Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Sort ascending Investigator(s) Location(s) Year Awarded
1R34DA050261-01
3/5 Establishing Innovative Approaches for the HEALthy Brain and Child Development Study Enhanced Outcomes for Infants and Children Exposed to Opioids HEALthy Brain and Child Development Study (HBCD) NIDA ARKANSAS CHILDREN'S HOSPITAL RES INST OU, XIAWEI (contact); ACHESON, ASHLEY Little Rock, AR 2019
NOFO Title: HEAL Initiative: HEALthy Brain and Child Development Study (HEALthy BCD) (Collaborative R34 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-19-029
Summary:

A more than 5-fold increase in the incidence of neonatal abstinence syndrome has been reported since 2000. Preliminary studies show that prenatal opioid exposure is associated with increased risk of impaired neurodevelopment. Five institutions (Duke University, Arkansas Children’s Research Institute, Cincinnati Children’s Hospital, University of Illinois at Urbana–Champaign, and University of North Carolina at Chapel Hill) have formed a consortium to develop strategies for the Phase II HEALthy Brain and Child Development Study. Research teams will develop instruments and strategies (recruitment/retention protocols, assessment batteries, and novel tools); conduct pilot studies (fetal and postnatal imaging, advanced imaging harmonization and quality control, assessment administration, biosampling) to evaluate instruments; and analyze available data, including imaging, behavioral, cognitive, and maternal data from studies on early brain development, to guide the Phase II study design. Upon completion, the consortium aims to conduct the Phase II study.

1U01DA055352-01
1/6 HBCD Prenatal Experiences and Longitudinal Development (PRELUDE) Consortium Enhanced Outcomes for Infants and Children Exposed to Opioids HEALthy Brain and Child Development Study (HBCD) NIDA ARKANSAS CHILDREN'S HOSPITAL RES INST OU, XIAWEI (contact); ACHESON, ASHLEY ; MCKELVEY, LORRAINE M Little Rock, AR 2021
NOFO Title: HEAL Initiative: HEALthy Brain and Child Development Study (Collaborative U01- Clinical Trial Not Allowed)
NOFO Number: RFA-DA-21-020
Summary:

The objective of the HEALthy Brain and Child Development (HBCD) Prenatal Experiences and Longitudinal Development (PRELUDE) multi-site consortium is to characterize typical brain development from birth through childhood. All sites in this consortium will measure the influence of key biological and environmental factors on child social, cognitive, and emotional development. Researchers will assess how prenatal exposure to opioids and other substances, as well as other adverse environmental factors, affect brain development and other child health outcomes. The Arkansas Children’s Research Institute site is in a predominantly rural state with the second highest rate of opioid prescriptions in the U.S.

2R44DA049640-02
Virtual Reality as a Opioid Sparing Intervention for Acute Postoperative Pain Management Cross-Cutting Research Small Business Programs NIDA APPLIEDVR, INC MADDOX, WILLIAM TODD (contact); AYAD, SABRY ; SUK, MICHAEL Los Angeles, CA 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

Millions of Americans undergo surgery each year, with fewer than half of patients reporting adequate postoperative pain relief and approximately 75 percent reporting moderate to severe postoperative pain. Gaps in postoperative pain management that lead to the unnecessary introduction and over-prescription of opioids continue to exacerbate the opioid crisis, but virtual reality (VR) has been demonstrated to be an effective strategy for pain management. This project will enhance and improve the functionality of a VR-based technology, AppliedVR, to provide acute perioperative pain management through a new software-based VR medical device, RelieVRx™. As a non-opioid alternative intended to reduce postoperative pain, RelieVRx can potentially reduce the need for and utilization of opioids in the postoperative setting.

1R43DA058614-01
Combination Therapeutic for Chronic Opioid Use Disorder Relapse Cross-Cutting Research Small Business Programs NIDA APHIOS CORPORATION CASTOR, TREVOR P Woburn, MA 2023
NOFO Title: PHS 2022-2 Omnibus Solicitation of the NIH, CDC and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-22-176
Summary:

Side effects from taking the opioid receptor blocker naltrexone make it difficult for patients to adhere to treatment with this medication for opioid use disorder. Cannabidiol (CBD), a bioactive ingredient of cannabis, is not an opioid and is non-psychoactive. Previous research shows that CBD blocks opioid-seeking behaviors, craving, and withdrawal. This project will develop tiny particles containing CBD and low-dose naltrexone. The research will determine if this combined version of CBD and naltrexone helps people stay in treatment and prevents relapse without problematic side effects. 

1R44NS119036-01
Development of a novel analgesic for mixed inflammatory and neuropathic pain states Cross-Cutting Research Small Business Programs NINDS ANABIOS CORPORATION GHETTI, ANDREA San Diego, CA 2021
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

As prescription opioid drug abuse and overdose-related deaths continue to skyrocket in the United States, the need for new and more effective non-addictive pain drugs to treat chronic pain remains critical. This research is conducting studies in animal models of a small molecule that has high potential to treat chronic pain conditions associated with neuropathy and/or inflammation. The goal of this project is to conduct dosing and other studies leading up to an animal model study of the potential drug in a toxicology study for 28 days. Results may lead to Investigative New Drug regulatory clearance to begin clinical studies to validate the potential drug’s efficacy and safety.

1R44DA059302-01
Development of an Opioid Sparing Therapeutic to Minimize Opioid Use Disorder and Tolerance in the Treatment of Pain Cross-Cutting Research Small Business Programs NIDA AMALGENT THERAPEUTICS, LLC MEYN, MALCOLM A Greenville, NC 2023
NOFO Title: PHS 2022-2 Omnibus Solicitation of the NIH, CDC and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-22-176
Summary:

Managing the risks and benefits of opioid medications can be difficult. Although prescription opioids alleviate pain for some patients, serious adverse effects include opioid use disorder. There is a critical, unmet need for new technologies that significantly minimize the opioid doses needed for effective relief from moderate to severe pain. This project will develop a novel combination treatment containing a small amount of morphine along with pramipexole, a drug approved by the U.S. Food and Drug Administration for Parkinson’s disease and restless legs syndrome that reduces the reward-seeking behavior associated with opioids. The research will conduct safety studies to enable testing in human research participants.

1RM1DA055437-01
Integrated Care for Chronic Pain and Opioid Use Disorder: The IMPOWR Research Center at Montefiore/Einstein (IMPOWR-ME) Clinical Research in Pain Management Reducing Opioid-Related Harms to Treat Chronic Pain (IMPOWR and MIRHIQL) NIDA ALBERT EINSTEIN COLLEGE OF MEDICINE STARRELS, JOANNA L (contact); ARNSTEN, JULIA H; GABBAY, VILMA Bronx, NY 2021
NOFO Title: HEAL Initiative: Integrative Management of Chronic Pain and OUD for Whole Recovery (IMPOWR): Research Centers (RM1 Clinical Trial Required)
NOFO Number: RFA-DA-21-030
Summary:

Chronic pain and opioid use disorder often occur together, but there are a striking lack of integrated treatments accessible to people in need, particularly Black and Hispanic individuals living and seeking care in under resourced settings. This research will examine multi-modal, evidence-based practices in diverse health care settings and among diverse populations with both chronic pain and opioid misuse/disorder. The first project will examine the effects of yoga and physical therapy onsite at methadone opioid treatment clinics. The second project will test Acceptance and Commitment Therapy and a care-management smartphone app for individuals in primary-care based buprenorphine treatment. The third project will compare microdosing versus standard doses/timing of buprenorphine for hospitalized patients. All three projects will improve access to care for Black and Hispanic individuals in under resourced settings by bringing integrated treatments to them. The interventions have high potential to be used broadly.

1R43DA046998-01
DEVELOPMENT OF A MULTIPLEX PEPTIDE ARRAY TO IDENTIFY PATIENTS WITH AN AUTOANTIBODY SIGNATURE FOR CHRONIC PAIN Cross-Cutting Research Small Business Programs NIDA Affinergy, LLC Darby, Martyn Durham, NC 2019
NOFO Title: Development of a Device to Objectively Measure Pain (R43/R44)
NOFO Number: RFA-DA-18-012
Summary:

One of the most widely used treatments for chronic pain is opioid analgesics. Importantly, there is evidence of a pathological interaction between opioids and the immune system that can contribute to both opioid tolerance and elevated levels of pain. Chronic pain conditions for which opioids are most often prescribed have been shown to involve dysregulation of the immune system, which may contribute to pathological effects of opioid use in these patients. To address this unmet need, this study aims to develop a reliable, cost-effective, and non-invasive in vitro diagnostic assay for chronic pain with an underlying inflammatory pathology, as a blood test available in primary care settings, with the hope that doctors can use the test to identify which patients might benefit less from opioids and be more likely to become addicted.

2R44NS086343-04
IND-ENABLING STUDIES ON NOVEL CAV3 T-CHANNEL MODULATORS FOR TREATMENT OF NEUROPATHIC PAIN Cross-Cutting Research Small Business Programs NINDS AFASCI, INC. XIE, XINMIN SIMON REDWOOD CITY, CA 2018
NOFO Title: NINDS Renewal Awards of SBIR Phase II Grants (Phase IIB) for Pre-Clinical Research (R44)
NOFO Number: PAR-17-480
Summary:

We discovered a class of non-opioid modulators of the T-type Cav3.2 channel that could treat neuropathic pain. In vivo pharmacokinetic and pharmacodynamic studies and preliminary toxicological studies identified AFA-279 and other candidates, which did not produce observable side-effects and showed greater analgesic effects than other neuropathic pain medications in rodent models. The goal of this proposed project is to submit the IND application on our Cav3.2 modulator to the Food and Drug Administration (FDA). We will produce AFA-279 under Good Manufacturing Practice (GMP)–like conditions using chemical manufacturing controls for Good Laboratory Practice (GLP) nonclinical toxicity studies and GMP clinical batch future Phase 1 clinical trials, complete toxicological and safety studies to establish the safety profile of AFA-279, prepare and submit the IND application, and then initiate early clinical trials. Our ultimate goal is to deliver a safer, more effective, non-opioid Cav3.2 channel modulator to patients suffering from neuropathic pain.

1R43NS113726-01
Pharmacokinetic and toxicology studies of AYX2, a transcription factor decoy, non-opioid, disease modifying drug candidate for the long-term treatment of chronic pain Cross-Cutting Research Small Business Programs NINDS ADYNXX, INC. MAMET, JULIEN San Francisco, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

Chronic focal neuropathic pain, which includes pain etiologies such as radiculopathy and radiculitis, focal peripheral neuropathies, and low back pain, affects as many as 25 million patients annually in the United States. Chronic focal neuropathic pain is maintained by genome-wide transcription regulation in the dorsal root ganglia (DRG) / spinal cord network. The transcription factors driving this regulation constitute a promising class of targets with the potential to alter the course of pain with a single treatment. DNA decoys are oligonucleotides that specifically inhibit the activity of certain transcription factors. AYX2 binds and inhibits Krüppel-like transcription factors (KLF) in the DRG-spinal cord. The goal of this Phase 1 proposal is to advance AYX2 toward an IND submission, allowing for human clinical trials. We propose in Aim 1 to characterize AYX2 pharmacokinetics in the cerebrospinal fluid and plasma and its distribution in the DRG, spinal cord and brain following an IT injection. With this information, AYX2 will be tested in a panel of complementary toxicology studies in Aim 2 to allow for final IND-enabling studies, supported by Phase 2 of the grant. This research will accelerate development of AYX2 as a novel drug candidate for the non-opioid treatment of pain.

1UG3DA048375-01
The long-term reduction of pain and opioid usage following mastectomy and tissue expander/implant surgery with a single administration of brivoligide, a non-opioid, disease-modifying drug candidate Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA ADYNXX, INC. MAMET, JULIEN; MANNING, DONALD C San Francisco, CA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

There is an urgent need to prevent and reduce opioid use disorder (OUD) by reducing the need for opioid analgesia and preventing the escalation of opioid dosing in patients at greater risk of using more opioids following surgery. Brivoligide is a non-opioid drug candidate that can alter the course of postoperative pain for patients most likely to suffer increased pain and utilize more opioids following surgery. A single administration of brivoligide at the time of surgery can reduce acute postoperative pain in these patients by 30 percent to 40 percent beyond what can be achieved with the current standard of care for at least 28 days and reduce opioid utilization by 40 percent over a 3-month period following surgery. This project will support the research necessary to achieve regulatory approval of brivoligide with a broad indication, which will initially focus on the reduction of postoperative pain following mastectomy, a soft-tissue surgery model suitable to detect long-term pain and opioid reduction benefits. Brivoligide appears to be a very promising pharmacotherapy with the potential to greatly contribute to stemming the tide in the opioid crisis.

1R43NS110117-01
Development of a novel anti-migraine therapeutics Cross-Cutting Research Small Business Programs NINDS ADEPTHERA, LLC HSU, SHEAU-YU TEDDY Palo Alto, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

New approaches that can effectively ameliorate acute and chronic migraine pain are urgently needed. Due to its critical roles in inducing migraine pain, CGRP and its receptor complex, the calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1) have been targeted for migraine treatment. A new strategy for targeting the CGRP-mediated signaling pathway is needed to meet the medical need of migraine patients. The team developed a group of long-acting CGRP/RAMP1-specific peptide super-antagonists that form gels in situ in aqueous solution. Based on this exciting finding, the investigators propose to develop and identify the most potent antagonistic analog candidates (Aim 1), and characterize the pharmacokinetics of gel depots made of the selected candidates in vivo (Aim 2). This feasibility study is needed to explore the translational potential of these newly invented super-antagonists for the treatment of chronic migraine in combination with conventional migraine agents. 

1U44NS115692-01
Development and Optimization of MNK Inhibitors for the Treatment of Neuropathic Pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS 4E THERAPEUTICS INC. SAHN, JAMES JEFFREY Austin, TX 2019
NOFO Title: HEAL Initiative: Optimization of Non-addictive Therapies [Small Molecules and Biologics] to Treat Pain - (U44 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-020
Summary:

MNK-eIF4E signaling is activated in nociceptors upon exposure to pain or peripheral nerve injury, promoting cytokines and growth factors and increasing nociceptor excitability, which leads to neuropathic pain. Genetic or pharmacological inhibition of MNK signaling blocks and reverses nociceptor hyperexcitability as well as behavioral signs of neuropathic pain. A clinical phase drug for cancer shows strong specificity as an MNK inhibitor but requires optimization because MNK inhibition in the central nervous system (CNS) may lead to depression, an unacceptable side effect for a neuropathic pain drug. The research team plans a targeted medicinal chemistry and screening campaign directed at generating a MNK-inhibitor-based neuropathic pain treatment with the goal of restricting its CNS penetration while retaining potency, specificity, and in vivo bioavailability and efficacy.

3U44NS115692-01S1
Development and Optimization of MNK Inhibitors for the Treatment of Neuropathic Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS 4E THERAPEUTICS INC. SAHN, JAMES JEFFREY Austin, TX 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

There is an urgent unmet need for more efficacious analgesics that act via a non-opioid pathway. Mitogen Activated Protein Kinase-interacting kinase 2 (MNK2) is an enzyme that has been implicated in pain signaling, and there is compelling evidence that inhibiting MNK2 has significant pain-reducing effects with few side-effects. Since MNK2 selective inhibitors have not yet been identified, selective inhibition of MNK2 with a small molecule has not been possible. The development of such compounds will enable studies that will illuminate key differences between MNK2 and MNK1. More importantly, from a therapeutic standpoint, highly selective MNK2 inhibitors may prove to have enhanced efficacy and a more favorable side-effect profile than molecules that inhibit both MNK2 and MNK1. This project will support the design and synthesis of at least one MNK2 inhibitor, with >100-fold selectivity over MNK1, that may be developed into a lead compound for treating neuropathic pain.

1R44GM140795-01A1
Non-Opioid Post-Operative Pain Management Using Bupivacaine-loaded Poly(ester urea) Mesh Cross-Cutting Research Small Business Programs NIGMS 21MEDTECH, LLC ALFARO, ARTHUR Durham, NC 2021
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

There is an urgent need for non-opioid post-operative pain management solutions.  This research is developing a naturally absorbable polymer film that can release controlled amounts of the non-opioid analgesic bupivacaine – aiming to manage pain for several days following surgery. Project objectives are to optimize the timing of drug release, develop manufacturing standards, determine effective dosage for preserving motor function, and determine safety and efficacy in mouse models of neuropathic pain. Continued development of this film delivery system may lead to a new, non-opioid therapeutic strategy that could be combined with local anesthesia for up to 4 days after surgery to reduce or potentially eliminate opioids use.

1R41NS118992-01
Development of selective calpain-1 inhibitors for chronic pain Cross-Cutting Research Small Business Programs NINDS 1910 GENETICS, INC. NWANKWO, JENNIFER Cambridge, MA 2021
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: NS-20-011
Summary:

The need to develop non-opioid therapeutics for chronic pain is greater than ever.  One option being explored is inhibiting the activity of calpains – enzymes that have been shown to cause pain in animal models of chronic pain.  Using an artificial intelligence (AI)-driven drug discovery platform, researchers have uncovered and validated four calpain-1 inhibitors using biochemical assays.  This study by 1910 Genetics Inc. hopes to synthesize multiple analogs of its most potent discovered calpain-1 inhibitor and determine its effectiveness against calpain-2 and certain enzymes that break down proteins.  Findings that successfully significantly inhibit calpain-1 in at least one animal model of chronic pain could lead to the first oral, central nervous system penetrating selective calpain-1 inhibitor [non-opioid therapeutic] for chronic pain.