Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Sort descending Institution(s) Investigator(s) Location(s) Year Awarded
1UG3TR003090-01
Joint Pain on a Chip: Mechanistic Analysis, Therapeutic Targets, and an Empirical Strategy for Personalized Pain Management Preclinical and Translational Research in Pain Management Translational Research to Advance Testing of Novel Drugs and Human Cell-Based Screening Platforms to Treat Pain and Opioid Use Disorder NCATS UNIVERSITY OF PITTSBURGH AT PITTSBURGH GOLD, MICHAEL S (contact); LIN, HANG Pittsburgh, PA 2019
NOFO Title: HEAL Initiative: Tissue Chips to Model Nociception, Addiction, and Overdose (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-TR-19-003
Summary:

The research team developed an in vitro multi-component joint on a chip (microJoint), in which engineered osteochondral complexes, synovium, and adipose tissues were integrated. This study will introduce sensory innervation into the microJoint and a neuron-containing microfluidic ally will be developed to innervate the microJoint. The osteoarthritis (OA) model will be created in the Neu-microJoint system. The research team will assess activation and/or sensitization of nociceptive afferents with electrophysiology, as well as neurite outgrowth. They will mechanically insult the Neu-microJoint and assess the emergence of “pain” in response to prolonged mechanical stress. Researchers will assess the impact of drugs used clinically for management of OA on OA models and will then use “omic” approaches to identify new biomarkers and therapeutic targets. Researchers will assess the impact of opioids—which they hypothesize will increase the rate of joint degeneration and potentiate the release of pain-producing mediators—on neural activity in the presence and absence of joint injury, as well as the integrity of all joint elements.

3R44TR001326-03S1
Automation and validation of human on a chip systems for drug discovery Cross-Cutting Research Small Business Programs NCATS HESPEROS, LLC SHULER, MICHAEL L; HICKMAN, JAMES J Orlando, FL 2019
NOFO Title: PHS 2017-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-17-302
Summary:

Hesperos uses microphysiological systems in combination with functional readouts to establish systems capable of analysis of chemicals and drug candidates for toxicity and efficacy during pre-clinical testing, with initial emphasis on predictive toxicity. The team constructed physiological systems that represent cardiac, muscle and liver function, and demonstrated a multi-organ functional cardiac/liver module for toxicity studies as well as metabolic activity evaluations. In addition, the team demonstrated multi-organ toxicity in a 4-organ system composed of neuronal, cardiac, liver and muscle components. While much is known about the cells and neural circuitry regulating pain modulation there is limited knowledge regarding the precise mechanism by which peripheral and spinal level antinociceptive drugs function, and no available human-based model reproducing this part of the pain pathway. The ascending pain modulatory pathways provide a well characterized neural architecture for investigating pain regulatory physiology. In this project, the research team propose a human-on-a-chip neuron tri-culture system composed of nociceptive neurons, GABAergic interneurons and glutamatergic dorsal projection neurons (DPN) integrated with a MEMS construct. Using this model, investigators will interrogate pain signaling physiology at three levels, 1) at the site of origin by targeting nociceptive neurons with pain modulating compounds including noxious stimuli and inflammatory mediators, 2) at the inhibitory GABAergic interneuron, and 3) at the ascending spinal level by targeting glutamatergic DPNs. These circuits will be integrated utilizing expertise in patterning neurons as well as integration with BioMEMs devices. This system provides scientists with a better understanding of ascending pain pathway physiology and enable clinicians to consider alternative indications for treating pain at peripheral and spinal levels. 

1DP2TR004354-01
Scale Up Single-Cell Technologies to Map Pain-Associated Genes and Cells Across the Lifespan Cross-Cutting Research Training the Next Generation of Researchers in HEAL NCATS Massachusetts General Hospital SHU, JIAN Boston, MA 2022
NOFO Title: Emergency Awards: HEAL Initiative- New Innovator Award (DP2 Clinical Trial Not Allowed)
NOFO Number: RFA-tr-22-013
Summary:

Current treatments for chronic pain, including opioids, are not effective for many individuals. Much remains unknown about genes, circuits, and cells that contribute to chronic pain, including how chronic pain changes across the lifespan in certain populations, including infants, children, older people, and pregnant women. This project will develop technology to map the genes, circuits, and cells associated with pain across ages, sexes, and during pregnancy. The technologies will guide the search for new biomarkers for chronic pain diagnosis and treatments.

1R61AT012185-01
MRI-Based Quantitative Characterization of Impaired Myofascial Interface Properties in Myofascial Pain Syndrome Clinical Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NCCIH MAYO CLINIC ROCHESTER YIN, ZIYING (contact); BAUER, BRENT A Rochester, MN 2022
NOFO Title: HEAL Initiative: Developing Quantitative Imaging and Other Relevant Biomarkers of Myofascial Tissues for Clinical Pain Management
NOFO Number: RFA-AT-22-003
Summary:

Pain in the muscles and surrounding connective tissue (myofascial pain) is a significant health concern affecting hundreds of millions of Americans. Understanding and managing myofascial pain has been limited due to a lack of tools to help clinicians diagnose and treat this disorder. While past efforts to understand myofascial pain have focused on impairments in how connective tissues connect to other tissues in the body, this project will use a new imaging technique to study myofascial tissue physical properties, including how they move in the body and their structural stiffness. This research will identify an imaging biomarker to be used in a randomized controlled clinical trial to predict patient responses to a myofascial pain treatment.

1R61AT012309-01
Partners for Pain & Wellbeing Equity: A Randomized Trial of Community Supported Complementary and Integrative Health Self-Management for Back Pain Clinical Research in Pain Management Advancing Health Equity in Pain Management NCCIH UNIVERSITY OF MINNESOTA EVANS, RONI L; LENINGER, BRENT Minneapolis, MN 2022
NOFO Title: HEAL Initiative: Advancing Health Equity in Pain and Comorbidities (R61/R33 Clinical Trial Required)
NOFO Number: RFA-NS-22-002
Summary:

Back pain, including low back and neck pain, is one of the most prevalent and disabling pain disorders. Treatment requires ongoing self-management, but most healthcare systems do not support self-care and instead focus on costly, provider-dependent therapies that remain inaccessible to many Black and Hispanic Americans and individuals with less education and income. This project will address these health disparities by developing a personalized self-management treatment program that includes pain education, mindfulness, cognitive behavioral therapy, and exercise – and make it available in community settings.