Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Sort ascending Institution(s) Investigator(s) Location(s) Year Awarded
1R61NS129050-01
Integrating Nonpharmacologic Strategies for Pain with Inclusion, Respect, and Equity (INSPIRE): Tailored Digital Tools, Telehealth Coaching, and Primary Care Coordination Clinical Research in Pain Management Advancing Health Equity in Pain Management NINDS University of California, San Francisco SATTERFIELD, JASON M San Francisco, CA 2022
NOFO Title: HEAL Initiative: Advancing Health Equity in Pain Management (R61/R33 Clinical Trial Required)
NOFO Number: NS22-002
Summary:

There is a need to improve access to treatments and address the stigma, bias, and mistrust that harm and isolate people with chronic pain, especially those from ethnic and racial minority populations. The Integrating Nonpharmacologic Strategies for Pain with Inclusion, Respect, and Equity (INSPIRE) Chronic Pain (CP) intervention blends cognitive-behavioral therapy, physical therapy, mindfulness, and pain education, and is delivered by a trilingual mobile app and supported by a telehealth pain coach who coordinates with doctors. The coach will collect and summarize patient reports on pain, depression, anxiety, substance use, and social factors, and share them with healthcare providers. In this project, researchers will create the digital tool and coaching protocol, develop educational and implementation strategies for healthcare providers, and conduct a pilot test. They will then perform a randomized clinical trial to compare INSPIRE to current treatment, analyze its effects, and evaluate outcomes.

1R24NS132283-01
PURPOSE: Positively Uniting Researchers of Pain to Opine, Synthesize, and Engage Cross-Cutting Research Training the Next Generation of Researchers in HEAL NINDS NEUROVATIONS COVERSTONE, JACOB SUTTON Napa, CA 2022
NOFO Title: Emergency Awards: HEAL Initiative: Coordinating Center for National Pain Scientists Career Development (R24 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-22-060
Summary:

The Interagency Pain Research Coordinating Committee has identified a need for organized opportunities for early-stage pain researchers to meet and learn from more experienced pain researchers and mentors – who are exiting the field at a faster rate than they are being replaced. This project will create a coordinating center for early-stage pain researchers, with an online networking platform to encourage interactions and collaboration among these scientists. The research will also develop a training curriculum and make it accessible to NIH funded, early-stage pain scientists.

3R01NS102432-02S1
AIBP AND REGULATION OF NEUROPATHIC PAIN Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF CALIFORNIA, SAN DIEGO MILLER, YURY; YAKSH, TONY L. LA JOLLA, CA 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Persistent pain states arising from inflammatory conditions, such as in arthritis, diabetes, HIV, and chemotherapy, exhibit a common feature in the release of damage-associated molecular pattern molecules, which can activate toll-like receptor-4 (TLR4). Previous studies suggest that TLR4 is critical in mediating the transition from acute to persistent pain. TLR4 as well as other inflammatory receptors localize to lipid raft microdomains on the plasma membrane. We have found that the secreted apoA-I binding protein (AIBP) accelerates cholesterol removal, disrupts lipid rafts, prevents TLR4 dimerization, and inhibits microglia inflammatory responses. We propose that AIBP targets cholesterol removal to lipid rafts harboring activated TLR4. The aims of this proposal are to: 1) determine whether AIBP targets lipid rafts harboring activated TLR4; 2) test whether AIBP reduces glial activation and neuroinflammation in mouse models of neuropathic pain; and 3) identify the origin and function of endogenous AIBP in the spinal cord.

1R01DE029951-01
Targeting Endosomal Receptors for Treatment of Chronic Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS COLUMBIA UNIVERSITY HEALTH SCIENCES BUNNETT, NIGEL W; SCHMIDT, BRIAN L New York, NY 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Many non-opioid drugs target G Protein-Coupled Receptors (GPCRs), a family of proteins involved in many pathophysiological processes including pain, fail during clinical trials for unknown reasons. A recent study found GPCRs not only function at the surface of nerve cells but also within a cell compartment called the endosome, where their sustained activity drives pain. This study will build upon this finding and test whether the clinical failure of drugs targeting plasma membrane GPCRs is related to their inability to target and engage endomsomal GPCRs (eGPCRs). This study will use stimulus-responsive nanoparticles (NP) to encapsulate non-opioid drugs and selectively target eGPCR dyads to investigate how eGCPRs generate and regulate sustained pain signals in neuronal subcellular compartments. This study will also validate eGCPRs as therapeutic targets for treatment of chronic inflammatory, neuropathic and cancer pain. Using NPs to deliver non-opioid drugs, individually or in combinations, directly into specific compartments in nerve cells could be a potential strategy for new pain therapies.

1RF1NS113883-01
Sympathetic-mediated sensory neuron cluster firing as a novel therapeutic target for neuropathic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS JOHNS HOPKINS UNIVERSITY DONG, XINZHONG Baltimore, MD 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

An important component of neuropathic pain is spontaneous or ongoing pain, such as burning pain or intermittent paroxysms of sharp and shooting pain, which may result from abnormal spontaneous activity in sensory nerves. However, due to technical limitations, spontaneous activity in sensory neurons in vivo has not been well studied. Using in vivo imaging in genetically-modified mice, preliminary findings identified spontaneously-firing clusters of neurons formed within the dorsal root ganglia (DRG) after traumatic nerve injury that exhibits increased spontaneous pain behaviors. Furthermore, preliminary evidence has been collected that cluster firing may be related to abnormal sympathetic sprouting in the sensory ganglia. This project will test the hypothesis that cluster firing is triggered by abnormal sympathetic inputs to sensory neurons, and that it underpins spontaneous paroxysmal pain in neuropathic pain models. Findings from this project will identify potential novel therapeutic targets for the treatment of neuropathic pain.