Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Sort ascending Institution(s) Investigator(s) Location(s) Year Awarded
1OT2OD030208-01
Helping to End Addiction Long-term (HEAL) Data Platform Office of the Director UNIVERSITY OF CHICAGO GROSSMAN, ROBERT L. CHICAGO, IL 2020
NOFO Number: OTA-20-007
Summary:

The HEAL Initiative is establishing a HEAL Data Ecosystem to help investigators manage and share HEAL-generated data, and quickly and efficiently disseminate HEAL results broadly to stakeholders. The HEAL Platform, built by the University of Chicago, will enable broad sharing of HEAL data by linking data stored in various locations, annotated and curated to various extents, to one central interface where studies, data, and digital assets can be discovered and accessed via metadata query. The Platform will also provide secure workspaces so that under appropriate conditions, data can be pulled from disparate repositories and computed on in the same cloud space, using tools and analytic suites provided within. The Platform team will collaborate closely with the HEAL Data Stewardship Group (Renascence Computing Institute at the University of North Carolina Chapel Hill and RTI, International) to meet the needs and goals of the HEAL Data Ecosystem.

3U2COD023375-07S1
ACT-NOW Data Sustainability - ECHO Administrative Supplement Cross-Cutting Research Leveraging Existing and Real-Time Opioid and Pain Management Data OD/ECHO DUKE UNIVERSITY SMITH, PHILLIP BRIAN; NEWBY, LAURA KRISTIN Durham, NC 2022
NOFO Title: Notice of Special Interest (NOSI): Availability of Administrative Supplements for Helping to End Addiction Long-term (HEAL) Initiative awardees to make data Findable, Accessible, Interoperable, and Reusable (FAIR) through the HEAL Data Ecosystem
NOFO Number: NOT-OD-22-110
Summary:

This research provides support to strengthen data management, data sharing, and data readiness efforts within the HEAL Initiative. This support further fosters collaboration among HEAL awardees and enables maximal data discoverability, interoperability, and reuse by aligning with the FAIR (Findable, Accessible, Interoperable, and Reusable) principles. It also provides an opportunity for existing HEAL Initiative award recipients to increase data “FAIR”-ness, participate in coordinated HEAL Initiative activities to build community around data sharing, and foster sustainability of HEAL Initiative digital assets.

1OT2OD031940-01
A Strategy for HEAL Federated Data Ecosystem OD UNIV OF NORTH CAROLINA CHAPEL HILL AHALT, STANLEY CARLTON Chapel Hill, NC 2021
NOFO Number: OTA-21-002
Summary:

The HEAL Initiative is establishing a HEAL Data Ecosystem to help investigators manage and share HEAL-generated data. A key principle underlying the HEAL Data Ecosystem strategy is to make those data findable, accessible, interoperable, and reusable (FAIR). Renascence Computing Institute at the University of North Carolina Chapel Hill (RENCI) and RTI, International (RTI) [RENCI/RTI] are serving as the HEAL Data Stewardship Group to guide HEAL investigators as they prepare their data to connect to the HEAL Platform, a secure data access and computing environment that will leverage metadata query to provide access to data and digital assets stored in various disparate repositories. The HEAL Data Stewardship Group is engaging HEAL investigators to understand and enhance data management needs, provide tools, training, and best practices for making data FAIR, and understand and support valuable uses and reuses of HEAL data sharing via the Platform The HEAL Data Stewardship Group will collaborate closely with the HEAL Platform team at the University of Chicago to meet the needs and goals of the HEAL Data Ecosystem.

3U2COD023375-05S1
ECHO ADMINISTRATIVE SUPPLEMENT - NEONATAL OPIOID TRIALS Enhanced Outcomes for Infants and Children Exposed to Opioids Advancing Clinical Trials in Neonatal Opioid Withdrawal (ACT NOW) OD Duke University Phillip Brian Smith Durham, NC 2020
NOFO Number: N/A
Summary:

Due to the opioid misuse epidemic across the nation, more infants are being exposed to narcotics during fetal life and developing neonatal opioid withdrawal syndrome (NOWS) in the neonatal period. Critical gaps remain in our knowledge with respect to best practices for identifying and managing infants with NOWS and no large-scale studies have been published on treatments undertaken and later outcomes of infants with NOWS. To address these gaps in knowledge, the Advancing Clinical Trials in Neonatal Opioid Withdrawal Syndrome (ACT NOW) study will evaluate treatment options and improve clinical care of infants with NAS/NOWS. This collaborative effort will conduct two trials: 1) Eating, Sleeping, Consoling for Neonatal Withdrawal (ESC-NOW): a Function-Based Assessment and Management Approach (ESC Study); and 2) Pragmatic, Randomized, Blinded Trial to Shorten Pharmacologic Treatment of Newborns With Neonatal Opioid Withdrawal Syndrome (NOWS) (Weaning Study).

5U2COD023375-04
MFMU Network Administrative Supplement Enhanced Outcomes for Infants and Children Exposed to Opioids Advancing Clinical Trials in Neonatal Opioid Withdrawal (ACT NOW) OD Duke University Smith, Brian Durham, NC 2019
NOFO Title: Environmental Influences on Child Health Outcomes (ECHO) Coordinating Center (U2C)
NOFO Number: RFA-OD-16-006
3R01LM010685-09S1
BEYOND PHEWAS: RECOGNITION OF PHENOTYPE PATTERNS FOR DISCOVERY AND TRANSLATION - ADMINISTRATIVE SUPPLEMENT Preclinical and Translational Research in Pain Management NLM VANDERBILT UNIVERSITY MEDICAL CENTER Denny, Joshua C. NASHVILLE, TN 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Genomic medicine offers hope for improved diagnostic methods and for more effective, patient-specific therapies. Genome-wide associated studies (GWAS) elucidate genetic markers that improve clinical understanding of risks and mechanisms for many diseases and conditions and that may ultimately guide diagnosis and therapy on a patient-specific basis. Previous phenome-wide association studies (PheWAS) established a systematic and efficient approach to identifying novel disease-variant associations and discovering pleiotropy using electronic health records (EHRs). This proposal will develop novel methods to identify associations based on patterns of phenotypes using a phenotype risk score (PheRS) methodology to systematically search for the influence of Mendelian disease variants on common disease. By doing so, it also creates a way to assess pathogenicity for rare variants and will identify patients at highest risk of having undiagnosed Mendelian disease. The project is enabled by large DNA biobanks coupled to de-identified copies of EHR.

1UG3NR019196-01
Pain Response Evaluation of a Combined Intervention to Cope Effectively (PRECICE) Clinical Research in Pain Management Pain Management Effectiveness Research Network (ERN) NINR WAKE FOREST UNIVERSITY HEALTH SCIENCES ANG, DENNIS CHUA Winston-Salem, NC 2020
NOFO Title: HEAL Initiative: Pain Management Effectiveness Research Network: Clinical Trial Planning and Implementation Cooperative Agreement (UG3/UH3 Clinical Trial Required)
NOFO Number: RFA-NS-19-021
Summary:

Chronic musculoskeletal pain is common and often severe enough to be disabling. Some treatments such as cognitive behavioral therapies or analgesics may relieve pain for some, but not all patients. Combining effective therapies and providing support to ensure that patients are motivated to adhere to their treatment may prove to be more beneficial to patients than prescribing a drug or recommending a single non-pharmacological treatment. This study aims to evaluate a combination of complementary treatments and Registered Nurse (RN) support to motivate patients to use and maintain combined therapies. Some patients will receive phone-based motivational interviews with an RN to enhance their adherence to pain coping skills learned through web-based cognitive behavioral therapy in combination with duloxetine, a pain-relieving drug. Others will receive both treatments but will not receive support from an RN. The study aims to determine whether motivational nursing support enhances adherence to newly learned pain coping skills, and results in improved pain relief and physical function.

3R01NR015642-04S1
SEVERE PAIN DURING WOUND CARE PROCEDURES: MODEL AND MECHANISMS Clinical Research in Pain Management NINR University of Iowa GARDNER, SUE E Iowa City, IA 2018
NOFO Title: Chronic Wounds: Advancing the Science from Prevention to Healing (R01)
NOFO Number: RFA-NR-15-001
Summary:

Wound care procedures (WCPs), such as dressing changes, cause moderate to severe pain in 74% of patients, nearly half of whom experience severe pain. Mainstay recommendations to prevent pain during WCPs have focused on either administration of preventive and procedural analgesia or use of expensive, non-adherent dressings. However, it is unclear which patients to target for analgesia or expensive dressings, leading to their inappropriate over- or underuse. To achieve the aims of the study, a comprehensive set of wound, patient, and biological factors will be measured concurrently with pain during a dressing change among a sample of 450 inpatients with open wounds. A predictive model will be developed and biological mechanisms will be examined using logistic regression. The proposed study has the potential to make significant contributions because clinicians will be able to target those patients requiring preventive pain control, thereby eliminating the spiraling impact of painful procedures on nociceptor sensitization.

1R61NR020845-01
Equity Using Interventions for Pain and Depression (EQUIPD) Clinical Research in Pain Management Advancing Health Equity in Pain Management NINR INDIANA UNIV-PURDUE UNIV AT INDIANAPOLIS MATTHIAS, MARIANNE Indianapolis, IN 2022
NOFO Title: HEAL Initiative: Advancing Health Equity in Pain and Comorbidities (R61/R33 Clinical Trial Required)
NOFO Number: RFA-NS-22-037
Summary:

Opioid overdose deaths disproportionately affect Black individuals in the United States. While the use of complementary and integrative pain treatments is effective and widely recommended, Black pain patients (especially those who also have depression) face barriers to the use of these approaches. This project will refine, test, and prepare to implement a novel approach to overcoming these treatment barriers. The research will partner with and empower Black patients to find safe, effective pain treatments that best match their values, preferences, and lifestyles.

1UG3NR020930-01  
Adapting and Implementing a Nurse Care Management Model to Care for Rural Patients with Chronic Pain Clinical Research in Pain Management Prevention and Management of Chronic Pain in Rural Populations NINR UNIVERSITY OF WASHINGTON TONG, SEBASTIAN (contact); PATEL, KUSHANG Seattle, WA 2023
NOFO Title: HEAL Initiative: Prevention and Management of Chronic Pain in Rural Populations (UG3/UH3, Clinical Trials Required)
NOFO Number: RFA-NR-23-001
Summary:

People who live in rural areas have high rates of chronic pain and poor health outcomes and are less likely to receive evidence-based complementary and integrative treatments for chronic pain. This project will adapt a nurse care management model for use in health systems serving rural patients with chronic pain. The research aims to coordinate care, provide cognitive behavioral therapy, and refer patients to a remotely delivered exercise program.

1UG3NR020929-01
Reaching Rural Veterans: Applying Mind-Body Skills for Pain Using a Whole Health Telehealth Intervention (RAMP-WH) Clinical Research in Pain Management Prevention and Management of Chronic Pain in Rural Populations NINR CENTER FOR VETERANS RESEARCH AND EDUCATION BURGESS, DIANA J (contact); EVANS RONI L; HADLANDSMYTH, KATHERINE E Minneapolis, MN 2023
NOFO Title: HEAL Initiative: Prevention and Management of Chronic Pain in Rural Populations (UG3/UH3, Clinical Trials Required)
NOFO Number: RFA-NR-23-001
Summary:

This project addresses the significant challenge of providing evidence-based, non-pharmacologic pain management to veterans with chronic pain living in rural regions. This research will test whether an innovative, virtual complementary and integrative group-based treatment will improve rural veterans’ pain management, function, and well-being. The research will also devise, evaluate, and adapt strategies for implementing this intervention while working with the health care system, veteran patients, and communities. The scalable, 12-week intervention includes pain education, mindfulness, pain-specific exercises, and cognitive behavioral strategies.

3R01NR016681-02S1
MECHANISMS OF MUSIC THERAPY TO PALLIATE PAIN IN PATIENTS WITH ADVANCED CANCER Clinical Research in Pain Management NINR DREXEL UNIVERSITY BRADT, JOKE Philadelphia, PA 2018
NOFO Title: Arts-Based Approaches in Palliative Care for Symptom Management (R01)
NOFO Number: PAR-14-294
Summary:

This study addresses the public health problem of chronic pain as one of the most feared symptoms in people with cancer. Insufficient relief from pharmacological treatments and the fear of side effects are important reasons for the growing use of complementary pain management approaches in people with cancer. One such approach is music therapy. Although efficacy of music therapy for pain has been established, there are no mechanistic studies clarifying how it works in clinical populations. The overarching goals of this study are to 1) examine mediators and moderators hypothesized to account for the pain-reducing effects of interactive music therapy (IMT) in people with advanced cancer and chronic pain and 2) validate IMT’s theory of action. The results of this study will provide estimated effects sizes of IMT on the mediators and preliminary effect size estimates for the pain outcomes. This information will be instrumental in the development of a subsequent large-scale efficacy trial.

1R43NR017575-01A1
Using Virtual Reality Psychological Therapy to Develop a Non-Opioid Chronic Pain Therapy Cross-Cutting Research Small Business Programs NINR COGNIFISENSE, INC. BAEUERLE, TASSILO; CEKO, MARTA ; WEBSTER, LYNN Sunnyvale, CA 2019
NOFO Title: PHS 2017-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-17-302
Summary:

Chronic pain affects over 100 million Americans, costing society about $600 billion annually. Despite numerous pharmacological and non-pharmacological therapies, over 50% of chronic pain sufferers feel little control over their pain. CognifiSense has developed a patent-pending Virtual Reality Psychological Therapy (VRPT), which is designed to create lasting reduction of chronic pain by addressing the maladaptive learning processes driving pain chronification. VRPT is an experiential learning system, which provides the brain a new set of signals that teaches it that the pain is not as bad as it perceived and that it has greater control over the pain than it perceived. VRPT combines the immersive power and the ability to individualize the therapy of Virtual Reality with well-researched principles of self-distancing, self-efficacy, and extinction to retrain the brain. The goal of this study is to determine the clinical feasibility of VRPT in achieving a lasting reduction of chronic pain, establish brain mechanisms associated with treatment response, and collect comprehensive user feedback to enable further refinement of the current product prototype. CognifiSense's VRPT has the potential to be a significant clinical and business opportunity in the treatment of chronic pain.

1R42NS132622-01
Targeting TLR4-lipid rafts to prevent postoperative pain Cross-Cutting Research Small Business Programs NINDS RAFT PHARMACEUTICALS, LLC DOUGHERTY, PATRICK M (contact); KOGAN, YAKOV San Diego, CA 2023
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R41/R42 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-009
2R44NS115460-02
Drug Free Nerve Block Device for the Relief of Pain and Symptoms in Migraines and other Headaches Cross-Cutting Research Small Business Programs NINDS THERMAQUIL, INC. POPIELARSKI, STEPHEN (contact); YUAN, HSIANGKUO Philadelphia, PA 2021
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 - Clinical Trial Required)
NOFO Number: RFA-NS-20-010
Summary:

Migraines and other headaches are often debilitating for patients, yet few treatment options providing sustained relief exist. All available therapies, including frequently prescribed opioids, have considerable side effects or limitations. Therefore, novel treatment approaches are needed to reduce or eliminate the need to use opiates and other systemic pharmaceuticals. Thermaquil Inc. has developed a new way of stopping migraine and other headache pain by noninvasively blocking pain signal transmission in the head, which in initial studies allowed patients to discontinue use of opioids and other addictive pain medications. Thermaquil will now be conducting a larger randomized controlled trial to demonstrate the safety and effectiveness of this novel approach. After a baseline period, patients will be randomly assigned to the active or control condition and receive a single treatment. The study will continue for 12 weeks with the active versus control arms, before all patients will be given active therapy for an additional 12 weeks.

3R01NS102432-02S1
AIBP AND REGULATION OF NEUROPATHIC PAIN Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF CALIFORNIA, SAN DIEGO MILLER, YURY; YAKSH, TONY L. LA JOLLA, CA 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Persistent pain states arising from inflammatory conditions, such as in arthritis, diabetes, HIV, and chemotherapy, exhibit a common feature in the release of damage-associated molecular pattern molecules, which can activate toll-like receptor-4 (TLR4). Previous studies suggest that TLR4 is critical in mediating the transition from acute to persistent pain. TLR4 as well as other inflammatory receptors localize to lipid raft microdomains on the plasma membrane. We have found that the secreted apoA-I binding protein (AIBP) accelerates cholesterol removal, disrupts lipid rafts, prevents TLR4 dimerization, and inhibits microglia inflammatory responses. We propose that AIBP targets cholesterol removal to lipid rafts harboring activated TLR4. The aims of this proposal are to: 1) determine whether AIBP targets lipid rafts harboring activated TLR4; 2) test whether AIBP reduces glial activation and neuroinflammation in mouse models of neuropathic pain; and 3) identify the origin and function of endogenous AIBP in the spinal cord.

1R01DE029951-01
Targeting Endosomal Receptors for Treatment of Chronic Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS COLUMBIA UNIVERSITY HEALTH SCIENCES BUNNETT, NIGEL W; SCHMIDT, BRIAN L New York, NY 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Many non-opioid drugs target G Protein-Coupled Receptors (GPCRs), a family of proteins involved in many pathophysiological processes including pain, fail during clinical trials for unknown reasons. A recent study found GPCRs not only function at the surface of nerve cells but also within a cell compartment called the endosome, where their sustained activity drives pain. This study will build upon this finding and test whether the clinical failure of drugs targeting plasma membrane GPCRs is related to their inability to target and engage endomsomal GPCRs (eGPCRs). This study will use stimulus-responsive nanoparticles (NP) to encapsulate non-opioid drugs and selectively target eGPCR dyads to investigate how eGCPRs generate and regulate sustained pain signals in neuronal subcellular compartments. This study will also validate eGCPRs as therapeutic targets for treatment of chronic inflammatory, neuropathic and cancer pain. Using NPs to deliver non-opioid drugs, individually or in combinations, directly into specific compartments in nerve cells could be a potential strategy for new pain therapies.

1U19NS130617-01
Harvard PRECISION Human Pain Center Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS BRIGHAM AND WOMEN'S HOSPITAL RENTHAL, WILLIAM RUSSELL (contact); WOOLF, CLIFFORD J Boston, MA 2022
NOFO Title: HEAL Initiative: Discovery and Functional Evaluation of Human Pain-associated Genes and Cells (U19 Clinical Trial Not Allowed)
NOFO Number: NS22-018
Summary:

This project will use state-of-the-art technologies to analyze individual cells to characterize how human pain receptors communicate pain between the human dorsal root ganglia and the brain – including how the signals vary across diverse populations. This research will generate useful, high-quality human data about pain for further analysis and re-use by other scientific teams, toward identifying and prioritizing novel therapeutic targets for pain.

1RF1NS113883-01
Sympathetic-mediated sensory neuron cluster firing as a novel therapeutic target for neuropathic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS JOHNS HOPKINS UNIVERSITY DONG, XINZHONG Baltimore, MD 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

An important component of neuropathic pain is spontaneous or ongoing pain, such as burning pain or intermittent paroxysms of sharp and shooting pain, which may result from abnormal spontaneous activity in sensory nerves. However, due to technical limitations, spontaneous activity in sensory neurons in vivo has not been well studied. Using in vivo imaging in genetically-modified mice, preliminary findings identified spontaneously-firing clusters of neurons formed within the dorsal root ganglia (DRG) after traumatic nerve injury that exhibits increased spontaneous pain behaviors. Furthermore, preliminary evidence has been collected that cluster firing may be related to abnormal sympathetic sprouting in the sensory ganglia. This project will test the hypothesis that cluster firing is triggered by abnormal sympathetic inputs to sensory neurons, and that it underpins spontaneous paroxysmal pain in neuropathic pain models. Findings from this project will identify potential novel therapeutic targets for the treatment of neuropathic pain.

1R61NS113329-01
Discovery of Biomarker Signatures Prognostic for Neuropathic Pain after Acute Spinal Cord Injury Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS UNIVERSITY OF TEXAS HLTH SCI CTR HOUSTON HERGENROEDER, GEORGENE W Houston, TX 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Debilitating neuropathic pain occurs in 40 percent to 70 percent of people who suffer from spinal cord injury (SCI). There are no distinguishing characteristics to identify who will develop neuropathic pain. The objective of this research is to develop a biomarker signature prognostic of SCI-induced neuropathic pain (NP). The aims of the project are to (1) identify autoantibodies in plasma samples from acute SCI patients to CNS autoantigens and determine the relationship between autoantibodies levels to the development of NP, (2) identify the autoantibody combination with maximal prognostic accuracy for the development of NP at six months after SCI, and (3) develop and optimize an assay to simultaneously measure several autoantibodies and independently validate the prognostic efficacy for NP using plasma samples collected prospectively. Establishing a panel will refine the prognostic value of these autoantibodies as biomarkers to detect who are vulnerable to NP and may be used to for development of nonaddictive pain therapeutics.

1R61NS131188-01
Development of LPA5 Antagonists as Analgesics Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS RESEARCH TRIANGLE INSTITUTE ZHANG, YANAN (contact); LI, JUN-XU; TAO, YUAN-XIANG Research Triangle Park, NC 2023
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Neuropathic pain is a debilitating and complex medical condition for which safe and non-addictive treatment options are urgently needed. Preliminary studies have found that lysophosphatidic acid receptor 5 (LPA5) is present in areas of the body that signal pain, including at high levels in rodent models of neuropathic pain. This project will use genetic and pharmacological approaches to determine whether blocking LPA5 signaling reduces neuropathic pain toward future testing in humans.  

1R61NS127271-01A1
Planning Study for the Development of Sigma 2 Ligands as Analgesics Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS UNIVERSITY OF KENTUCKY TIDGEWELL, KEVIN JOSEPH (contact); KOLBER, BENEDICT J Lexington, KY 2023
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-21-029
Summary:

Natural products, which are substances found in nature and made by living organisms, have been used in the past as good sources for developing new medications. Natural products isolated from marine bacteria that attach to the pain-signaling protein sigma-2 receptor (also known as transmembrane protein 97 [TMEM97]), may serve as a starting point to create new, non-opioid pain medications. This project will use chemistry and biology approaches to refine such natural products as a treatment for neuropathic pain.

1R61NS113269-01
Validation of a novel cortical biomarker signature for pain Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS University of Maryland, Baltimore SEMINOWICZ, DAVID Baltimore, MD 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Chronic pain is a major health burden associated with immense economic and social costs. Predictive biomarkers that can identify individuals at risk of developing severe and persistent pain, which is associated with worse disability and greater reliance on opioids, would promote aggressive, early intervention that could halt the transition to chronic pain. The applicant’s team uncovered evidence of a unique cortical biomarker signature that predicts pain susceptibility (severity and duration). This biomarker signature could be capable of predicting the severity of pain experienced by an individual minutes to months in the future, as well as the duration of pain (time to recovery). Analytical validation of this biomarker will be conducted in healthy participants using a standardized model of the transition to sustained myofascial temporomandibular pain. Specifically the biomarker signature will be tested for its ability to predict an individual’s pain sensitivity, pain severity, and pain duration and will perform initial clinical validation.

1OT2NS122680-01
A Randomized, Double-blind, Placebo-controlled, Parallel, 20-week, Phase 2b Study of Topical Pirenzepine (WST-057) or Placebo in Type 2 Diabetes Mellitus Patients with Painful Diabetic Peripheral Neuropathy Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI ROBINSON-PAPP, JESSICA New York, NY 2021
NOFO Title: HEAL Initiative: EPPIC-Net Pain Research - Application for Clinical Trial and Related Activities (OT2)
NOFO Number: OTA-20-008
Summary:

People with diabetes are at risk for painful diabetic peripheral neuropathy. This pain may be experienced as burning, aching, hypersensitivity to touch, or simply as pain, and there are no currently FDA-approved medications that reduce its symptoms. This phase 2 clinical trial, through the EPPIC-NET program, will test a potential new treatment for painful diabetic peripheral neuropathy. The treatment, WST-057 (topical pirenzepine 4%), is a molecule that was developed in the 1980s and marketed throughout Europe and Asia in an oral form to treat gastric ulcers. Studies show that this type of molecule can increase the density of certain nerve fibers, which has been linked with improve patient-reported outcome measures for painful diabetic peripheral neuropathy.

1R61NS126026-01A1
Antagonists of CRMP2 Phosphorylation for Chemotherapy-Induced Peripheral Neuropathy Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS UNIVERSITY OF ARIZONA KHANNA, RAJESH Tucson, Arizona 2022
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: NS21-029
Summary:

A more thorough understanding of neuropathic pain is critical for developing new target-specific medications. Researchers know that peripheral nerve injury changes various cell processes that affect two ion channels linked with chronic pain. Preliminary studies indicate that molecular changes known as phosphorylation to the collapsin response mediator protein 2 (CRMP2), one of five intracellular phosphoproteins, promotes abnormal excitability in the brain region that contributes to neuropathic pain. This project aims to develop small molecule inhibitors of CRMP2 phosphorylation as potential therapeutics for pain.