Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Sort ascending Location(s) Year Awarded
3R01MH120124-02S2
Behavioral health Insurance coverage and outcome Risks of Co-occurring conditions among delivering women with opioid use and pain for HEAL: The BIRCH study New Strategies to Prevent and Treat Opioid Addiction Optimizing Care for People with Opioid Use Disorder and Mental Health Conditions NIMH UNIVERSITY OF MICHIGAN AT ANN ARBOR ZIVIN, KARA Ann Arbor, MI 2020
NOFO Title: Notice of Special Interest: HEAL Supplements to Improve the Treatment and Management of Common Co-occurring Conditions and Suicide Risk in People Affected by the Opioid Crisis
NOFO Number: NOT-MH-20-025
Summary:

Paralleling overall population trends, opioid use has escalated among pregnant and postpartum women, particularly among those with co-occurring perinatal mood and anxiety disorders, yet treatment remains underutilized. Since 2008, health insurance coverage changes led to a dramatic expansion of behavioral health coverage by increasing coverage and extending federal parity protections to more than 60 million Americans. Characterizing the clinical and economic impacts of these unprecedented extensions of behavioral coverage on maternal and infant outcomes among women with perinatal opioid use, chronic pain, and suicidality with and without co-occurring perinatal mood and anxiety disorders will inform future policy and targeted interventions

1R43DA049620-01
NeoGUARD: An easy-to-use, low-cost brain monitor for objective screening and treatment of opioid-exposed infants Cross-Cutting Research Small Business Programs NIDA NEUROWAVE SYSTEMS, INC. Zikov, Tatjana None Cleveland Hights, OH 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

Neonatal Opioid Withdrawal Syndrome (NOWS) affects a growing number of neonates each year due to the ongoing opioid epidemic ravaging the United States. Complex neurobehavioral observation of newborns is the primary modality used. It is subjective and time-consuming by nature, requires significant expertise, and can lead to delays in treatment. The goal of this project is to develop an innovative, low-cost, non-invasive, and easy-to-use brain monitor to objectively assess the severity of withdrawal symptoms in newborns exposed to opioids and provide evidence-based decision support to care providers to improve both short- and long-term developmental outcomes. This device, referred to as NeoGUARD, is based on the continuous, automated, and real-time monitoring of brain function to detect EEG abnormalities shown to be related to NOWS and determine severity to guide pharmacological intervention. This study will focus on the initial prototyping and refinement of the hardware and software, as well as initial evaluations of its use.

1R61DA059947-01
Developing and Testing Innovative Care Pathways for Screening and Treatment of OUD/PTSD in Jails Translation of Research to Practice for the Treatment of Opioid Addiction Optimizing the Quality, Reach, and Impact of Addiction Services NIDA UNIVERSITY OF ARKANSAS FOR MEDICAL SCIENCES ZIELINSKI, MELISSA JEAN (contact); ZALLER, NICKOLAS D Little Rock, AR 2023
NOFO Title: HEAL Initiative: Translating Research to Practice to End the Overdose Crisis (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-DA-23-053
Summary:

Many people in jail have both opioid use disorder (OUD) and posttraumatic stress disorder (PTSD). Among people with OUD released from jail, only few engage in treatment and medication therapy once they are back in the community, and opioid overdose is a leading cause of death in this population. This project will test whether identifying and initiating treatment of PTSD in people receiving OUD treatment in jail can increase these individuals’ likelihood of starting and staying in medication treatment after release and thus reduce overdose risk.

1R61NS131188-01
Development of LPA5 Antagonists as Analgesics Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS RESEARCH TRIANGLE INSTITUTE ZHANG, YANAN (contact); LI, JUN-XU; TAO, YUAN-XIANG Research Triangle Park, NC 2023
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Neuropathic pain is a debilitating and complex medical condition for which safe and non-addictive treatment options are urgently needed. Preliminary studies have found that lysophosphatidic acid receptor 5 (LPA5) is present in areas of the body that signal pain, including at high levels in rodent models of neuropathic pain. This project will use genetic and pharmacological approaches to determine whether blocking LPA5 signaling reduces neuropathic pain toward future testing in humans.  

1UG3DA054785-01A1
Development of Specific Mu Opioid Receptor Antagonists to Reverse the Acute and Chronic Toxicity of Fentanyls Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Virginia Commonwealth University ZHANG, YAN Richmond, Virginia 2022
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: PAR-20-092
Summary:

Fentanyl and its analogs are synthetic opioids that are 100 to 10,000 times more potent than morphine. Overdose from these opioids is extremely dangerous due to their ultra-potency and longer half-life than naloxone, the front-line treatment for fentanyl overdose. This research study will develop novel mu opioid receptor antagonists that bind to the same receptor as the opioid drugs and specifically counteract fentanyl and its analogs, thereby reversing the drugs’ acute toxicity more effectively and with fewer side effects than current treatments. The researchers will characterize novel fentanyl derivatives, identify promising compounds, and pursue preclinical development of these compounds as novel reversal agents against the acute toxicity of fentanyl. The goal is to file an Investigational New Drug application with the U.S. Food and Drug Administration.

1UG3DA050311-01
Mu Opioid Receptor Modulator Development to Treat Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Virginia Commonwealth University Zhang, Yan Richmond, VA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

There is a need to develop a mu-opioid receptor (MOR) treatment with enhanced therapeutic effects and reduced undesirable effects. Recently, several highly selective and potent MOR modulators have been identified as novel leads for opioid use disorder treatment. They all showed more promising pharmacological profiles compared to other known drugs in this category. The current proposal will focus on further development of these leads for preclinical IND-enabling studies and dynamic drug discovery and development pipeline construction. This project plans to further validate therapeutic profiles of the current leads with self-administration and pharmacokinetic studies and expand the small-molecule library to build a dynamic drug discovery and development pipeline. Preclinical IND-enabling studies on the identified lead(s) will be conducted, and in vivo pharmacokinetics and pharmacodynamics profiles of the new hits will be compared with current leads to define the next generation of lead compound(s).

1UG3DA048775-01
Novel nanovaccines against opioid use disorders Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA VIRGINIA POLYTECHNIC INST AND ST UNIV ZHANG, CHENMING M; PRAVETONI, MARCO Blacksburg, VA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Opioid use disorders (OUD) are a national public health emergency with more than 115 fatal overdoses occurring each day in the U.S. and an economic burden of more than $78 billion a year. Several medications are available for treating OUD, but their access is limited and efficacy is often sub-optimal. It is thus urgent to develop new, affordable strategies for the effective treatment of OUD. Immunopharmacotherapy has emerged as a promising treatment approach against OUD that relies on the induction of drug-specific antibodies to neutralize circulating drug molecules and reduce or cancel their effects. Several groups have attempted to apply this strategy with mixed results, suggesting that novel immunization platforms must be tested to further improve vaccine efficacy against OUD. This project will fabricate novel nanoparticle-based vaccines against OUD that are likely to boost their immunogenicity and lead to a more robust and effective immune response against the target opioid. The broad impact of this project resides in the rational design of nanoparticle-based vaccines that are safe and effective against opioids. This novel nanoparticle-based immunization strategy can be applied to the development of next-generation vaccines against a range of OUD and other substance use disorders.

1R01DA056646-01
Ghrelin Deacylase as a Treatment for Opioid Polysubstance Abuse Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA University of Kentucky Research Foundation ZHAN, CHANG-GUO (contact); ZHENG, FANG Lexington, KY 2022
NOFO Title: HEAL Initiative: Novel Targets for Opioid Use Disorders and Opioid Overdose (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-22-031
Summary:

There is an urgent need for novel substance use disorder treatments aimed at treating polysubstance use disorders, such as opioid and methamphetamine co-use. One promising new target is the peptide ghrelin, which recent studies have implicated in drug- and reward-relevant behaviors. This research project will investigate the recently identified enzyme, ghrelin deacylase, that affects the activity of ghrelin to attenuate the rewarding and reinforcing effects of fentanyl and heroin in combination with methamphetamine. The researchers will also design and test new, long-acting forms of ghrelin deacylase that may be potential therapeutic candidates for the treatment of polysubstance use disorders.

1UG3DA048371-01
Development of Next-generation Pharmacotherapy for Opioid Use Disorders Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA ASTRAEA THERAPEUTICS, LLC ZAVERI, NURULAIN T Mountain View, CA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Although effective, current pharmacotherapies for opioid use disorder (OUD) present serious limitations. For example, methadone, a mu opioid receptor (MOP) full agonist, has significant abuse liability and causes withdrawal after chronic use, while buprenorphine (Bup), an MOP partial agonist and kappa opioid receptor (KOP) antagonist, produces limited respiratory depression and is less effective than methadone in reducing drug use, craving, and relapse. To address the limitation of currently available MATs, this project uses a phased plan that will fast-track the IND development of a next-generation medication for OUD based on small-molecule compounds targeting the nociception opioid receptor (NOP)—with no misuse or dependence liability—that have shown promising efficacy in reducing oxycodone intake in rhesus monkeys trained to self-administer, with efficacies similar to that of buprenorphine. The project’s ultimate goal is to file an IND application for an NOP agonist as a promising new approach to treat illicit and prescription OUD that may offer an alternative to buprenorphine.

1R24DA057632-01
Collaborative Hub for Emerging Adult Recovery Research (CHEARR) Translation of Research to Practice for the Treatment of Opioid Addiction Recovery Research Networks NIDA UNIVERSITY OF CONNECTICUT SCH OF MED/DNT ZAJAC, KRISTYN Farmington, CT 2022
NOFO Title: HEAL Initiative: Research Networks for the Study of Recovery Support Services for Persons Treated with Medications for Opioid Use Disorder (R24 Clinical Trial Optional)
NOFO Number: RFA-DA-22-043
Summary:

The opioid crisis has been particularly devastating to adolescents and young adults between 16 and 25 years old. Recovery support services in community settings can help these individuals who take medications for opioid use disorder find a path to recovery. This project will develop a network of advanced researchers, recovery support specialists, adolescents and young adults in recovery, and other key community stakeholders to help rapidly advance the science of recovery support services. This research will focus in particular on continuing care services specialized for adolescents and young adults who currently take or who have taken medications for opioid use disorder.

1R61AT010606-01
Adapting the HOPE Online Support Intervention to Increase MAT Uptake Among OUD Patients Translation of Research to Practice for the Treatment of Opioid Addiction Behavioral Research to Improve Medication-Based Treatment NCCIH UCLA YOUNG, SEAN Los Angeles, CA 2019
NOFO Title: HEAL Initiative: Behavioral Research to Improve MAT: Behavioral and Social Interventions to Improve Adherence to Medication Assisted Treatment for Opioid Use Disorders (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-AT-19-006
Summary:

Online peer-led support interventions may increase medication-assisted therapy (MAT) initiation and sustainment among participants with opioid use disorder (OUD) because they can leverage peers to widely and rapidly scale changes in social norms (e.g., interest in using MAT) throughout people’s natural, real-world, virtual environments. Harnessing Online Peer Education (HOPE), an online peer support community intervention designed to reduce stigma and increase health behavior change, has effectively changed health behaviors among stigmatized populations, such as for HIV. This study will determine how to adapt the HOPE online support intervention to increase MAT initiation and sustainment among participants with OUD, assess the intervention’s effectiveness at increasing MAT use among OUD participants recruited online who are not using MAT, and use an implementation science approach to determine the relationship between social network dynamics (e.g., network size), topics discussed on the online community, and behavior change.

5R01AI132030-02
MINING REAL-TIME SOCIAL MEDIA BIG DATA TO MONITOR HIV: DEVELOPMENT AND ETHICAL ISSUES Translation of Research to Practice for the Treatment of Opioid Addiction NIAID UNIVERSITY OF CALIFORNIA LOS ANGELES YOUNG, SEAN Los Angeles, CA 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Social big data analysis of publicly available user data on social media platforms is a promising approach for attaining organic observations of behavior that can monitor and predict real-world public health problems, such as HIV incidence. In preliminary research, our team identified and collected tweets suggesting HIV risk behaviors (e.g., drug use, high-risk sexual behaviors), modeled them alongside CDC statistics on HIV diagnoses, and found a significant positive relationship between HIV-related tweets and county-level HIV cases. We propose to create a single automated platform that collects social media data, identifies and labels tweets that suggest HIV-related behaviors, and predicts regional HIV incidence. We will interview staff and participants at local and regional HIV organizations to understand ethical issues associated with mining people’s data. The software developed from this application will be shared with HIV researchers and health care workers to combat the spread of HIV.

3R33AT010606-03S1
Adapting the HOPE Online Support Intervention to Increase MAT Uptake Among OUD Patients Translation of Research to Practice for the Treatment of Opioid Addiction Behavioral Research to Improve Medication-Based Treatment NCCIH UNIVERSITY OF CALIFORNIA-IRVINE YOUNG, SEAN Irvine, CA 2021
NOFO Title: HEAL Initiative: Notice of Special Interest (NOSI) regarding the Availability of Administrative Supplements to Support Strategies to Increase Participant Diversity, Inclusion and Engagement in Clinical Studies
NOFO Number: NOT-NS-21-025
Summary:

Effective medications for opioid use disorder (MOUD) are approved by the Food and Drug Administration for the treatment of people with opioid use disorder; however, only a small fraction of patients who would benefit from these medications actually use them. Several reasons contribute to low MOUD use, including lack of insurance; lack of knowledge about the medications, both among patients and providers; stigma associated with MOUD; and social norms. Innovative methods are needed to help increase MOUD use. One such option is peer-led interventions that might increase patients’ interest in MOUD. One existing peer-led intervention is the Harnessing Online Peer Education (HOPE) online community intervention that has been designed to reduce stigma and increase health behavior change among stigmatized populations, such as people living with HIV. This project will investigate whether and how HOPE can be adapted for people with opioid use disorder. It will assess whether HOPE can effectively increase MOUD requests, MOUD uptake, and sustained adherence to MOUD as well as reduce overdose rates.  

1R61AT012185-01
MRI-Based Quantitative Characterization of Impaired Myofascial Interface Properties in Myofascial Pain Syndrome Clinical Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NCCIH MAYO CLINIC ROCHESTER YIN, ZIYING (contact); BAUER, BRENT A Rochester, MN 2022
NOFO Title: HEAL Initiative: Developing Quantitative Imaging and Other Relevant Biomarkers of Myofascial Tissues for Clinical Pain Management
NOFO Number: RFA-AT-22-003
Summary:

Pain in the muscles and surrounding connective tissue (myofascial pain) is a significant health concern affecting hundreds of millions of Americans. Understanding and managing myofascial pain has been limited due to a lack of tools to help clinicians diagnose and treat this disorder. While past efforts to understand myofascial pain have focused on impairments in how connective tissues connect to other tissues in the body, this project will use a new imaging technique to study myofascial tissue physical properties, including how they move in the body and their structural stiffness. This research will identify an imaging biomarker to be used in a randomized controlled clinical trial to predict patient responses to a myofascial pain treatment.

2R44DA041912-03
COMPLETION OF IND-PACKAGE FOR A NOVEL, NON-NARCOTIC PAINKILLER Cross-Cutting Research Small Business Programs NIDA Blue Therapeutics, Inc. Yekkirala, Ajay S CAMBRIDGE, MA 2019
NOFO Title: PHS 2017-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-17-302
Summary:

Opioids like morphine and hydrocodone are generally the most effective therapeutics for treatment of moderate to severe pain. However, their use is limited by serious side effects: tolerance, constipation, respiratory depression, physical dependence, and high addictive potential. Alternative pain relievers with the analgesic potency of conventional opioids, but devoid of narcotic side effects, are an immediate need. The goal of this project is to develop and commercialize an alternative to conventional opioid analgesics with reduced side effects and without the addictive properties common to mu-opioid agonists, targeting a new molecule in the central nervous system. This project will perform the necessary preliminary studies to prepare this new molecule for an investigational new drug application with the FDA.

1R01DE032501-01
Targeting HB-EGF and Trigeminal EGFR for Oral Cancer Pain and Opioid Tolerance Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDCR NEW YORK UNIVERSITY YE, YI New York, NY 2022
NOFO Title: HEAL Initiative: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: NS22-034
Summary:

Oral cancers are painful and often require use of opioid medications to manage pain. However, the effectiveness of opioids often wanes quickly, and many patients require higher doses because they develop tolerance to these medications. This project will study the potential value of blocking epidermal growth-factor receptors interacting with peripheral nerves to treat oral cancer pain. The findings will advance understanding of the molecular mechanisms underlying oral cancer pain and provide a rationale for repurposing epidermal growth-factor receptor blockers, which is already approved for head and neck cancer treatment for treating oral cancer and associated pain.

1R61NS127285-01
Development of Therapeutic Antibodies to Target Sodium Channels Involved in Pain Signaling Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS University of California, Davis YAROV-YAROVOY, VLADIMIR M (contact); TRIMMER, JAMES S Davis, CA 2022
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: NS21-029
Summary:

Voltage-gated sodium channels such as Nav1.7, Nav1.8, and Nav1.9 transmit pain signals in nerve fibers and are molecular targets for pain therapy. While Nav channels have been validated as pharmacological targets for the treatment of pain, available therapies are limited due to incomplete efficacy and significant side effects. Taking advantage of recent advances in structural biology and computational-based protein design, this project aims to develop antibodies to attach to Nav channels and freeze them in an inactive state. These antibodies can then be further developed as novel treatments for chronic pain.

1UG3NS114956-01
Optimization of non-addictive biologics to target sodium channels involved in pain signaling Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS UNIVERSITY OF CALIFORNIA AT DAVIS YAROV-YAROVOY, VLADIMIR M Davis, CA 2019
NOFO Title: Optimization of Non-addictive Therapies [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-010
Summary:

Pain signals originate predominantly in a subset of peripheral sensory neurons that harbor a distinct subset of voltage-gated sodium (NaV) channels; however, current NaV channel blockers, such as local anesthetics, are non-selective and also block NaV channels vital for function of the heart, muscle, and central nervous system. Genetic studies have identified human NaV1.7, NaV1.8, and NaV1.9 channel subtypes as key players in pain signaling and as major contributors to action potential generation in peripheral neurons. ProTx-II is a highly potent and moderately selective peptide toxin that inhibits human NaV1.7 activation. This study will optimize ProTx-II selectivity, potency, and stability by exploiting the new structures of ProTx-II—human NaV1.7 channel complexes, advances in rational peptide optimization, and rigorous potency and efficacy screens to generate high-affinity, selective inhibitors of human NaV1.7, NaV1.8, and NaV1.9 channels that can define a new class of biologics to treat pain.

3R61NS127285-01S1
Investigating the Contributions of Voltage Gated Sodium Channels to Oxaliplatin Induced Neuropathy Cross-Cutting Research Training the Next Generation of Researchers in HEAL NINDS UNIVERSITY OF CALIFORNIA AT DAVIS YAROV-YAROVOY, VLADIMIR M Davis, CA 2022
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107; PA-21-071
Summary:

Many molecular gates known as ion channels control the flow of electrical signals to sensory neurons and are thus key mechanisms and targets for understanding and interrupting pain signals. Recent breakthroughs in structural and computational biology shave illuminated specific molecular shapes of ion channels, which permits the improved design and refinement of small, stable protein-like molecules (peptide antigens). These peptides can stimulate an immune response that can then be targeted with a bioengineered antibody to match the peptide antigen. This project will test bioengineered antibodies in a rat model of chemotherapy-induced peripheral neuropathy within a region of the rat spinal cord that transmits signals to and from the brain.

1R41NS113717-01
Pre-clinical evaluation of DT-001, a small molecule antagonist of MD2-TLR4 for utility in the treatment of pain Cross-Cutting Research Small Business Programs NINDS DOULEUR THERAPEUTICS, INC. YAKSH, TONY L; CHAKRAVARTHY, KRISHNAN San Diego, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Technology Transfer Grant Applications (Parent STTR [R41/R42] Clinical Trial Not Allowed)
NOFO Number: PA-18-575
Summary:

 Chronic persistent post-operative pain (CPOP) is a devastating outcome from any type of surgical procedure. Its incidence is anywhere between 20-85% depending on the type of surgery, with thoracotomies showing one of the highest annual incidences of 30-60%. Given that millions of patients (approximately 23 million yearly based on incidence) are affected by CPOP, the results are increased direct medical costs, increased indirect medical costs due to decreased productivity, and associated negative effects on an individual’s physical functioning, psychological state, and quality of life. Given these extensive public health and economic consequences there is a resurgence of research in the area of preventative analgesia.  The goal of this project is to evaluate a novel small molecule antagonist of MD2-TLR4, DT-001 in preclinical models of surgical pain representative of persistent post-operative pain. In collaboration with University of California, San Diego, DT-001 will be evaluated for its ability to block the development of neuropathic pain states. These studies will evaluate dose escalating efficacy of DT001 in rats in formalin and spinal nerve injury (SNI) models using both intrathecal and intravenous routes of administration. Tissues will be preserved to assess functional effects on relevant pain centers for analysis by Raft. With demonstration of efficacy, these studies will determine the optimal dose and route of administration of DT001 and guide a development path to IND and eventually clinical trials.

1U01HL150596-01
The Collaboration Linking Opioid Use Disorder and Sleep ("CLOUDS") Study New Strategies to Prevent and Treat Opioid Addiction Sleep Dysfunction as a Core Feature of Opioid Use Disorder and Recovery NHLBI Yale University YAGGI, HENRY KLAR (contact); BARRY, DECLAN T; REDEKER, NANCY S; SCHEINOST, DUSTIN New Haven, CT 2019
NOFO Title: HEAL Initiative: Sleep and Circadian-Dependent Mechanisms Contributing to Opiate Use Disorder (OUD) and Response to Medication Assisted Treatment (MAT) (U01 Clinical Trial Optional)
NOFO Number: RFA-HL-19-029
Summary:

Opioid use disorder (OUD) is a chronic and relapsing brain disease that affects over 2 million Americans. Despite effective evidence-based treatments in the form of behavioral interventions and FDA-approved medication for addiction treatment (MAT), relapse rates are high. The Collaboration Linking Opioid Use Disorder and Sleep Study will investigate patients on MAT to elucidate potential causal mechanisms between sleep deficiency and OUD. The aims of this study are to 1) test whether there are different neurocognitive connectivity patterns between patients with adequate vs. deficient sleep in brain systems involved in addiction and assess the extent to which these “neural fingerprints” predict ongoing opioid use; 2) evaluate the potential biologic, psychiatric, and pharmacologic mechanisms that explain the causal pathway between sleep deficiency and opioid use; and 3) test ecologic factors such as psychosocial, family, and neighborhood contextual factors associated with OUD and their contribution to sleep deficiency among patients in MAT.

1UG3DA048768-01A1
Novel LAAM formulations to treat Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Virginia Commonwealth University Xu, Qingguo Richmond, VA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Levo-alpha-acetylmethadol (LAAM) offers numerous behavioral and clinical advantages for select opioid use disorder (OUD) patients who do not respond to standard treatment. While LAAM was withdrawn from the market despite being approved for OUD treatment, this project seeks to develop novel, patentable, convenient dosage forms of LAAM, including novel LAAM oral dosage formulations and novel buccal film formulations of LAAM. Morphology, mechanical property, drug release kinetics, and stability of the oral dosage and buccal film formulations will be characterized to determine the instant release or steady release of LAAM, respectively. The two lead LAAM formulations with adequate release and stability profiles will be chosen through optimization studies both in vitro and in vivo. A human pharmacokinetic/pharmacodynamic study will then be carried out on the two selected formulations.

2R44NS086343-04
IND-ENABLING STUDIES ON NOVEL CAV3 T-CHANNEL MODULATORS FOR TREATMENT OF NEUROPATHIC PAIN Cross-Cutting Research Small Business Programs NINDS AFASCI, INC. XIE, XINMIN SIMON REDWOOD CITY, CA 2018
NOFO Title: NINDS Renewal Awards of SBIR Phase II Grants (Phase IIB) for Pre-Clinical Research (R44)
NOFO Number: PAR-17-480
Summary:

We discovered a class of non-opioid modulators of the T-type Cav3.2 channel that could treat neuropathic pain. In vivo pharmacokinetic and pharmacodynamic studies and preliminary toxicological studies identified AFA-279 and other candidates, which did not produce observable side-effects and showed greater analgesic effects than other neuropathic pain medications in rodent models. The goal of this proposed project is to submit the IND application on our Cav3.2 modulator to the Food and Drug Administration (FDA). We will produce AFA-279 under Good Manufacturing Practice (GMP)–like conditions using chemical manufacturing controls for Good Laboratory Practice (GLP) nonclinical toxicity studies and GMP clinical batch future Phase 1 clinical trials, complete toxicological and safety studies to establish the safety profile of AFA-279, prepare and submit the IND application, and then initiate early clinical trials. Our ultimate goal is to deliver a safer, more effective, non-opioid Cav3.2 channel modulator to patients suffering from neuropathic pain.

1R21DA056637-01
KCa2 Channel Activators for Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA University of California, Davis WULFF, HEIKE Davis, CA 2022
NOFO Title: HEAL Initiative: Novel Targets for Opioid Use Disorders and Opioid Overdose (R21 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-22-032
Summary:

Safe and effective options are urgently needed to prevent and treat opioid use disorder and polysubstance use disorders. Previous research in humans and animals suggests that activating the calcium-activated potassium channel KCa2.2 is a promising therapeutic approach for treating substance use disorders and associated health conditions. This project will perform a virtual high-throughput screen using novel machine learning approaches to discover new molecules that interact with the KCa2.2 channel. The newly discovered molecules help develop novel drugs for the treatment of opioid use disorder and associated health conditions.

3UG1DA040317-05S2
Medication treatment for Opioid-dependent expecting Mothers (MOMs): A Pragmatic Randomized Trial Comparing Extended-Release and Daily Buprenorphine Formulations (CTN-0080) Translation of Research to Practice for the Treatment of Opioid Addiction Enhancing the National Drug Abuse Treatment Clinical Trials Network to Address Opioids NIDA DUKE UNIVERSITY WU, LI-TZY T Durham, NC 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

The growing opioid use epidemic in the U.S. has been associated with a significant increase in the prevalence of pregnant opioid-dependent women and neonatal abstinence syndrome, which is associated with adverse health effects for the infant and with costly hospitalizations. Maintenance with sublingual (SL) buprenorphine (BUP) is efficacious for opioid use disorder but has disadvantages that may be heightened in pregnant women, including the potential for poor adherence, treatment dropout, and negative maternal/fetal effects associated with daily BUP peak-trough cycles. Extended release (XR) formulations may address some of these disadvantages. The primary objective of CTN-0080 is to evaluate the impact of treating opioid use disorder in pregnant women (n = 300) with BUP-XR, compared to BUP-SL, on maternal-infant outcomes. Other objectives include testing a conceptual model of the mechanisms by which BUP-XR may improve maternal-infant outcomes, relative to BUP-SL; determining the economic value of BUP-XR, compared with BUP-SL, to treat OUD in pregnant women; and evaluating the impact of BUP-XR, relative to BUP-SL, on neurodevelopment when the infant/child is approximately 12 and 24 months of age. Ultimately, this study will help in increasing access to treatment as well as provide quality care for pregnant/postpartum women.