Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded Sort ascending
1R01CA249939-01
Identification of Novel Targets for the Treatment of Chemotherapy-Induced Painful Peripheral Neuropathy Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF MARYLAND BALTIMORE MELEMEDJIAN, OHANNES KEVORK Baltimore, MD 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Chemotherapy-induced painful peripheral neuropathy (CIPN) is the most common toxicity associated with widely used chemotherapeutics. CIPN accounts for significant dose reductions and/or discontinuation of these life-saving treatments. Unfortunately CIPN can also persist in cancer-survivors, adversely affecting their quality of life. CIPN is not well-managed with existing pain therapeutics. Recent preliminary findings suggest that the transcription factor hypoxia-inducible factor alpha (HIF1A) is the target for the chemotherapeutic bortezomib, a proteasome inhibitor. This project will test the hypothesis that bortezomib chemotherapy-induced expression of HIF1A, PDHK1 and LDHA constitute an altered metabolic state known as aerobic glycolysis (AG) that leads to the initiation and maintenance of peripheral neuropathy and pain using a novel tumor-bearing animal model of CIPN. This project aims to validate HIF1A as a therapeutic target for the prevention of CIPN, as well as validate PDHK1 and LDHA as non-opioid therapeutic targets for chronic or established CIPN in animal models.

3R35NS105092-03S1
The biophysics of skin-neuron sensory tactile organs and their sensitivity to mechanical and chemical stress Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS STANFORD UNIVERSITY GOODMAN, MIRIAM B Palo Alto, CA 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

This project will establish a rapid research pipeline for linking plant-derived compounds to nociception (pain) and to G Protein-Coupled Receptors (GPCRs) and ion channels in the druggable human genome. As more than 80% of these membrane proteins are conserved in the C. elegans nematodes, the study will screen for compounds and genes affecting nociception as well as to identify novel ligand-receptor pairs using this model organism. The study will test which understudied GPCRs and ion channels are involved in nociception as well as attraction or repulsion behaviors. This research has the potential to reveal novel ligand-receptor pairs that could serve as new entry points for improved or alternative pain treatments.

3UG1CA189824-07S2
Wake Forest NCORP Research Base Clinical Research in Pain Management Pain Management Effectiveness Research Network (ERN) NCATS WAKE FOREST UNIVERSITY HEALTH SCIENCES LESSER, GLENN J Winston-Salem, NC 2020
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for Administrative Supplements to Promote Training in Clinical Research on Pain (Admin Supp ? Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-044
Summary:

Pain is one of the most common symptoms in cancer patients and one least likely to be adequately treated. It is particularly common in advanced cancer, affecting an estimated 64% of patients with advanced disease. Pain treatment guidelines state patients should have access to behavioral pain interventions that educate them about pain and teach them skills for managing it. The parent grant will evaluate the effectiveness of an evidence based pain management intervention called ?Pain Coping Skills Training? in a web based format for patients with advanced cancer. This supplement will provide support for a training opportunity that aligns with the goals of the parent grant and includes community outreach and engaging underserved populations in clinical research.

1R01AR077890-01
Validation of Novel Target for OA Treatment Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF ILLINOIS AT CHICAGO SAMPEN, HEE-JEONG IM; LASCELLES, DUNCAN Chicago, IL 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Osteoarthritis (OA) is the most common form of arthritis and a leading cause of pain and disability. Current challenges of managing OA are that there is no OA disease-modifying drug available, there are few effective treatment strategies, and there is an over-reliance on the use of opioids to manage OA-related joint pain. This project aims to validate vascular endothelial growth factor receptors 1 and 2 (VEGFR 1 receptor = Flt1) and (VEGFR 2 receptor = Flk1) as novel therapeutic targets for OA. This is based on a hypothesis that blocking these two specific receptors of VEGF will inhibit cartilage tissue degeneration and alleviate pain symptoms. This study will test the role of VEGFR-1 and -2 in multiple OA animal models using multiple available VEGF inhibitor molecules. The findings from these studies will develop a rationale for future clinical trials to target VEGFR-1 and -2 for OA patients and develop a novel non-addictive treatment for both joint pain and OA pathology.

3R01AT010757-02S1
The study of Gpr149 in nociception and the peripheral action of minor cannabinoids Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NCCIH UNIVERSITY OF CALIFORNIA, SAN FRANCISCO HELLMAN, JUDITH San Francisco, CA 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

The cannabis plant contains many active compounds known collectively as cannabinoids that have been shown to possess analgesic and anti-inflammatory properties. These compounds exert their biological activity, in part, through the cannabinoid receptor. The cannabinoid receptor is a member of a class of proteins known as G-protein coupled receptors (GPCRs). This study will test whether a GPCR with unknown biological function, called Gpr149, has a role in the activity of cannabinoids. The study will identify and characterize Gpr149 expression in mouse cells, and deeply characterize the action of minor cannabinoids, endocannabinoids and products of inflammation to modulate Gpr149. This research will provide insight into the analgesic and anti-inflammatory action of minor cannabinoids and into the role of Gpr149 in nociception and the sensitization of nociceptors to inflammatory mediators.

1UH2AR076723-01
Wearable nanocomposite sensor system for diagnosing mechanical sources of low back pain and guiding rehabilitation Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS BRIGHAM YOUNG UNIVERSITY BOWDEN, ANTON E Provo, UT 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

Chronic low back pain (cLBP) is recurrent and often nonresponsive to conservative treatments. Biomechanists, physical therapists, and surgeons each utilize a variety of tools and techniques to assess and interpret qualitative movement changes to understand potential mechanical and neurological sources of low back pain and as critical elements in their treatment paradigm. However, objectively characterizing and communicating this information is currently impossible, since clinically feasible (i.e., cost-effective, objective, and accurate) tools and quantitative benchmarks do not exist. This research addresses the challenge to improve cLBP outcomes through the use of unique, inexpensive, screen-printable, elastomer-based, nanocomposite, piezoresponsive sensors, which will be integrated into a SPInal Nanosensor Environment (SPINE) sense system to measure lumbar kinematics and provide an objective, quantitative platform for diagnosis, monitoring, and follow-up assessment of cLBP.

5R01DA038645-05
KOR AGONIST FUNCTIONAL SELECTIVITY IN PERIPHERAL SENSORY NEURONS Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDA UNIVERSITY OF TEXAS HLTH SCIENCE CENTER CLARKE, WILLIAM P; BERG, KELLY ANN SAN ANTONIO, TX 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Functional selectivity is a term used to describe the ability of drugs to differentially regulate the activity of multiple signaling cascades coupled to the receptor. The underlying mechanism for functional selectivity is based upon the formation of ligand-specific receptor conformations that are dependent upon ligand structure. Functional selectivity has the potential to revitalize the drug discovery/development process. Ligands with high efficacy for specific signaling pathways (or specific patterns of signaling) that mediate beneficial effects, and with minimal activity at pathways that lead to adverse effects, are expected to have improved therapeutic efficacy. We propose to demonstrate that ligand efficacy for specific signaling pathways associated with antinociception can be finely tuned by structural modifications to a ligand. We propose to use U50,488 and Salvinorin-A (Sal-A) as scaffolds to develop functionally selective analogs that maintain high efficacy for signaling pathways that lead to antinociception and minimize activity toward anti-antinociceptive signaling pathways.

1U24NS115691-01
UPENN HEAL - Pain Clinical Trial Network Specialized Clinical Center Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS UNIVERSITY OF PENNSYLVANIA FARRAR, JOHN T (contact); ASHBURN, MICHAEL ALAN Philadelphia, PA 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-036
Summary:

EPPIC-Net will provide a robust and readily accessible infrastructure for the rapid implementation and performance of high-quality comprehensive studies of patients with well-defined pain conditions, and the rapid design and performance of high-quality Phase 2 clinical trials to test promising novel therapeutics for pain. Using the Hospital of the University of Pennsylvania as a hub and five additional centers that are part of the UPenn Health System and the Children’s Hospital of Philadelphia (CHOP) as spokes, studies will be conducted as designed by the expertise of the EPPIC Network, which intends to bring intense focus to relatively small numbers of patients with clinically well-defined pain conditions and high unmet therapeutic needs. The UPenn Specialized Clinical Center (SCC) will test novel, efficient study designs including adaptive and platform designs, validation studies of biomarkers, and biomarker-informed proof of principle or target engagement studies in Phase 2 trials of interventions from academic and industry partners.

1U18EB029354-01
Treating pain in sickle cell disease by means of focused ultrasound neuromodulation Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB CARNEGIE-MELLON UNIVERSITY HE, BIN Pittsburgh, PA 2019
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

Researchers will develop a novel transcranial focused ultrasound (tFUS) device for pain treatment and establish its effectiveness for treating sickle cell disease (SCD) pain in humanized mice. The tFUS will target the specific cortical regions involved in SCD pain using a novel non-invasive electrophysiological source imaging technique. The project’s goals have several aims. Aim 1: Develop tFUS devices for pain treatment. The mouse-scale system will be designed to validate the therapeutic effect of stimulating the anticipated cortical targets. This will inform development of the simpler human-scale system, which will use models of the skull to select cost-effective transducers to reach the targets. Aim 2: Evaluate tFUS effectiveness and optimize stimulation parameters in an SCD mice model. Researchers will determine effective tFUS parameters to chronically reduce SCD pain in mice and validate this using behavioral measures. Aim 3: Use electrophysiological source imaging to target and trigger closed-loop tFUS in animal models. This aim also includes performing safety studies to prepare for human trials. The project will develop a transformative, noninvasive tFUS device to effectively and safely treat pain in SCD. 

1UG3HD102038-01
Effectiveness of an mHealth psychosocial intervention to prevent transition from acute to chronic postsurgical pain in adolescents Clinical Research in Pain Management Pain Management Effectiveness Research Network (ERN) NICHD SEATTLE CHILDREN'S HOSPITAL RABBITTS, JENNIFER (contact); PALERMO, TONYA M Seattle, WA 2019
NOFO Title: HEAL Initiative: Pain Management Effectiveness Research Network: Clinical Trial Planning and Implementation Cooperative Agreement (UG3/UH3 Clinical Trial Required)
NOFO Number: RFA-NS-19-021
Summary:

The study team developed an mHealth pain self-management intervention for the perioperative period (SurgeryPal) to target psychosocial risk factors and teach pain self-management skills. The goal of this proposal is to establish the effectiveness of the SurgeryPal psychosocial intervention to improve clinically meaningful outcomes in adolescents undergoing major musculoskeletal surgery, and to identify the optimal timing of intervention delivery. The study team will plan for the efficient implementation of a multisite randomized clinical trial at 25 centers in 500 youth ages 12–18 years undergoing spinal fusion surgery and their parents. Participants will be randomized to receive SurgeryPal or attention control condition during the preoperative and postoperative phases. Self-reported pain severity and interference and secondary outcomes will be assessed at baseline, 3-, and 6-months. If effective, this scalable, low cost intervention will allow broad implementation to prevent chronic postsurgical pain in youth.

1U44NS115732-01
Selective Kv7.2/3 activators for the treatment of neuropathic pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS KNOPP BIOSCIENCES, LLC SIGNORE, ARMANDO (contact); RESNICK, LYNN Pittsburgh, PA 2019
NOFO Title: HEAL Initiative: Optimization of Non-addictive Therapies [Small Molecules and Biologics] to Treat Pain
NOFO Number: RFA-NS-19-020
Summary:

The development of non-addictive pain therapeutics can help counter opioid addiction and benefit patients, including those who suffer from neuropathic pain, in particular diabetic neuropathic pain (DNP). This project’s goal is to develop a safe, efficacious, and non-addictive small-molecule drug that activates Kv7 voltage-gated potassium channels to address overactive neuronal activity in DNP. Researchers will discover Kv7 activators that favor Kv7 isoforms altered in DNP and found in dorsal root ganglia, decrease off-target side effects observed with the use of earlier non-biased Kv7 activators, and optimize the absorption, distribution, metabolism, excretion, and toxicity profiles of these activators. This screening paradigm is intended to establish a clinic-ready, well-tolerated, and widely effective product to treat neuropathic pain.

1UH2AR076731-01
Development, Evaluation and Translation of Robotic Apparel for Alleviating Low Back Pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS HARVARD UNIVERSITY WALSH, CONOR Cambridge, MA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

A primary factor contributing to acute or recurrent back injury is overexertion via excessive peak and cumulative forces on the back and the primary factors involved in the progression of acute low back injury to chronic low back pain (cLBP) include maladaptive motor control strategies, muscle hyperactivity, reduced movement variability, and the development of fear cognitions. This project will focus on the development of robotic apparel with integrated biofeedback components that can reduce exertion; encourage safe, varied movement strategies; and promote recovery. Robotic apparel will be capable of providing supportive forces to the back and hip joints through adaptive control algorithms that respond to dynamic movements and becoming fully transparent when assistance is no longer needed. This technology can be used to prevent cLBP caused by overexertion and provide a new tool to physical therapists and the clinical community to enhance rehabilitation programs.

1U19AR076734-01
University of Michigan BACPAC Mechanistic Research Center Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF MICHIGAN AT ANN ARBOR CLAUW, DANIEL J (contact); HASSETT, AFTON L Ann Arbor, MI 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program: Mechanistic Research Centers (U19 Clinical Trial Optional)
NOFO Number: RFA-AR-19-026
Summary:

The University of Michigan (UM) will lead a Mechanistic Research Center (MRC) as part of the broader BACPAC initiative that will take patients with chronic low back pain (cLBP) and use a patient-centric, SMART design study to follow these individuals longitudinally as they try several different evidence-based therapies while mechanistic studies are overlaid to draw crucial inferences about what treatments will work in what patient endotypes. Interventional Response Phenotyping describes the need in any precision medicine initiative to phenotype participants based on what therapies they do and do not respond to so that one can later link mechanistically distinct disease endophenotypes with those who preferentially respond to therapies targeting those mechanisms.

1U24NS113850-01
Clinical Coordinating Center for the Health Initiative in Early Phase Pain Investigation Clinical Network Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS MASSACHUSETTS GENERAL HOSPITAL FAVA, MAURIZIO (contact); EDWARDS, ROBERT R; RATHMELL, JAMES P Boston, MA 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Clinical Coordinating Center (U24 Clinical Trials Not Allowed)
NOFO Number: RFA-NS-19-023
Summary:

The objective of the Early Phase Pain Investigation Clinical Network (EPPIC-Net) and EPPIC- Net initiatives is to rapidly and efficiently translate advances in the neurobiology of pain into treatments for people with chronic and acute pain, conditions associated with a significant burden to both patients and society. The Clinical Coordinating Center (CCC) for EPPIC-Net will promote and facilitate, from initial conception through final analysis, clinical trials in adult and pediatric populations with acute or chronic pain by providing efficient methodological, organizational, and logistical support. The EPPIC-Net-CCC will adopt and establish processes aimed at dramatically increasing the efficiency of multicenter clinical trials, improving the overall quality of clinical trials, promoting patient recruitment and retention as well as increasing the number of clinical investigators and research staff well trained and passionate about leading and conducting multicenter clinical trials.

1R61NS113329-01
Discovery of Biomarker Signatures Prognostic for Neuropathic Pain after Acute Spinal Cord Injury Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS UNIVERSITY OF TEXAS HLTH SCI CTR HOUSTON HERGENROEDER, GEORGENE W Houston, TX 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Debilitating neuropathic pain occurs in 40 percent to 70 percent of people who suffer from spinal cord injury (SCI). There are no distinguishing characteristics to identify who will develop neuropathic pain. The objective of this research is to develop a biomarker signature prognostic of SCI-induced neuropathic pain (NP). The aims of the project are to (1) identify autoantibodies in plasma samples from acute SCI patients to CNS autoantigens and determine the relationship between autoantibodies levels to the development of NP, (2) identify the autoantibody combination with maximal prognostic accuracy for the development of NP at six months after SCI, and (3) develop and optimize an assay to simultaneously measure several autoantibodies and independently validate the prognostic efficacy for NP using plasma samples collected prospectively. Establishing a panel will refine the prognostic value of these autoantibodies as biomarkers to detect who are vulnerable to NP and may be used to for development of nonaddictive pain therapeutics.

3UG1CA189824-06S1
Implementing and Evaluating mHealth Pain Coping Skills Training Interventions to Improve Self-Management of Chronic Pain in Cancer Survivors in “Real World” Clinical Practice Setting Clinical Research in Pain Management Pain Management Effectiveness Research Network (ERN) NCI Wake Forest NCORP Research Base Lesser, Glenn Winston-Salem, NC 2019
NOFO Title: NCI Community Oncology Research Program (NCORP) Research Bases (UG1 Clinical Trial Required)
NOFO Number: RFA-CA-18-015
Summary:

Pain Coping Skills Training (PCST) uses a cognitive behavioral therapy (CBT) approach to teach patients cognitive and behavioral coping skills shown to reduce pain and pain interference (e.g., relaxation, distraction, cognitive restructuring, activity pacing). Randomized controlled trials show that PCST and similar CBT-based interventions, when delivered in a traditional in-person format, can improve pain and functioning in people with cancer and other conditions. Yet these interventions are underused in clinical care due to barriers such as high resource costs, a shortage of therapists trained to deliver them, and travel requirements for patients. This trial aims to deliver evidence-based behavioral pain interventions such as PCST with methods capable of overcoming barriers currently limiting patient access. This will be investigated using a two-arm trial comparing pain relief with the following interventions: painTRAINER in clinic with eight web-based follow-up sessions; enhanced usual care.

1U01DK123786-01
Randomized ESRD Trial COmparing CBT alone VERsus with buprenorphine (RECOVER) Clinical Research in Pain Management Integrated Approach to Pain and Opioid Use in Hemodialysis Patients NIDDK UNIVERSITY OF WASHINGTON MEHROTRA, RAJNISH (contact); CUKOR, DANIEL ; UNRUH, MARK LYNN Seattle, WA 2019
NOFO Title: HEAL Initiative: Integrated Approach to Pain and Opioid Use in Hemodialysis Patients: The Hemodialysis Opioid Prescription Effort (HOPE) Consortium - Clinical Centers (U01 Clinical Trial Required)
NOFO Number: RFA-DK-18-030
Summary:

For patients with end-stage renal disease treated with long-term hemodialysis (HD), the safety and efficacy of behavioral interventions alone or augmented by safer drugs remain untested. This study will perform a multicenter parallel group randomized controlled trial to test the efficacy of two interventions to reduce opioid use in HD patients. Seven hundred and twenty HD patients with significant and ongoing opioid use will be randomly assigned to (1) telehealth cognitive behavioral therapy (CBT) alone, (2) telehealth CBT augmented by transdermal buprenorphine, and (3) usual care, with follow-up for up to one year. The primary outcome will be prescribed morphine milligram equivalent (MME) over the preceding four weeks. Three patient-reported outcomes (interference by pain, functional status, and quality of life) will comprise the secondary outcomes.

1UH2AR076736-01
Focused Ultrasound Neuromodulation of Dorsal Root Ganglion for Noninvasive Mitigation of Low Back Pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF UTAH RIEKE, VIOLA (contact); SHAH, LUBDHA Salt Lake City, UT 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

This project's goal is to develop a completely noninvasive, precise, and durable treatment option for low back pain (LBP). Focused ultrasound (FUS) is a lower-risk, completely noninvasive modality that enables the delivery of spatially confined acoustic energy to a small tissue region (dorsal root ganglion [DRG]) under magnetic resonance (MR) imaging guidance to treat axial low back pain by neuromodulation. The central goal of this study is to demonstrate neuromodulation of the DRG with FUS to decrease nerve conduction; this treatment can be used to attenuate pain sensation. This exploratory study will demonstrate FUS neuromodulation of the DRG in pigs as assessed by somatosensory evoked potential and perform unique behavioral assessments indicative of supraspinal pain sensation, with the ultimate goal of translating this technology to patients with LBP. FUS could potentially replace current invasive or systemically detrimental treatment modalities.

1R61NS114926-01
SPRINT: Signature for Pain Recovery IN Teens Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS STANFORD UNIVERSITY SIMONS, LAURA E Stanford, CA 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Up to 5 percent of adolescents suffer from high-impact chronic musculoskeletal (MSK) pain, and only about 50 percent with chronic MSK pain who present for treatment recover. Current treatments for chronic MSK pain are suboptimal and have been tied to the opioid crisis. Discovery of robust markers of the recovery versus persistence of pain and disability is essential to develop more resourceful and patient-specific treatment strategies, requiring measurements across multiple dimensions in the same patient cohort in combination with a suitable computational analysis pipeline. Preliminary data has implicated novel candidates for neuroimaging, immune, quantitative sensory, and psychological markers for discovery. In addition, a standardized specimen collection, processing, storage, and distribution system is in place, along with expertise in machine learning approaches to extract reliable and prognostic bio-signatures from a large and complex data set. This project will facilitate risk stratification and a resourceful selection of patients who are likely to respond to current multidisciplinary pain treatment approaches.

1R01DE029342-01
Identification and Validation of a Novel Central Analgesia Circuit Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDCR DUKE UNIVERSITY WANG, FAN Durham, NC 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

This project focuses on identifying and validating a new central analgesic circuit in the brain, based on a highly innovative hypothesis that the strong analgesic effects of general anesthesia (GA) are in part carried out by GA-mediated activation of the endogenous analgesic circuits. Preliminary discovery studies found that a subset of GABAergic neurons located in the central amygdala (CeA) become strongly activated and express high levels of the immediate early gene Fos under GA (hereafter referred to as CeAGA neurons). Furthermore, activation of these neurons exert profound pain-suppressing effects in an acute pain model and a chronic orofacial neuropathic pain model in mice. Based on these exciting preliminary findings, this project will identify and validate CeAGA neurons’ analgesic functions utilizing multiple mouse pain models. Identification of these shared common pathways that need to be suppressed by specific subtypes of CeAGA analgesic neurons will be highly critical for developing precise CeAGA-targeted therapies to treat chronic pain.

1R61NS114954-01
The Inflammatory Index as a Biomarker for Pain in Patients with Sickle Cell Disease Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS MEDICAL COLLEGE OF WISCONSIN BRANDOW, AMANDA M Milwaukee, WI 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Debilitating pain is the most common complication of sickle cell disease (SCD), but there is significant variability in pain expression in these patients. Currently, there is no plasma biomarker that can prognosticate which patients are likely to experience pain. The overall goal of this proposed research is to develop a biomarker that prognosticates the clinical expression of pain in SCD. Project aims are to (1) derive the inflammatory index for pain by identifying inflammatory and immune regulatory gene probe sets that will distinguish healthy controls, patients with SCD in baseline health, and patients with SCD in acute pain and (2) determine whether co-expressed genes from patients with SCD correlate with clinical pain data. Subsequent aims are to (1) determine the clinically meaningful changes of the index in patients with SCD and (2) investigate the preliminary clinical validity of the index as a prognostic biomarker for pain in patients with SCD.

3U10HD036801-21S1
MFMU HEAL Initiative Opportunity: Opioid Prescription Protocols at Discharge after cesarean delivery Clinical Research in Pain Management Pain Management Effectiveness Research Network (ERN) NICHD George Washington University Clifton, Rebecca Washington, DC 2019
NOFO Title: Data Coordinating Center for the NICHD Cooperative Multicenter Maternal Fetal Medicine Units Research Network (U10)
NOFO Number: RFA-HD-13-014
Summary:

Cesarean deliveries are the most commonly performed surgical procedure in the United States. Opioids are almost universally used for post-cesarean analgesia management. Studies suggest that most women are prescribed more tablets at discharge than needed. These often go unused, providing an important reservoir contributing to the opioid crisis. Physicians struggle to prescribe and dose postoperative opioids appropriately while tackling the real needs of acute pain from surgery. Without literature to guide obstetric providers on appropriate amounts of opioids to prescribe upon discharge, actual prescription amounts nationally vary widely by up to 65 tablets. To improve post-cesarean opioid prescribing practices without compromising pain management, the study will test an individualized, patient-empowered approach for pain management and opioid prescription quantity. This is a noninferiority randomized trial of 5,500 women with a cesarean delivery who will be randomized prior to discharge.

1UH2AR076719-01
Novel imaging of endplate biomarkers in chronic low back pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF CALIFORNIA, SAN FRANCISCO FIELDS, AARON J (contact); KRUG, ROLAND San Francisco, CA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

This project will examine the association between end plate pathology and chronic low back pain (cLBP) and improve patient selection by developing and translating new imaging tools, technologies, and/or methods (iTTM) that provide accurate, noninvasive measures of end plate pathologies. A search for clinically relevant biomarkers of end plate pathology will focus on novel imaging measures of end plate bone marrow lesion (BML) severity with IDEAL MRI and cartilage endplate (CEP) fibrosis/damage with UTE MRI, assess interactions with paraspinal muscles, and identify metrics that associate with pain, disability, and degeneration. The research will refine imaging and post-processing methodologies by leveraging and expanding existing cross-sectional cohorts and then deploy and validate the new end plate iTTM to other BACPAC sites to test the most promising metrics’ clinical utility. These studies will provide validated iTTM that are useful for addressing the end plates pathology’s role in cLBP, identifying sub-phenotypes, discovering pain mechanisms, uncovering treatment targets, and selecting patients.

1U24AT010961-01
HEAL Collaboratory Resource Coordinating Center (PRISM) Clinical Research in Pain Management Pragmatic and Implementation Studies for the Management of Pain to Reduce Opioid Prescribing (PRISM) NCCIH DUKE UNIVERSITY HERNANDEZ, ADRIAN (contact); CURTIS, LESLEY H; WEINFURT, KEVIN P Durham, NC 2019
NOFO Title: HEAL Initiative: Limited Competition: Resource Coordinating Center for Pragmatic and Implementation Studies for the Management of Pain (PRISM) to Reduce Opioid Prescribing (U24 Clinical Trial Not Allowed)
NOFO Number: RFA-AT-19-011
Summary:

Improved pain management and reduction of opioid use could greatly benefit from improved pragmatic clinical trials (PCTs). The PRISM Resource Coordinating Center (CC), as part of the NIH Health Care Systems Research Collaboratory, will support up to nine more embedded PCTs that address pain management and the opioid crisis. Since 2012, the CC has nurtured 15 Demonstration Projects by providing leadership, resources, tools, training, and coordination of diverse elements. The CC will work collaboratively with each PRISM Demonstration Project team supported through the HEAL Initiative, including their partnering health care systems, to develop, test, and implement the projects while providing technical, design, and coordination support. The CC will also develop and refine technical and policy guidelines and best practices for the effective conduct of pain-related research studies in partnership with health care systems and disseminate best strategies for successful embedded PCTs.

1U24NS114416-01
Duke Pain Early-phase Research Clinical Center (PERC) Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS DUKE UNIVERSITY LIMKAKENG, ALEXANDER TAN (contact); PORTER, LAURA S Durham, NC 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trials Not Allowed)
NOFO Number: RFA-NS-19-025
Summary:

Managing persistent pain has long been a difficult challenge, one that is heightened by the recent opioid crisis. Although many potential solutions may exist, demonstrating their efficacy in a multicenter trial is a considerable obstacle. There is broad consensus that a nationwide clinical research network is necessary to promote innovation. A hub-spoke complex of academic medical centers with considerable experience in pain management clinical trials and biomarker validation will leverage existing resources to make clinical trial execution efficient and rapid. Together, spokes will provide maximum flexibility, ready to accommodate studies in any well-characterized pain condition.