Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded Sort descending
1UG3TR003149-01
hiPSC-based DRG Tissue Mimics on Multi-well Microelectrode Arrays as a Tissue Chip Model of Acute and Chronic Nociception Preclinical and Translational Research in Pain Management Translational Research to Advance Testing of Novel Drugs and Human Cell-Based Screening Platforms to Treat Pain and Opioid Use Disorder NCATS UNIVERSITY OF TEXAS DALLAS BLACK, BRYAN JAMES Dallas, TX 2019
NOFO Title: HEAL Initiative: Tissue Chips to Model Nociception, Addiction, and Overdose (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-TR-19-003
Summary:

Researchers will develop an innovative three-dimensional (3D) model of acute and chronic nociception using human induced pluripotent stem cell (hiPSC) sensory neurons and satellite glial cell surrogates. They will develop a tissue chip for modeling acute and chronic nociception based on 3D hiPSC-based dorsal root ganglion tissue mimics and a high-content, moderate-throughput microelectrode array. Researchers will demonstrate stable spontaneous and noxious stimulus-evoked behavior in response to thermal, chemical, and electrical stimulation challenges. They aim to demonstrate sensitivity to translational control via ligand receptor interactions between neuronal and non-neuronal cell types. They also will demonstrate the quantitative efficiency and preclinical efficacy of our system by detecting known ligand-based modulators of translational control and voltage-gated ion channel antagonists in a sensitized model of chronic nociception. Researchers will leverage the high-throughput nature of our tissue chip model to screen Food and Drug Administration–approved bioactive compounds.

1RF1NS113883-01
Sympathetic-mediated sensory neuron cluster firing as a novel therapeutic target for neuropathic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS JOHNS HOPKINS UNIVERSITY DONG, XINZHONG Baltimore, MD 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

An important component of neuropathic pain is spontaneous or ongoing pain, such as burning pain or intermittent paroxysms of sharp and shooting pain, which may result from abnormal spontaneous activity in sensory nerves. However, due to technical limitations, spontaneous activity in sensory neurons in vivo has not been well studied. Using in vivo imaging in genetically-modified mice, preliminary findings identified spontaneously-firing clusters of neurons formed within the dorsal root ganglia (DRG) after traumatic nerve injury that exhibits increased spontaneous pain behaviors. Furthermore, preliminary evidence has been collected that cluster firing may be related to abnormal sympathetic sprouting in the sensory ganglia. This project will test the hypothesis that cluster firing is triggered by abnormal sympathetic inputs to sensory neurons, and that it underpins spontaneous paroxysmal pain in neuropathic pain models. Findings from this project will identify potential novel therapeutic targets for the treatment of neuropathic pain.

1R41NS116784-01
Discovery of T-type Calcium Channel Antagonists from Multicomponent Reactions and Their Application in Paclitaxel-induced Peripheral Neuropathy Cross-Cutting Research Small Business Programs NINDS REGULONIX, LLC KHANNA, RAJESH Tucson, AZ 2019
NOFO Title: PHS 2017-02 Omnibus Solicitation of the NIH for Small Business Technology Transfer Grant Applications (Parent STTR [R41/R42])
NOFO Number: PA-17-303
Summary:

Chemotherapy-induced peripheral neuropathy (CIPN) is detected in 64% of cancer patients during all phases of cancer. CIPN can result in chemotherapy dose reduction or discontinuation, and can also have long-term effects on the quality of life. Taxanes (like Paclitaxel) may cause structural damage to peripheral nerves, resulting in aberrant somatosensory processing in the peripheral and/or central nervous system. Dorsal root ganglia (DRG) sensory neurons as well as neuronal cells in the spinal cord are key sites in which chemotherapy induced neurotoxicity occurs. T-type Ca2+ channels are critical determinants of increased neuronal excitability and neurotransmission accompanying persistent neuropathic pain. Though Cav3.2 has been targeted clinically with small molecule antagonists, no drugs targeting these channels have advanced to phase II human clinical trials. This proposal aims to explore multicomponent reaction products, for the rapid identification of potent and selective T-type Ca2+ channel antagonists. The work proposed here is the first step in developing non-opioid pain treatments for CIPN. The team anticipates success against paclitaxel-induced chronic pain will translate into other chronic pain types as well, but CIPN provides focus for early stage proof-of-concept.

1U44NS115632-01
Implantable Peripheral Nerve Stimulator for Treatment of Phantom Limb Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS RIPPLE, LLC MCDONNALL, DANIEL Salt Lake City, UT 2019
NOFO Title: HEAL Initiative: Translational Devices to Treat Pain (U44 Clinical Trial Optional)
NOFO Number: RFA-NS-19-017
Summary:

The research team will develop an implantable neural stimulation system to provide natural and intuitive sensation for prosthesis users. The nerve cuff technology meets the requirements for a sensory feedback system capable of providing consistent and controlled electrical stimulation. Coupled with a multichannel implantable stimulator, this electrode array will offer substantial improvement over existing options to treat phantom limb pain (PLP). In Phase I, researchers will finalize array architectures for evaluation in cadaver studies, complete integration of electrodes with our stimulator, conduct benchtop verification of electrical and mechanical performance, send implants for third-party evaluation of system biocompatibility, and complete a Good Laboratory Practice animal study to validate safety and efficacy. In Phase II, researchers will conduct a 5-subject clinical study to test the implantable stimulation system. Each unilateral prosthesis user will be implanted for one year as researchers evaluate the safety and efficacy of this implantable device to treat PLP.

1R61NS113316-01
Discovery and analytical validation of Inflammatory bio-signatures of the human pain experience Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS THE UNIVERSITY OF TEXAS HEALTH SCIENCE CENTER AT HOUSTON PROSSIN, ALAN RODNEY Houston, TX 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Postoperative pain is a major contributor to the current opioid epidemic. Novel objective measures capable of personalizing pain care will enhance medical precision in prevention and treatment of postoperative pain. This project seeks to discover and validate a novel biosignature of the human pain experience, based on underlying IL-1 family cytokine activity and associated brain endogenous opioid function, that is readily quantifiable and clinically translatable to prevention and treatment of postoperative pain states. Specific aims will assess whether the novel biosignature will predict 1) experimentally induced pain during an experimental nociceptive pain challenge; 2) postoperative pain states with accuracy >75%, accounting for a wide range of variance in the human pain experience; and 3) postoperative pain states in an expanded clinically enriched sample.

1UH3NS115631-01
Multisite adaptive brain stimulation for multidimensional treatment of refractory chronic pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS UNIVERSITY OF CALIFORNIA, SAN FRANCISCO SHIRVALKAR, PRASAD San Francisco, CA 2019
NOFO Title: HEAL Initiative: Clinical Devices to Treat Pain (UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-19-018
Summary:

The research team will develop stimulation control algorithms to treat chronic pain using a novel device that allows longitudinal intracranial signal recording in an ambulatory setting. Subjects with refractory chronic pain syndromes will undergo bilateral surgical implant of temporary electrodes in the thalamus, anterior cingulate, prefrontal cortex, insula, and amygdala to identify candidate biomarkers of pain and optimal stimulation parameters. Six patients will proceed to chronic implantation of “optimal” brain regions for long-term recording and stimulation. The team will first validate biomarkers of low- and high-pain states to define neural signals for pain prediction in individuals. They will then use these pain biomarkers to develop personalized closed-loop algorithms for deep-brain stimulation (DBS) and test the feasibility of closed-loop DBS for chronic pain in weekly blocks. Researchers will assess the efficacy of closed-loop DBS algorithms against traditional open-loop DBS or sham in a double-blinded cross-over trial and measure mechanisms of DBS tolerance.

1R44AR076885-01
Enhancing Physical Therapy: Noninvasive Brain Stimulation System for Treating Carpal Tunnel Syndrome Cross-Cutting Research Small Business Programs NIAMS HIGHLAND INSTRUMENTS, INC. WAGNER, TIMOTHY ANDREW; DIPIETRO, LAURA Cambridge, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Required)
NOFO Number: PA-18-573
Summary:

 Non-Invasive Brain Stimulation (NIBS) has been successfully applied for the treatment of chronic pain (CP) in some disease states, where treatment induced changes in brain activity revert maladaptive plasticity associated with the perception/sensation of CP [25-28]. However, the most common NIBS methods, e.g., transcranial direct current stimulation, have shown limited, if any, efficacy in treating neuropathic pain. It has been postulated that limitations in conventional NIBS techniques’ focality, penetration, and targeting control limit their therapeutic efficacy . Electrosonic Stimulation (ESStim™) is an improved NIBS modality that overcomes the limitations of other technologies by combining independently controlled electromagnetic and ultrasonic fields to focus and boost stimulation currents via tuned electromechanical coupling in neural tissue . This proposal is focused on evaluating whether our noninvasive ESStim system can effectively treat CP in carpal tunnel syndrome (CTS), both as a lone treatment and in conjunction with physical therapy (PT). Investigators hypothesize ESStim can be provided synergistically with PT, as both can encourage plasticity-dependent changes which could maximally improve a CTS patient’s pain free mobility. In parallel with the CTS treatments, the team will build multivariate linear and generalized linear regression models to predict the CTS patient outcomes related to pain, physical function, and psychosocial assessments as a function of baseline disease characteristics. The computational work will be used to develop an optimized CTS ESStim dosing model. 

1U24NS113846-01
Medical University of South Carolina Specialized Clinical Center of EPPIC-Net Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS MEDICAL UNIVERSITY OF SOUTH CAROLINA BORCKARDT, JEFFREY J (contact); BRADY, KATHLEEN T Charleston, SC 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trials Not Allowed)
NOFO Number: RFA-NS-19-025
Summary:

The Medical University of South Carolina (MUSC) Specialized Clinical Center (Hub) of the Early Phase Pain Investigation Clinical Network (EPPIC-Net) will provide a robust and readily accessible infrastructure for rapid implementation and performance of high-quality comprehensive studies of novel treatments for patients with a wide variety of pain conditions. The MUSC-Hub will harness multidisciplinary clinical, research, statistical, and data management expertise to provide the scientific leadership and infrastructure required to design and conduct multisite Phase II clinical trials, biomarker validation studies, and deep phenotyping of patient populations as part of the EPPIC-Net with the overall goal of accelerating the development of new therapies for patients with acute and/or chronic pain.

1R44NS113740-01
An Instrument to Assess the Functional Impact of Chronic Pain Cross-Cutting Research Small Business Programs NINDS BARRON ASSOCIATES, INC. CLARK, BRIAN R Charlottesville, VA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

The proposed Fast Track SBIR effort will develop and validate the reliable, low-cost KnowPain instrument. KnowPain will objectively and quantitatively assess the functional impact of chronic pain using measures derived from six degrees-of-freedom motion, heart rate, skin surface temperature, and skin conductivity collected via a specially designed, ergonomic wrist-worn biometric sensing instrument. The new assessment instrument will apply advanced psychometric methods to both physiologic and kinematic data to provide precise scores for functional impairment due to chronic pain. The assessment results will be presented to the clinician in an easy-to-understand report and will include longitudinal results, confidence estimates, and normative data to enable comparisons both within and between patients. The system will include provision to interface with electronic medical records. Accurate functional assessment is a crucial component in the effective treatment of chronic pain. The proposed approach will supplement existing methods for assessing patient function by providing novel and highly complementary information for a more complete (and often unobserved) picture of the impact of chronic pain on patient function. KnowPain measures will provide important data on the practical consequences of pain and on treatment efficacy. 

1UH3NS115118-01
Transcranial focused ultrasound for head and neck cancer pain. A pilot study Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS UNIVERSITY OF VIRGINIA ELIAS, WILLIAM JEFFREY Charlottesville, VA 2019
NOFO Title: HEAL Initiative: Clinical Devices to Treat Pain (UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-19-018
Summary:

Head and neck cancer is particularly susceptible to nociceptive and neuropathic pains because it is dense with sensitive anatomic structures and richly innervated. Transcranial magnetic resonance imaging–guided focused ultrasound (FUS) is a new stereotactic modality capable of delivering high-intensity energy through the intact human skull with submillimeter precision. This clinical trial will target the spinothalamic and spinoreticular pain circuits by unilateral FUS mesencephalotomy, an effective procedure for cancer pain but limited by the accuracy of its era. The primary aim is to assess the safety and preliminary effectiveness in six head and neck cancer patients with opioid-resistant pain. Researchers will investigate the potential mechanism of pain relief as the mesencephalotomy target involves the confluence of the ascending and descending pain systems. Aims 2 and 3 will investigate these systems with electrophysiology specific for the spinothalamic tract and carfentenil positron emission tomography imaging that measures the brain’s endogenous opioids.

1U24AR076730-01
Back Pain Consortium (BACPAC) Research Program Data Integration, Algorithm Development and Operations Management Center Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIV OF NORTH CAROLINA CHAPEL HILL ANSTROM, KEVIN J (contact); IVANOVA, ANASTASIA ; LAVANGE, LISA Chapel Hill, NC 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Data Integration, Algorithm Development and Operations Management Center (U24 Clinical Trial Not Allowed)
NOFO Number: RFA-AR-19-027
Summary:

The BACPAC Research Program’s Data Integration, Algorithm Development, and Operations Management Center (DAC) will bring cohesion to research performed by the participating Mechanistic Research Centers, Technology Research Sites, and Phase 2 Clinical Trials Centers. DAC Investigators will share their vision and provide scientific leadership and organizational support to the BACPAC Consortium. The research plan consists of supporting design and conduct of clinical trials with precision interventions that focus on identifying the best treatments for individual patients. The DAC will enhance collaboration and research progress with experienced leadership, innovative design and analysis methodologies, comprehensive research operations support, a state-of-the-art data management and integration system, and superior administrative support. This integrated structure will set the stage for technology assessments, solicitation of patient input and utilities, and the evaluation of high-impact interventions through the innovative design and sound execution of clinical trials, leading to effective personalized treatment approaches for patients with chronic lower back pain.

1U44NS115111-01
High-Resolution, Spinal Cord Stimulation for Non-Opioid Treatment of Neuropathic Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS MICRO-LEADS, INC. MCLAUGHLIN, BRYAN L Somerville, MA 2019
NOFO Title: HEAL Initiative: Translational Devices to Treat Pain (U44 Clinical Trial Optional)
NOFO Number: RFA-NS-19-017
Summary:

The research team will develop HD64—a high-resolution, 64-channel spinal cord stimulation therapy to provide more pain relief for those suffering from chronic neuropathic pain and opioid dependence. HD64 provides an ultra-thin conformal blanket of stimulation contacts across the width of the spinal cord and enables more precise targeting of the lateral structures of the spinal cord to enhance pain relief. A cadaveric pilot run followed by a non-significant risk intraoperative study will be performed to inform the design parameters of HD64 arrays. The study will evaluate activation of medial and lateral spinal targets. At the end of Phase 1, the clinical feasibility of HD64 surgical leads will be established. In Phase 2, researchers will develop an external active lead pulse generator and charger. They will perform an early feasibility study human trial using active HD64 and mechanical and electrical design verification testing and chronic safety studies in large animals.

1U24NS113800-01
University of Florida Early Phase Pain Investigation Clinical Center Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS UNIVERSITY OF FLORIDA PRZKORA, RENE (contact); TIGHE, PATRICK J Gainesville, FL 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trials Not Allowed)
NOFO Number: RFA-NS-19-025
Summary:

A major barrier to developing new pain treatments has been the absence of infrastructure to facilitate well-designed and carefully conducted clinical trials to test the efficacy of promising treatments. The UF Health Specialized Clinical Center Network will include UF Health as “hub” and statewide partners serving as spokes as part of the EPPIC Network. The University of Florida (UF) has the capability to reach more than 50% of the population of Florida, the third most populous state of the United States, and the capacity to successfully enroll patients with varying pain conditions into clinical trial protocols through its hub and spoke infrastructure as part of EPPIC-Net.

3R44TR001326-03S1
Automation and validation of human on a chip systems for drug discovery Cross-Cutting Research Small Business Programs NCATS HESPEROS, LLC SHULER, MICHAEL L; HICKMAN, JAMES J Orlando, FL 2019
NOFO Title: PHS 2017-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-17-302
Summary:

Hesperos uses microphysiological systems in combination with functional readouts to establish systems capable of analysis of chemicals and drug candidates for toxicity and efficacy during pre-clinical testing, with initial emphasis on predictive toxicity. The team constructed physiological systems that represent cardiac, muscle and liver function, and demonstrated a multi-organ functional cardiac/liver module for toxicity studies as well as metabolic activity evaluations. In addition, the team demonstrated multi-organ toxicity in a 4-organ system composed of neuronal, cardiac, liver and muscle components. While much is known about the cells and neural circuitry regulating pain modulation there is limited knowledge regarding the precise mechanism by which peripheral and spinal level antinociceptive drugs function, and no available human-based model reproducing this part of the pain pathway. The ascending pain modulatory pathways provide a well characterized neural architecture for investigating pain regulatory physiology. In this project, the research team propose a human-on-a-chip neuron tri-culture system composed of nociceptive neurons, GABAergic interneurons and glutamatergic dorsal projection neurons (DPN) integrated with a MEMS construct. Using this model, investigators will interrogate pain signaling physiology at three levels, 1) at the site of origin by targeting nociceptive neurons with pain modulating compounds including noxious stimuli and inflammatory mediators, 2) at the inhibitory GABAergic interneuron, and 3) at the ascending spinal level by targeting glutamatergic DPNs. These circuits will be integrated utilizing expertise in patterning neurons as well as integration with BioMEMs devices. This system provides scientists with a better understanding of ascending pain pathway physiology and enable clinicians to consider alternative indications for treating pain at peripheral and spinal levels. 

1U24NS115714-01
California Clinical and Translational Pain Research Consortium Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS UNIVERSITY OF CALIFORNIA, SAN DIEGO WALLACE, MARK S San Diego, CA 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-036
Summary:

The California Clinical and Translational Pain Research Consortium (CCTPRC) consists of four University of California academic medical centers with considerable experience in pain management clinical trials, phenotyping, and biomarker validation. The network will leverage solid existing Clinical and Translational Science Award (CTSA) resources to make clinical trial execution efficient and rapid. The hub will be located at the University of California, San Diego, with spokes located on the other three campuses to provide maximum flexibility, ready to accommodate studies in a variety of pain conditions and provide successful recruitment and high-quality data collection.

1UH2AR076723-01
Wearable nanocomposite sensor system for diagnosing mechanical sources of low back pain and guiding rehabilitation Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS BRIGHAM YOUNG UNIVERSITY BOWDEN, ANTON E Provo, UT 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

Chronic low back pain (cLBP) is recurrent and often nonresponsive to conservative treatments. Biomechanists, physical therapists, and surgeons each utilize a variety of tools and techniques to assess and interpret qualitative movement changes to understand potential mechanical and neurological sources of low back pain and as critical elements in their treatment paradigm. However, objectively characterizing and communicating this information is currently impossible, since clinically feasible (i.e., cost-effective, objective, and accurate) tools and quantitative benchmarks do not exist. This research addresses the challenge to improve cLBP outcomes through the use of unique, inexpensive, screen-printable, elastomer-based, nanocomposite, piezoresponsive sensors, which will be integrated into a SPInal Nanosensor Environment (SPINE) sense system to measure lumbar kinematics and provide an objective, quantitative platform for diagnosis, monitoring, and follow-up assessment of cLBP.

5R01DA038645-05
KOR AGONIST FUNCTIONAL SELECTIVITY IN PERIPHERAL SENSORY NEURONS Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDA UNIVERSITY OF TEXAS HLTH SCIENCE CENTER CLARKE, WILLIAM P; BERG, KELLY ANN SAN ANTONIO, TX 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Functional selectivity is a term used to describe the ability of drugs to differentially regulate the activity of multiple signaling cascades coupled to the receptor. The underlying mechanism for functional selectivity is based upon the formation of ligand-specific receptor conformations that are dependent upon ligand structure. Functional selectivity has the potential to revitalize the drug discovery/development process. Ligands with high efficacy for specific signaling pathways (or specific patterns of signaling) that mediate beneficial effects, and with minimal activity at pathways that lead to adverse effects, are expected to have improved therapeutic efficacy. We propose to demonstrate that ligand efficacy for specific signaling pathways associated with antinociception can be finely tuned by structural modifications to a ligand. We propose to use U50,488 and Salvinorin-A (Sal-A) as scaffolds to develop functionally selective analogs that maintain high efficacy for signaling pathways that lead to antinociception and minimize activity toward anti-antinociceptive signaling pathways.

1U24NS115691-01
UPENN HEAL - Pain Clinical Trial Network Specialized Clinical Center Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS UNIVERSITY OF PENNSYLVANIA FARRAR, JOHN T (contact); ASHBURN, MICHAEL ALAN Philadelphia, PA 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-036
Summary:

EPPIC-Net will provide a robust and readily accessible infrastructure for the rapid implementation and performance of high-quality comprehensive studies of patients with well-defined pain conditions, and the rapid design and performance of high-quality Phase 2 clinical trials to test promising novel therapeutics for pain. Using the Hospital of the University of Pennsylvania as a hub and five additional centers that are part of the UPenn Health System and the Children’s Hospital of Philadelphia (CHOP) as spokes, studies will be conducted as designed by the expertise of the EPPIC Network, which intends to bring intense focus to relatively small numbers of patients with clinically well-defined pain conditions and high unmet therapeutic needs. The UPenn Specialized Clinical Center (SCC) will test novel, efficient study designs including adaptive and platform designs, validation studies of biomarkers, and biomarker-informed proof of principle or target engagement studies in Phase 2 trials of interventions from academic and industry partners.

1U18EB029354-01
Treating pain in sickle cell disease by means of focused ultrasound neuromodulation Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB CARNEGIE-MELLON UNIVERSITY HE, BIN Pittsburgh, PA 2019
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

Researchers will develop a novel transcranial focused ultrasound (tFUS) device for pain treatment and establish its effectiveness for treating sickle cell disease (SCD) pain in humanized mice. The tFUS will target the specific cortical regions involved in SCD pain using a novel non-invasive electrophysiological source imaging technique. The project’s goals have several aims. Aim 1: Develop tFUS devices for pain treatment. The mouse-scale system will be designed to validate the therapeutic effect of stimulating the anticipated cortical targets. This will inform development of the simpler human-scale system, which will use models of the skull to select cost-effective transducers to reach the targets. Aim 2: Evaluate tFUS effectiveness and optimize stimulation parameters in an SCD mice model. Researchers will determine effective tFUS parameters to chronically reduce SCD pain in mice and validate this using behavioral measures. Aim 3: Use electrophysiological source imaging to target and trigger closed-loop tFUS in animal models. This aim also includes performing safety studies to prepare for human trials. The project will develop a transformative, noninvasive tFUS device to effectively and safely treat pain in SCD. 

1UG3HD102038-01
Effectiveness of an mHealth psychosocial intervention to prevent transition from acute to chronic postsurgical pain in adolescents Clinical Research in Pain Management Pain Management Effectiveness Research Network (ERN) NICHD SEATTLE CHILDREN'S HOSPITAL RABBITTS, JENNIFER (contact); PALERMO, TONYA M Seattle, WA 2019
NOFO Title: HEAL Initiative: Pain Management Effectiveness Research Network: Clinical Trial Planning and Implementation Cooperative Agreement (UG3/UH3 Clinical Trial Required)
NOFO Number: RFA-NS-19-021
Summary:

The study team developed an mHealth pain self-management intervention for the perioperative period (SurgeryPal) to target psychosocial risk factors and teach pain self-management skills. The goal of this proposal is to establish the effectiveness of the SurgeryPal psychosocial intervention to improve clinically meaningful outcomes in adolescents undergoing major musculoskeletal surgery, and to identify the optimal timing of intervention delivery. The study team will plan for the efficient implementation of a multisite randomized clinical trial at 25 centers in 500 youth ages 12–18 years undergoing spinal fusion surgery and their parents. Participants will be randomized to receive SurgeryPal or attention control condition during the preoperative and postoperative phases. Self-reported pain severity and interference and secondary outcomes will be assessed at baseline, 3-, and 6-months. If effective, this scalable, low cost intervention will allow broad implementation to prevent chronic postsurgical pain in youth.

1U44NS115732-01
Selective Kv7.2/3 activators for the treatment of neuropathic pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS KNOPP BIOSCIENCES, LLC SIGNORE, ARMANDO (contact); RESNICK, LYNN Pittsburgh, PA 2019
NOFO Title: HEAL Initiative: Optimization of Non-addictive Therapies [Small Molecules and Biologics] to Treat Pain
NOFO Number: RFA-NS-19-020
Summary:

The development of non-addictive pain therapeutics can help counter opioid addiction and benefit patients, including those who suffer from neuropathic pain, in particular diabetic neuropathic pain (DNP). This project’s goal is to develop a safe, efficacious, and non-addictive small-molecule drug that activates Kv7 voltage-gated potassium channels to address overactive neuronal activity in DNP. Researchers will discover Kv7 activators that favor Kv7 isoforms altered in DNP and found in dorsal root ganglia, decrease off-target side effects observed with the use of earlier non-biased Kv7 activators, and optimize the absorption, distribution, metabolism, excretion, and toxicity profiles of these activators. This screening paradigm is intended to establish a clinic-ready, well-tolerated, and widely effective product to treat neuropathic pain.

1UH2AR076731-01
Development, Evaluation and Translation of Robotic Apparel for Alleviating Low Back Pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS HARVARD UNIVERSITY WALSH, CONOR Cambridge, MA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

A primary factor contributing to acute or recurrent back injury is overexertion via excessive peak and cumulative forces on the back and the primary factors involved in the progression of acute low back injury to chronic low back pain (cLBP) include maladaptive motor control strategies, muscle hyperactivity, reduced movement variability, and the development of fear cognitions. This project will focus on the development of robotic apparel with integrated biofeedback components that can reduce exertion; encourage safe, varied movement strategies; and promote recovery. Robotic apparel will be capable of providing supportive forces to the back and hip joints through adaptive control algorithms that respond to dynamic movements and becoming fully transparent when assistance is no longer needed. This technology can be used to prevent cLBP caused by overexertion and provide a new tool to physical therapists and the clinical community to enhance rehabilitation programs.

1R01NS116694-01
Validation of Spinal Neurotensin Receptor 2 as an Analgesic Target Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF ARIZONA PATWARDHAN, AMOL M Tuscon, AZ 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Epidural/spinal administration of analgesics such as opioids, ziconotide and local anesthetics have profound efficacy in some of the most intractable pain conditions such as severe neuropathic pain after failed back surgery, cancer pain and post-operative pain after major abdominal/thoracic surgeries. Contulakin G (CGX) is a snail venom derived peptide that has homology with mammalian neurotensin and was shown to be safe in humans in preliminary studies. A small pilot study demonstrated CGX?s analgesic effect in some patients with spinal cord injury-associated pain. Preliminary findings from mechanistic studies in rodents identified neurotensin receptor 2 (NTSR2) as the mediator for analgesic effects of CGX. This project aims to validate spinal NTSR2 as an analgesic target utilizing three species (rat, mice and human), and two pain models (neuropathic pain and post-surgical pain). The project will utilize pharmacological and gene editing tools such as CRISPR-Cas9 and will include assessment of both sensory and affective measures of pain. A two-site parallel confirmation study is designed based on multisite clinical trials to further authenticate spinal NTSR2 as an analgesic target. Successful completion of this project could lead to the development of a non-opioid spinal analgesic that has high translational potential.

3R01AR064251-07S1
Osteoarthritis Progression And Sensory Pathway Alterations Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIAMS RUSH UNIVERSITY MEDICAL CENTER MALFAIT, ANNE-MARIE Chicago, IL 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

There is an urgent need for new non-opioid therapeutic agents that treat the pain associated with Osteoarthritis (OA) ? a chronic, progressive disease that leads to pain in weightbearing joints, pain during movement, and pain at rest. This project will refine techniques for targeting several proteins expressed in sensory neurons associated with OA pain, with the goal of testing the potential of these proteins to serve as targets for development of effective, non-opioid painkillers.

1R01NS116759-01
Validating ASCT2 for the Treatment of Chronic Postsurgical Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF MARYLAND BALTIMORE MELEMEDJIAN, OHANNES KEVORK Baltimore, MD 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Pain associated with surgery is experienced by millions of patients every year. Although post-surgical pain usually resolves as the surgical site heals, up to half of the patients develop chronic pain after surgery. Opioids remain the mainstay treatment for post-surgical pain which are fraught with serious side-effects and abuse liabilities. The endogenous mechanism that leads to the resolution of post-surgical pain remain unclear, specifically the effects of surgery on the metabolism of sensory neurons and how those changes influence the resolution of post-surgical pain are not known. Preliminary findings suggest that surgical trauma suppresses pyruvate oxidation while increased glutamine catabolism was associated with the resolution of post-surgical pain. This project will test the hypothesis that tissue incision and surgery disrupt the expression of the glutamine transporter ASCT2, which then prevents the resolution of post-incisional pain and aims to validate ASCT2 as a therapeutic target. This project will also employ pharmacological, genetic and animal pain model studies test a novel RNA expression-based strategy to enhance ASCT2 expression in DRG sensory neurons and alleviate postoperative pain in animal model systems. Successful completion of this project would validate ASCT2 as a novel endogenous non-opioid and non-addictive mechanism-based target for the resolution of postoperative pain.