical nerve stimulation unit to an Injectrode/Injectrode collector concept, and optimize the procedure for the complex anatomy of the human DRG.

1U18EB030609-01
Novel Implantable Device to Negate Post-Amputation Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB NOVAFLUX, INC. LABIB, MOHAMED E (contact); KATHJU, SANDEEP Princeton, NJ 2021
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

Approximately 3.6 million Americans live with an amputated extremity, and the majority of these individuals are likely to suffer from chronic post-amputation pain. There is no consensus as to a recommended therapy for such pain, and many treatments do not provide sufficient pain control. Some studies have shown effective pain suppression from delivering an anesthetic agent directly to an injured nerve. This research aims to develop a device that can be implanted near the injured nerves of an amputated limb to deliver an anesthetic. Findings from this preclinical study will optimize design and delivery features to maximize its effect on pain control for as long as possible without needing a drug refill. The research is expected to advance eligibility for further testing in large animals and humans.

1U18EB029354-01
Treating pain in sickle cell disease by means of focused ultrasound neuromodulation Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB CARNEGIE-MELLON UNIVERSITY HE, BIN Pittsburgh, PA 2019
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

Researchers will develop a novel transcranial focused ultrasound (tFUS) device for pain treatment and establish its effectiveness for treating sickle cell disease (SCD) pain in humanized mice. The tFUS will target the specific cortical regions involved in SCD pain using a novel non-invasive electrophysiological source imaging technique. The project’s goals have several aims. Aim 1: Develop tFUS devices for pain treatment. The mouse-scale system will be designed to validate the therapeutic effect of stimulating the anticipated cortical targets. This will inform development of the simpler human-scale system, which will use models of the skull to select cost-effective transducers to reach the targets. Aim 2: Evaluate tFUS effectiveness and optimize stimulation parameters in an SCD mice model. Researchers will determine effective tFUS parameters to chronically reduce SCD pain in mice and validate this using behavioral measures. Aim 3: Use electrophysiological source imaging to target and trigger closed-loop tFUS in animal models. This aim also includes performing safety studies to prepare for human trials. The project will develop a transformative, noninvasive tFUS device to effectively and safely treat pain in SCD. 

1U18EB029353-01
Development of a Wireless Endovascular Nerve Stimulator for Treatment of Refractory Neuropathic Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB BAYLOR COLLEGE OF MEDICINE KAN, PETER TZE MAN; ROBINSON, JACOB T; SHETH, SUNIL Houston, TX 2019
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

For patients with neuropathic pain refractory to therapy using small molecules, modulation of specific neural structures in the central or peripheral nervous system can provide effective alternative treatments. While current Food and Drug Administration–approved devices for dorsal root ganglion (DRG) stimulation are safe and effective, there have been an unfortunate number of adverse events associated with pulse generator infections and lead migration. The research team will develop a wireless, millimeter-sized nerve stimulator that can be delivered through the vasculature and stimulate the DRG to alleviate symptoms of neuropathic pain and the associated minimally invasive delivery method. This endovascular nerve stimulation (EVNS) system depends on development and integration of key novel technologies into an endovascular stent. The magnetoelectric transducers and electronic circuits will convert wireless power and data into stimulus patterns that can trigger neural activity in the DRG via miniature electrodes. After chronic demonstration of safety and functionality in large animal models, the team will prepare for regulatory discussions with the FDA. If successful, the EVNS will provide a technology platform for treating other neuropathic pain syndromes. 

1U18EB029351-01
Development of an MRgFUS system for precision-targeted neuromodulation of pain circuits with simultaneous functional MRI Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB VANDERBILT UNIVERSITY MEDICAL CENTER CASKEY, CHARLES F (contact); CHEN, LI MIN ; GRISSOM, WILLIAM A Nashville, Tennessee 2019
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

This project aims to develop a next-generation noninvasive neuromodulation system for non-addictive pain treatments. The research team will build an integrated system that uses magnetic resonance image-guided focused ultrasound (MRgFUS) stimulation to target pain regions and circuits in the brain with high precision. The system will use MR imaging to locate three pain targets commonly used in clinical pain treatments, to stimulate those targets with ultrasound, and to monitor responses of nociceptive pain circuits using a functional MRI readout. Three collaborating laboratories will tackle the goals of this project: (Aim 1) Develop focused ultrasound technology for neuromodulation in humans, compatible with the high magnetic fields in an MRI scanner. (Aim 2) Develop MRI technology to find neuromodulation targets, compatible with focused ultrasound transducers. (Aim 3) Validate the complete MRgFUS neuromodulation system in brain pain regions in nonhuman primates. By the end of the project, the research team will have a fully developed and validated MRgFUS system that is ready for pilot clinical trials in pain management.

1U18EB029257-01
Temporal Patterns of Spinal Cord Stimulation Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB DUKE UNIVERSITY GRILL, WARREN M Durham, NC 2019
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

This project will design and test optimized temporal patterns of stimulation to improve the efficacy of commercially available spinal cord stimulation (SCS) systems to treat chronic neuropathic pain. Researchers will build upon a validated biophysical model of the effects of SCS on sensory signal processing in neurons within the dorsal horn of the spinal cord to better understand how to improve the electrical stimulus patterns applied to the spinal cord. They will use sensitivity analyses to determine the robustness of stimulation patterns to variations in electrode positioning, selectivity of stimulation, and biophysical properties of the dorsal horn neural network. Researchers will demonstrate improvements from these new stimulus patterns by 1) measuring their effects on pain-related behavioral outcomes in a rat model of chronic neuropathic pain and by 2) quantifying the effects of optimized temporal patterns on spinal cord neuron activity. The outcome will be mechanistically derived and validated stimulus patterns that are significantly more efficacious than the phenomenologically derived standard of care patterns; these patterns could be implemented with either a software update or minor hardware modifications to existing SCS products.

1R18EB035004-01
Point of Care Diagnostic for Sickle Cell Disease Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB DUKE UNIVERSITY WAX, ADAM Durham, NC 2023
NOFO Title: HEAL Initiative: Translational Development of Diagnostic and Therapeutic Devices (R18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-22-002
Summary:

People with sickle cell disease often experience episodes of severe pain (vaso-occlusive crisis) that are caused by the abnormal red blood cells and frequently result in opioid use. Tools that can identify and measure the degree of such a crisis early on could allow clinicians to pre-emptively disrupt this process. This project aims to develop a rapid, automated screening technology for evaluating red blood cells that allows assessment of patients at risk of pain crisis right in their health care provider’s office.

1R18EB035019-01
POWS for NOWS: Using Physiomarkers as an Objective Tool for Assessing the Withdrawing Infant Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB UNIVERSITY OF VIRGINIA SULLIVAN, BRYNNE ARCHER (contact); VESOULIS, ZACHARY ANDREW Charlottesville, VA 2023
NOFO Title: HEAL Initiative: Translational Development of Diagnostic and Therapeutic Devices (R18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-22-002
Summary:

Infants exposed to opioids during pregnancy can develop neonatal opioid withdrawal syndrome (NOWS). To date, clinicians generally use subjective evaluation to determine if an infant has NOWS, how severe the condition is, and if the infant needs treatment with or without medications. This project will evaluate whether an objective physiologic measure—continuous measurement of oxygen levels in the infant’s blood—can be used to develop a scoring system for assessing NOWS severity. The project will also develop and test a device to continuously monitor blood oxygen levels in the infants.

3R01AR064251-07S1
Osteoarthritis Progression And Sensory Pathway Alterations Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIAMS RUSH UNIVERSITY MEDICAL CENTER MALFAIT, ANNE-MARIE Chicago, IL 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

There is an urgent need for new non-opioid therapeutic agents that treat the pain associated with Osteoarthritis (OA) ? a chronic, progressive disease that leads to pain in weightbearing joints, pain during movement, and pain at rest. This project will refine techniques for targeting several proteins expressed in sensory neurons associated with OA pain, with the goal of testing the potential of these proteins to serve as targets for development of effective, non-opioid painkillers.

1UH2AR076723-01
Wearable nanocomposite sensor system for diagnosing mechanical sources of low back pain and guiding rehabilitation Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS BRIGHAM YOUNG UNIVERSITY BOWDEN, ANTON E Provo, UT 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

Chronic low back pain (cLBP) is recurrent and often nonresponsive to conservative treatments. Biomechanists, physical therapists, and surgeons each utilize a variety of tools and techniques to assess and interpret qualitative movement changes to understand potential mechanical and neurological sources of low back pain and as critical elements in their treatment paradigm. However, objectively characterizing and communicating this information is currently impossible, since clinically feasible (i.e., cost-effective, objective, and accurate) tools and quantitative benchmarks do not exist. This research addresses the challenge to improve cLBP outcomes through the use of unique, inexpensive, screen-printable, elastomer-based, nanocomposite, piezoresponsive sensors, which will be integrated into a SPInal Nanosensor Environment (SPINE) sense system to measure lumbar kinematics and provide an objective, quantitative platform for diagnosis, monitoring, and follow-up assessment of cLBP.

1R44AR074820-01A1
A phenotypic screen for osteoarthritic pain therapeutics using all-optical electrophysiology Cross-Cutting Research Small Business Programs NIAMS QUELL TX, INC. LIU, PIN; MCMANUS, OWEN B Cambridge, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

 Quell Therapeutics uses the Optopatch platform for making all-optical electrophysiology measurements in neurons at a throughput sufficient for phenotypic screening. Using engineered optogenetic proteins, blue and red light can be used to stimulate and record neuronal activity, respectively. Custom microscopes enable electrophysiology recordings from 100’s of individual neurons in parallel with high sensitivity and temporal resolution, a capability currently not available with any other platform screening technology. Here, researchers combine the Optopatch platform with an in vitro model of chronic pain, where dorsal root ganglion (DRG) sensory neurons are bathed in a mixture of inflammatory mediators found in the joints of osteoarthritis patients. The neurons treated with the inflammatory mixture become hyperexcitable, mimicking the anticipated cellular pain response. Investigators calculate the functional phenotype of arthritis pain, which captures the difference in action potential shape and firing rate in response to diverse stimuli. The team will screen for small molecule compounds that reverse the pain phenotype while minimizing perturbation of neuronal behavior orthogonal to the pain phenotype, the in vitro “side effects.” The highest ranking compounds will be chemically optimized and their pharmacokinetic, drug metabolism, and in vivo efficacy will be characterized. The goal is to advance therapeutic discovery for pain, which may ultimately help relieve the US opioid crisis.