Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Sort descending Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded
1R34DA050343-01 3/6 Planning for the HEALthy Early Development Study Enhanced Outcomes for Infants and Children Exposed to Opioids HEALthy Brain and Child Development Study (HBCD) NIDA OSU CENTER FOR HEALTH SCIENCES CROFF, JULIE MAY (contact); MORRIS, AMANDA S Tulsa, OK 2019
NOFO Title: HEAL Initiative: HEALthy Brain and Child Development Study (HEALthy BCD) (Collaborative R34 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-19-029
Summary:

The Planning for the HEALthy Early Development Study will contribute to the design and recommended protocol for a future large-scale, multi-site research study to prospectively examine human brain, cognitive, behavioral, social, and emotional development of children beginning prenatally through ages 9–10 and to determine the impact of maternal pre- and postnatal substance use on short- and long-term development of children. The planning study will link investigators across 6 research sites who have complementary experience and expertise in the areas that are essential to designing the study. Planning activities will be accomplished using a coordinated set of 10 working groups. By the end of the planning phase, the 6 consortium sites will have produced and tested a recommended protocol for the future multi-site study and will have established feasibility of carrying out the study protocol at each of the 6 linked sites.

1R34DA057604-01 Planning Grant for a Multi-Site Trial to Examine the Effectiveness of Recovery Community Centers Serving Black Communities to Support Persons Using Medications for Opioid Use Disorder Translation of Research to Practice for the Treatment of Opioid Addiction Recovery Research Networks NIDA Massachusetts General Hospital HOEPPNER, BETTINA B (contact); KELLY, JOHN F Boston, MA 2022
NOFO Title: HEAL Initiative: Planning Grants for Efficacy or Effectiveness Trials of Recovery Support Services for Individuals Treated with Medications for Opioid Use Disorder (R34 Clinical Trial Optional)
NOFO Number: RFA-DA-22-034
Summary:

People who take medications for opioid use disorder as part of their recovery pathway need to take these medications for extended periods of time to reduce risk of overdose. Recovery community centers, which provide a range of recovery-oriented and peer-delivered services in a welcoming environment, may be an important asset for these individuals. This project joins two recovery community centers that serve Black communities with an academic research team to inform the design of a rigorous, large-scale clinical trial to determine if clinical referral to recovery community centers improves long-term recovery outcomes.

1R34DA057609-01 Patient Navigator plus Remote mHealth Adherence Support with Incentives to Improve Linkage and Retention among Hospitalized Patients with Opioid and Methamphetamine Use Who Initiate Buprenorphine Translation of Research to Practice for the Treatment of Opioid Addiction Improving Delivery of Healthcare Services for Polysubstance Use NIDA UNIVERSITY OF WASHINGTON TSUI, JUDITH Seattle, WA 2022
NOFO Title: HEAL Initiative: Pilot & Feasibility Trials to Improve Prevention and Treatment Service Delivery for Polysubstance Use (R34 Clinical Trial Optional)
NOFO Number: DA22-048
Summary:

Patients who use both opioids and methamphetamine often experience serious medical complications requiring hospitalization. While hospitalization provides an opportunity to start addiction treatment, linking patients to outpatient treatment after discharge is hard. This project will develop and conduct a pilot trial of an intervention that combines patient navigation with a mobile app offering financial incentives for outpatient treatment. This research will also develop outcome measures to describe participants’ use of healthcare and how it is influenced by baseline methamphetamine use. If effective, this patient-navigator-plus-mHealth approach could help reduce substantial gaps in treatment and retention for people who use opioids and methamphetamines simultaneously.

1R34DA057627-01 Peer Recovery Support Services for Individuals in Recovery Residences on MOUD Translation of Research to Practice for the Treatment of Opioid Addiction Recovery Research Networks NIDA MARYLAND TREATMENT CENTERS, INC. FISHMAN, MARC (contact); WENZEL, KEVIN R Baltimore, MD 2022
NOFO Title: HEAL Initiative: Planning Grants for Efficacy or Effectiveness Trials of Recovery Support Services for Individuals Treated with Medications for Opioid Use Disorder (R34 Clinical Trial Optional)
NOFO Number: RFA-DA-22-034
Summary:

Patients choosing treatment with medications for opioid use disorder as part of their recovery pathway often have difficulties staying on these medications for extended periods of time. Currently, no established evidence-based interventions are available to help. This project will leverage the impact of two widely used recovery support services: peer recovery support services and recovery housing. Delivered by community-based peers with lived recovery experience, the intervention will include assertive outreach, which encourages people in recovery between episodes of care to continue treatment and return to care after treatment dropout and/or resumed opioid use. This research will also examine whether these services can enhance benefits offered by the supportive recovery housing living environment.

1R34DA057639-01 Leveraging Parents and Peer Recovery Supports to Increase Recovery Capital in Emerging Adults with Polysubstance Use: Feasibility, Acceptability, and Scaling Up of Launch Translation of Research to Practice for the Treatment of Opioid Addiction Improving Delivery of Healthcare Services for Polysubstance Use NIDA CHESTNUT HEALTH SYSTEMS DRAZDOWSKI, TESS K Eugene, OR 2022
NOFO Title: HEAL Initiative: Pilot & Feasibility Trials to Improve Prevention and Treatment Service Delivery for Polysubstance Use (R34 Clinical Trial Optional)
NOFO Number: DA22-048
Summary:

Young adults (18 to 26) with a substance use problem have the highest rates of polysubstance use among all age groups. At the same time, individuals in this age group (especially in rural areas) are generally lacking in recovery capital: resources to help them recover from substance use, such as vocational or educational skills. This project will assess the feasibility and acceptability of “Launch,” which uses parental and peer recovery support to increase recovery capital for young adults with polysubstance use. The intervention will use coaching as well as contingency management, a treatment approach in which individuals receive tangible rewards as incentives for desired behaviors such as abstinence. If successful, the findings will inform a future large-scale trial assessing the effectiveness of this approach.

1R34DA057662-01 Development of an Integrated Intervention Involving Recovery Coaching and Cognitive Behavioral Therapy for Opioid Use Disorder Translation of Research to Practice for the Treatment of Opioid Addiction Recovery Research Networks NIDA CLEMSON UNIVERSITY LITWIN, ALAIN HARRIS (contact); HEO, MOONSEONG Clemson, SC 2022
NOFO Title: HEAL Initiative: Planning Grants for Efficacy or Effectiveness Trials of Recovery Support Services for Individuals Treated with Medications for Opioid Use Disorder (R34 Clinical Trial Optional)
NOFO Number: RFA-DA-22-034
Summary:

Many people intending to take medications for opioid use disorder, including buprenorphine, as part of their recovery pathway do not stay in treatment long enough to reduce risk for overdose. These individuals also often continue to use one or more other drugs during treatment, which may further raise their overdose risk. This project will develop and conduct a preliminary test of an innovative integrated intervention that combines buprenorphine treatment with recovery coaching and online cognitive behavioral therapy. This research will assess whether the approach reduces drug use during buprenorphine treatment and helps people stay in treatment longer.

1R34DA057678-01 Adaption of the STAIR-NT Trauma Intervention for Polysubstance Populations Translation of Research to Practice for the Treatment of Opioid Addiction Improving Delivery of Healthcare Services for Polysubstance Use NIDA NEW YORK UNIVERSITY SCHOOL OF MEDICINE BUNTING, AMANDA M (contact); RENN, TANYA RAE New York, NY 2022
NOFO Title: HEAL Initiative: Pilot & Feasibility Trials to Improve Prevention and Treatment Service Delivery for Polysubstance Use (R34 Clinical Trial Optional)
NOFO Number: DA22-048
Summary:

Compared to people who use only one type of drug, people who use combinations of drugs, such as opioids and stimulants, are more likely to have histories of childhood trauma, including post-traumatic stress disorder (PTSD). This project will adapt an existing PTSD intervention, Skills Training in Affective and Interpersonal Regulation with Narrative Therapy, to treat individuals with polysubstance use. This research will be piloted in a methadone maintenance treatment program to assess feasibility and acceptability. If successful, the findings will lay the groundwork for a large-scale clinical trial.

1R34NS126030-01 Profiling the human gut microbiome for potential analgesic bacterial therapies Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS HOLOBIOME, INC. STRANDWITZ, PHILIP PETER (contact); GILBERT, JACK ANTHONY Cambridge, MA 2021
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development Initial Translational Efforts [Small Molecules and Biologics] (R34 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-21-016
Summary:

Disruptions in make-up of the microbiome are associated with disorders characterized by chronic pain and inflammation, such as rheumatoid arthritis and fibromyalgia. The gut microbiome has immune and metabolic effects, and human gut-derived bacteria may be a source of novel, safe, and non-addictive pain treatments. However, connections between gut and pain signals, known as the “gut–pain axis,” are still poorly understood. This study aims to identify human-gut-native bacteria that i) interact with known pain targets in lab studies, ii) test their activity and analgesic/anti-inflammatory potential in an animal model, and iii) develop a computational approach to predict microbial-genetic effects on pain signals.

1R34NS126032-01 Stem cell-loaded microgels to treat discogenic low back pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS CEDARS-SINAI MEDICAL CENTER SHEYN, DMITRIY Los Angeles, CA 2021
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development Initial Translational Efforts [Small Molecules and Biologics] (R34 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-21-016
Summary:

Pain caused by the degeneration of discs between vertebrae in the spine makes up a significant proportion of all chronic low back pain conditions. Although opioids are prescribed as treatments for this chronic condition, they often do not provide effective pain management, and currently there are no treatments that target the underlying disc disease. Notochordal cells mature into the cells that make up discs between vertebrae. Preliminary studies have shown that notochordal cells can be made from induced pluripotent stem cells, offering a potential replacement for diseased cells between discs. This study aims to develop a novel treatment for painful disc degeneration using a microgel/microtissue embedded with human notochordal cells made in the lab from induced pluripotent stem cells.

1R34NS126036-01 Synthesis of peripherally active CB1 agonists as analgesics Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS ST. LOUIS COLLEGE OF PHARMACY MAJUMDAR, SUSRUTA (contact); DROR, RON ; GEREAU, ROBERT W St. Louis, MO 2021
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development Initial Translational Efforts [Small Molecules and Biologics] (R34 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-21-016
Summary:

Current medications for chronic pain are largely ineffective and rely heavily on opioids, one contributor to the nation’s opioid crisis. The endocannabinoid system that consists of cannabinoid receptors (CB1R and CB2R) and their endogenous ligands is a natural pathway in the human body and has emerged as an alternative target for developing new pain medications with few side effects. Current molecules that bind to CB1R in the brain and spinal cord have psychoactive side effects, limiting their therapeutic use for treating chronic pain. This study aims to develop new molecules to bind to CB1R tightly and selectively, are metabolically stable, and are also unable to enter the brain.

1R41AR080620-01A1 Injectable Ice Slurry Cooling Technology for Treatment of Postoperative Pain Cross-Cutting Research Small Business Programs NIAMS BRIXTON BIOSCIENCES, INC. SIDOTI, CHARLES Cambridge, MA 2022
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R41/R42 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-009
Summary:

More than 700,000 total knee replacement surgeries are performed each year in the United States to relieve joint pain in patients with end-stage osteoarthritis or rheumatic arthritis. However, many patients still experience significant pain after this procedure, calling for additional long-lasting, drug-free pain management strategies. This project will develop and test a commercial prototype device for persistent knee pain after total knee replacement. The injection-based method freezes peripheral nerves to reduce pain sensation.

1R41DA047779-01 DEVELOPMENT OF A TRACHEAL SOUND SENSOR FOR EARLY DETECTION OF HYPOVENTILATION DUE TO OPIOID OVERDOSE. Cross-Cutting Research Small Business Programs NIDA RTM Vital Signs, LLC Joseph, Jeffrey I FORT WASHINGTON, MD 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH for Small Business Technology Transfer Grant Applications (Parent STTR [R41/R42] Clinical Trial Not Allowed)
NOFO Number: PA-18-575
Summary:

One of the current critical needs in addressing the opioid crisis is the development of new overdose-reversal interventions, including wearable technologies that can detect an (impending) overdose from physiological signals to signal for help, or trigger a coupled automated injection of naloxone. This project tests the approach of monitoring respiration by detecting the sounds of breathing in the trachea. This proposal aims to develop a machine learning algorithm that could process those sounds, detect the kinds of patterns of reduced breathing that occur during an opioid overdose, and design a miniature wireless sensor that could be used to detect those sounds. Such a sensor and algorithm could be a key component to a device to detect and intervene in overdoses.

1R41DA048689-01 BEST-OUD: Behavioral Economic Screening Tool of Opioid Use Disorder for use in clinical practice Cross-Cutting Research Small Business Programs NIDA BEAM DIAGNOSTICS, INC SNIDER, SARAH EMILY Roanoke, VA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH for Small Business Technology Transfer Grant Applications (Parent STTR [R41/R42] Clinical Trial Not Allowed)
NOFO Number: PA-18-575
Summary:

A critical line of defense against opioid use disorder (OUD), one of the nation’s leading preventable causes of death, must be standardized screening provided by the patient’s primary care physician, psychiatrist, and/or counselor. Standardized screening methods for opioids, however, are simply inferior and no gold standards exist. This project aims to develop a validated, theoretically guided tool that provides clinicians with information beyond OUD symptoms using reinforcer pathology, a measure of severity derived from the synergy between excessive delay discounting and high behavioral economic demand. The Behavioral Economic Screening Tool (BEST-OUD) will use these combined measures in a mobile tablet application to enable clinicians to screen for OUD.

1R41DA050364-01 Optimization of Betulinic Acid analogs for T-type calcium channel inhibition for non-addictive relief of chronic pain Cross-Cutting Research Small Business Programs NIDA REGULONIX, LLC KHANNA Tucson, AZ 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

The increase in prevalence of cancer coupled with an increase in the cancer survival rates due to chemotherapy regimens is transforming cancer pain into a large, unmet medical problem. Chemotherapy-induced peripheral neuropathy (CIPN) is a common and potentially dose-limiting side effect of many cancer drug treatment regimens and is caused in part by alterations in ion channels; blocking or depleting Cav3.2 channels in dorsal root ganglion (DRG) neurons should thus mediate analgesic effects. This proposal aims to develop and test potent, orally available, and selective Cav3.2 channel antagonists, building on the structure of a medicinal plant product—betulinic acid (BA)—that has been identified to be Cav3.2-selective and antinociceptive in CIPN. Such compounds could reduce the reliance on opioids in cancer patients.

1R41DA050386-01 Prevention of renarcotization from synthetic opioids Cross-Cutting Research Small Business Programs NIDA CONSEGNA PHARMA, INC. AVERICK, SAADYAH Pittsburgh, PA 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

While the mu opioid receptor (MOR) antagonist naloxone has proven invaluable as an opioid overdose antidote, naloxone suffers from a very short duration of action (half-life is approximately 1 hour) and has been found to be less effective against newer, long-acting opioids, including fentanyl (half-life is approximately 7–10 hours). This leads to a highly lethal and increasingly prevalent phenomenon known as “renarcotization,” wherein an overdose patient revived with naloxone can re-enter an overdose state from residual fentanyl in the body. Thus, there is a critical need to develop a long-acting MOR antagonist formulation that can address renarcotization by providing multi-hour protection. The goal of this project is to reformulate naloxone using FDA-approved microencapsulation technology into a long-acting injectable (LAI) that can provide 12–24 hours of sustained antagonist activity in vivo. It will employ a proprietary Computational Drug Delivery™ software, called ADSR™, to perform in silico formulation optimization as well as to predict its in vitro dissolution and in vivo pharmacokinetic behavior.

1R41NS113717-01 Pre-clinical evaluation of DT-001, a small molecule antagonist of MD2-TLR4 for utility in the treatment of pain Cross-Cutting Research Small Business Programs NINDS DOULEUR THERAPEUTICS, INC. YAKSH, TONY L; CHAKRAVARTHY, KRISHNAN San Diego, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Technology Transfer Grant Applications (Parent STTR [R41/R42] Clinical Trial Not Allowed)
NOFO Number: PA-18-575
Summary:

 Chronic persistent post-operative pain (CPOP) is a devastating outcome from any type of surgical procedure. Its incidence is anywhere between 20-85% depending on the type of surgery, with thoracotomies showing one of the highest annual incidences of 30-60%. Given that millions of patients (approximately 23 million yearly based on incidence) are affected by CPOP, the results are increased direct medical costs, increased indirect medical costs due to decreased productivity, and associated negative effects on an individual’s physical functioning, psychological state, and quality of life. Given these extensive public health and economic consequences there is a resurgence of research in the area of preventative analgesia.  The goal of this project is to evaluate a novel small molecule antagonist of MD2-TLR4, DT-001 in preclinical models of surgical pain representative of persistent post-operative pain. In collaboration with University of California, San Diego, DT-001 will be evaluated for its ability to block the development of neuropathic pain states. These studies will evaluate dose escalating efficacy of DT001 in rats in formalin and spinal nerve injury (SNI) models using both intrathecal and intravenous routes of administration. Tissues will be preserved to assess functional effects on relevant pain centers for analysis by Raft. With demonstration of efficacy, these studies will determine the optimal dose and route of administration of DT001 and guide a development path to IND and eventually clinical trials.

1R41NS115460-01 Minimally Invasive Intercostal Nerve Block Device to Treat Severe Pain and Reduce Usage of Opiates Cross-Cutting Research Small Business Programs NINDS TAI, CHANGFENG; POPIELARSKI, STEVE THERMAQUIL, INC. Philadelphia, PA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Technology Transfer Grant Applications (Parent STTR [R41/R42] Clinical Trial Not Allowed)
NOFO Number: PA-18-575
Summary:

Most of the 200k Americans who undergo thoracotomy each year receive opiates to reduce postoperative pain because clinicians have few non-addictive, cost-effective choices to control the severe pain patients often experience in the first two weeks after surgery. Managing pain post-thoracotomy is critical to enable patients to take deep breaths and remove (via coughing) lung secretions that otherwise significantly increase risk of pneumonia and collapsed lung, hospital re-admission and morbidity. The most severe pain associated with thoracotomy is transmitted along the intercostal nerves, but no long-term analgesic or nerve block device exists that can provide safe and effective long-term reduction of pain. A reversible, patient-controlled, non- addictive, intercostal nerve block device would reduce suffering due to thoracotomy, broken ribs and herpes zoster. In this Phase I project, the team will develop a minimally invasive thermal nerve block device that can control nerve conduction by gently warming and cooling a short nerve segment between room temperature and warm water temperature. This novel approach is based on the discovery that warm and cool temperature mechanisms of nerve block are different and additive, enabling moderate-temperature nerve block by cycling neural tissues slightly above and below body temperature. Reversible thermal nerve blocks represent a completely new approach to managing pain.  

1R41NS116784-01 Discovery of T-type Calcium Channel Antagonists from Multicomponent Reactions and Their Application in Paclitaxel-induced Peripheral Neuropathy Cross-Cutting Research Small Business Programs NINDS REGULONIX, LLC KHANNA, RAJESH Tucson, AZ 2019
NOFO Title: PHS 2017-02 Omnibus Solicitation of the NIH for Small Business Technology Transfer Grant Applications (Parent STTR [R41/R42])
NOFO Number: PA-17-303
Summary:

Chemotherapy-induced peripheral neuropathy (CIPN) is detected in 64% of cancer patients during all phases of cancer. CIPN can result in chemotherapy dose reduction or discontinuation, and can also have long-term effects on the quality of life. Taxanes (like Paclitaxel) may cause structural damage to peripheral nerves, resulting in aberrant somatosensory processing in the peripheral and/or central nervous system. Dorsal root ganglia (DRG) sensory neurons as well as neuronal cells in the spinal cord are key sites in which chemotherapy induced neurotoxicity occurs. T-type Ca2+ channels are critical determinants of increased neuronal excitability and neurotransmission accompanying persistent neuropathic pain. Though Cav3.2 has been targeted clinically with small molecule antagonists, no drugs targeting these channels have advanced to phase II human clinical trials. This proposal aims to explore multicomponent reaction products, for the rapid identification of potent and selective T-type Ca2+ channel antagonists. The work proposed here is the first step in developing non-opioid pain treatments for CIPN. The team anticipates success against paclitaxel-induced chronic pain will translate into other chronic pain types as well, but CIPN provides focus for early stage proof-of-concept.

1R41NS118992-01 Development of selective calpain-1 inhibitors for chronic pain Cross-Cutting Research Small Business Programs NINDS 1910 GENETICS, INC. NWANKWO, JENNIFER Cambridge, MA 2021
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: NS-20-011
Summary:

The need to develop non-opioid therapeutics for chronic pain is greater than ever.  One option being explored is inhibiting the activity of calpains – enzymes that have been shown to cause pain in animal models of chronic pain.  Using an artificial intelligence (AI)-driven drug discovery platform, researchers have uncovered and validated four calpain-1 inhibitors using biochemical assays.  This study by 1910 Genetics Inc. hopes to synthesize multiple analogs of its most potent discovered calpain-1 inhibitor and determine its effectiveness against calpain-2 and certain enzymes that break down proteins.  Findings that successfully significantly inhibit calpain-1 in at least one animal model of chronic pain could lead to the first oral, central nervous system penetrating selective calpain-1 inhibitor [non-opioid therapeutic] for chronic pain.

1R41NS127637-01A1 Protease-Activated-Receptor-2 Antagonists for Treatment of Migraine Pain Cross-Cutting Research Small Business Programs NINDS PARMEDICS, INC. DEFEA, KATHRYN (contact); DUSSOR, GREGORY O Temecula, CA 2023
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R41/R42 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-009
Summary:

There is a need for additional effective treatments for migraine, which affects more than 36 million people in the United States. This project will develop an oral medication to disrupt the biological processes that drive migraine pain, which include nerve inflammation in response to pain signals. 

1R41NS132625-01A1 Opioid-Sparing Non-Surgical, Bioresorbable Nerve Stimulator for Pain Relief Cross-Cutting Research Small Business Programs NINDS VANISH THERAPEUTICS INC. CUI, XINYAN TRACY Mars, PA 2023
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R41/R42 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-23-007
Summary:

Nerve stimulators are devices surgically implanted near a peripheral nerve or on the spinal cord that use electrical signals to reduce the perception of pain. Although these devices can provide effective pain relief to patients, many have high complication rates, resulting from the wire moving, breaking, not working, or the implantable battery pack or permanent wire causing new pain. This project will support the development and animal testing of a peripheral nerve stimulator to treat chronic pain which can be implanted without surgery. Once injected, the device will provide pain relief through electrical stimulation and then be safely degraded and resorbed by the body.

1R42DA049448-01 Reward-based technology to improve opioid use disorder treatment initiation after an ED visit Cross-Cutting Research Small Business Programs NIDA Q2I, LLC BOUDREAUX, EDWIN D Rindge, NH 2019
NOFO Title: Loyalty and Reward-Based Technologies to Increase Adherence to Substance Use Disorder Pharmacotherapies (R41/R42 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-015
Summary:

Medication-assisted treatment (MAT) for opioid use disorder (OUD) is highly efficacious, but only a fraction of people with OUD access MAT, and treatment non-adherence is common and associated with poor outcomes. This project aims to increase rates of Suboxone (buprenorphine/naloxone) treatment initiation and adherence among OUD patients recruited from emergency and inpatient acute care by enhancing the Opioid Addiction Recovery Support (OARS)—an existing Q2i company technology—with a new evidence-based reward, contingency management (CM) function that allows for the automatic calculation, delivery, and redemption of rewards contingent on objective evidence of Suboxone initiation and adherence.

1R42NS132622-01 Targeting TLR4-lipid rafts to prevent postoperative pain Cross-Cutting Research Small Business Programs NINDS RAFT PHARMACEUTICALS, LLC DOUGHERTY, PATRICK M (contact); KOGAN, YAKOV San Diego, CA 2023
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R41/R42 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-009
1R43AR074369-01 Development of a fixed-dose combination therapy for the treatment of chronic musculoskeletal pain Cross-Cutting Research Small Business Programs NIAMS NEUROCYCLE THERAPEUTICS, INC. TOCZKO, MATTHEW ALEXANDER Sheridan, WY 2019
NOFO Title: PHS 2017-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-17-302
Summary:

Non-steroidal anti-inflammatory drugs (NSAIDs) are a first line pharmacologic pain therapy for chronic musculoskeletal pain, and rheumatoid arthritis (RA) and moderate to severe osteoarthritis (OA) specifically. However, insufficient pain relief by NSAID monotherapy has encouraged the use of combination therapy. Combinations of NSAIDs plus weak opioids are widely used although objective evidence for efficacy is limited and they have many adverse events.  A growing body of evidence suggests that ?2/?3 subtype-selective positive allosteric modulators (PAM) of the ?- aminobutyric acid A receptor (GABAAR) may effectively restore central pain regulatory mechanisms thus providing effective relief of chronic pain with reduced prevalence and severity of side-effects.  Based on these promising preliminary studies and considerable supporting literature data, the research team will test the hypothesis that combination dosing of TPA-023B with an NSAID will work synergistically to suppress the acute and chronic pain components of chronic musculoskeletal pain. 

1R43CA233371-01A1 Inhibiting soluble epoxide hydrolase as a treatment for chemotherapy inducedperipheral neuropathic pain Cross-Cutting Research Small Business Programs NCI EICOSIS, LLC BUCKPITT, ALAN R Davis, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

 Investigating the broader efficacy of sEH inhibition and specifically our IND candidate, EC5026, has indicated that it is efficacious against chemotherapy induced peripheral neuropathy (CIPN). This painful neuropathy develops from chemotherapy treatment, is notoriously difficult to treat, and can lead to discontinuation of life-prolonging cancer treatments. Thus, new therapeutic approaches are urgently needed. The research team will investigate if EC5026 has potential drug-drug interaction with approved chemotherapeutics or alters immune cells function, and assess the effects of sEHI on the lipid metabolome and probe for changes in endoplasmic reticulum stress and axonal outgrowth in neurons. The team proposes to more fully characterize the analgesic potential of our compound and investigate on and off target actions in CIPN models and model systems relevant to cancer therapy.