Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Sort ascending Location(s) Year Awarded
1R61AT012185-01
MRI-Based Quantitative Characterization of Impaired Myofascial Interface Properties in Myofascial Pain Syndrome Clinical Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NCCIH MAYO CLINIC ROCHESTER YIN, ZIYING (contact); BAUER, BRENT A Rochester, MN 2022
NOFO Title: HEAL Initiative: Developing Quantitative Imaging and Other Relevant Biomarkers of Myofascial Tissues for Clinical Pain Management
NOFO Number: RFA-AT-22-003
Summary:

Pain in the muscles and surrounding connective tissue (myofascial pain) is a significant health concern affecting hundreds of millions of Americans. Understanding and managing myofascial pain has been limited due to a lack of tools to help clinicians diagnose and treat this disorder. While past efforts to understand myofascial pain have focused on impairments in how connective tissues connect to other tissues in the body, this project will use a new imaging technique to study myofascial tissue physical properties, including how they move in the body and their structural stiffness. This research will identify an imaging biomarker to be used in a randomized controlled clinical trial to predict patient responses to a myofascial pain treatment.

1R01DE032501-01
Targeting HB-EGF and Trigeminal EGFR for Oral Cancer Pain and Opioid Tolerance Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDCR NEW YORK UNIVERSITY YE, YI New York, NY 2022
NOFO Title: HEAL Initiative: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: NS22-034
Summary:

Oral cancers are painful and often require use of opioid medications to manage pain. However, the effectiveness of opioids often wanes quickly, and many patients require higher doses because they develop tolerance to these medications. This project will study the potential value of blocking epidermal growth-factor receptors interacting with peripheral nerves to treat oral cancer pain. The findings will advance understanding of the molecular mechanisms underlying oral cancer pain and provide a rationale for repurposing epidermal growth-factor receptor blockers, which is already approved for head and neck cancer treatment for treating oral cancer and associated pain.

1R61NS127285-01
Development of Therapeutic Antibodies to Target Sodium Channels Involved in Pain Signaling Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS University of California, Davis YAROV-YAROVOY, VLADIMIR M (contact); TRIMMER, JAMES S Davis, CA 2022
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: NS21-029
Summary:

Voltage-gated sodium channels such as Nav1.7, Nav1.8, and Nav1.9 transmit pain signals in nerve fibers and are molecular targets for pain therapy. While Nav channels have been validated as pharmacological targets for the treatment of pain, available therapies are limited due to incomplete efficacy and significant side effects. Taking advantage of recent advances in structural biology and computational-based protein design, this project aims to develop antibodies to attach to Nav channels and freeze them in an inactive state. These antibodies can then be further developed as novel treatments for chronic pain.

1UG3NS114956-01
Optimization of non-addictive biologics to target sodium channels involved in pain signaling Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS UNIVERSITY OF CALIFORNIA AT DAVIS YAROV-YAROVOY, VLADIMIR M Davis, CA 2019
NOFO Title: Optimization of Non-addictive Therapies [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-010
Summary:

Pain signals originate predominantly in a subset of peripheral sensory neurons that harbor a distinct subset of voltage-gated sodium (NaV) channels; however, current NaV channel blockers, such as local anesthetics, are non-selective and also block NaV channels vital for function of the heart, muscle, and central nervous system. Genetic studies have identified human NaV1.7, NaV1.8, and NaV1.9 channel subtypes as key players in pain signaling and as major contributors to action potential generation in peripheral neurons. ProTx-II is a highly potent and moderately selective peptide toxin that inhibits human NaV1.7 activation. This study will optimize ProTx-II selectivity, potency, and stability by exploiting the new structures of ProTx-II—human NaV1.7 channel complexes, advances in rational peptide optimization, and rigorous potency and efficacy screens to generate high-affinity, selective inhibitors of human NaV1.7, NaV1.8, and NaV1.9 channels that can define a new class of biologics to treat pain.

1R41NS113717-01
Pre-clinical evaluation of DT-001, a small molecule antagonist of MD2-TLR4 for utility in the treatment of pain Cross-Cutting Research Small Business Programs NINDS DOULEUR THERAPEUTICS, INC. YAKSH, TONY L; CHAKRAVARTHY, KRISHNAN San Diego, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Technology Transfer Grant Applications (Parent STTR [R41/R42] Clinical Trial Not Allowed)
NOFO Number: PA-18-575
Summary:

 Chronic persistent post-operative pain (CPOP) is a devastating outcome from any type of surgical procedure. Its incidence is anywhere between 20-85% depending on the type of surgery, with thoracotomies showing one of the highest annual incidences of 30-60%. Given that millions of patients (approximately 23 million yearly based on incidence) are affected by CPOP, the results are increased direct medical costs, increased indirect medical costs due to decreased productivity, and associated negative effects on an individual’s physical functioning, psychological state, and quality of life. Given these extensive public health and economic consequences there is a resurgence of research in the area of preventative analgesia.  The goal of this project is to evaluate a novel small molecule antagonist of MD2-TLR4, DT-001 in preclinical models of surgical pain representative of persistent post-operative pain. In collaboration with University of California, San Diego, DT-001 will be evaluated for its ability to block the development of neuropathic pain states. These studies will evaluate dose escalating efficacy of DT001 in rats in formalin and spinal nerve injury (SNI) models using both intrathecal and intravenous routes of administration. Tissues will be preserved to assess functional effects on relevant pain centers for analysis by Raft. With demonstration of efficacy, these studies will determine the optimal dose and route of administration of DT001 and guide a development path to IND and eventually clinical trials.

2R44NS086343-04
IND-ENABLING STUDIES ON NOVEL CAV3 T-CHANNEL MODULATORS FOR TREATMENT OF NEUROPATHIC PAIN Cross-Cutting Research Small Business Programs NINDS AFASCI, INC. XIE, XINMIN SIMON REDWOOD CITY, CA 2018
NOFO Title: NINDS Renewal Awards of SBIR Phase II Grants (Phase IIB) for Pre-Clinical Research (R44)
NOFO Number: PAR-17-480
Summary:

We discovered a class of non-opioid modulators of the T-type Cav3.2 channel that could treat neuropathic pain. In vivo pharmacokinetic and pharmacodynamic studies and preliminary toxicological studies identified AFA-279 and other candidates, which did not produce observable side-effects and showed greater analgesic effects than other neuropathic pain medications in rodent models. The goal of this proposed project is to submit the IND application on our Cav3.2 modulator to the Food and Drug Administration (FDA). We will produce AFA-279 under Good Manufacturing Practice (GMP)–like conditions using chemical manufacturing controls for Good Laboratory Practice (GLP) nonclinical toxicity studies and GMP clinical batch future Phase 1 clinical trials, complete toxicological and safety studies to establish the safety profile of AFA-279, prepare and submit the IND application, and then initiate early clinical trials. Our ultimate goal is to deliver a safer, more effective, non-opioid Cav3.2 channel modulator to patients suffering from neuropathic pain.

1UG3DA051241-01
Integrated Treatment for Veterans with Co-Occurring Chronic Pain and Opioid Use Disorder Clinical Research in Pain Management Pain Management Effectiveness Research Network (ERN) NIDA University of New Mexico WITKIEWITZ, KATIE A (contact); VOWLES, KEVIN E Albuquerque, NM 2019
NOFO Title: HEAL Initiative: Pain Management Effectiveness Research Network: Clinical Trial Planning and Implementation Cooperative Agreement (UG3/UH3 Clinical Trial Required)
NOFO Number: RFA-NS-19-021
Summary:

Chronic pain is common, costly, and debilitating. Opioid prescription in the treatment of chronic pain is frequent and carries a consequent risk of poor treatment outcome, as well as higher morbidity and mortality in a clinically significant number of patients, particularly those who meet criteria for opioid dependence. Despite the alarming increases in prescription opiate misuse and opioid use disorder (OUD) nationally in the United States, there are few treatment options available that target both pain-related interference and OUD among patients with chronic pain. In military veterans, this issue is of particular importance as numerous reports indicate frequent use of opioids in the treatment of chronic pain, as well as increasing opioid-related problems. To date, there are no evidence-based treatment options that aim to both reduce pain interference while simultaneously addressing problematic opioid use. The overall aim of this study will be to determine the efficacy of an integrated psychosocial treatment in veterans with chronic pain who are taking buprenorphine for the treatment of OUD. To achieve this aim, they will utilize a randomized design to assess the efficacy of two empirically supported interventions: Acceptance and Commitment Therapy for chronic pain and Mindfulness-Based Relapse Prevention for substance use and misuse.

1RM1NS128787-01
Understanding the Mechanistic, Neurophysiological, and Antinociceptive Effects of Transcutaneous Auricular Neurostimulation for Treatment of Chronic Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS University of Texas Med BR WILKES, DENISE (contact); BADRAN, BASHAR W; HOUGHTON, DAVID C; KHODAPARAST, NAVID Galveston, TX 2022
NOFO Title: HEAL Initiative: Interdisciplinary Teams to Elucidate the Mechanisms of Device-Based Pain Relief (RM1 Clinical Trial Optional)
NOFO Number: NS22-016
Summary:

Despite the need for non-opioid treatments for chronic pain, few alternative treatment approaches exist. Transcutaneous auricular neurostimulation (tAN) is a safe and effective treatment for pain during opioid withdrawal; however, researchers do not understand how tAN reduces pain, which limits its clinical use. A better understanding of how tAN affects neurophysiological processes to provide pain relief would likely expand tAN development and use. This interdisciplinary project will conduct research in both healthy adults and those with chronic pain to explain the neurochemical and neurophysiological mechanisms for tAN-based pain relief, and also help optimize treatments and their use.

3R01AT010773-02S1
Minor Cannabinoids and Terpenes: Preclinical Evaluation as Analgesics Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NCCIH RESEARCH TRIANGLE INSTITUTE WILEY, JENNY L. Research Triangle Park, NC 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

G-protein coupled receptor 3 (GPR3) is an orphan receptor present in the central nervous system (CNS) that plays important role in many normal physiological functions and is involved in a variety of pathological conditions. Although the brain chemical that activates this receptor has not been identified, work with GPR3 knockout mice has identified GPR3 as a novel drug target for several Central Nervous System (CNS) mediated diseases including neuropathic pain. However, despite the emerging behavioral implications of the GPR3 system, little is known about how GPR3 affects behavior due to the lack of potent and selective chemical probes that allow scientists to examine functioning of the receptor. Recently, two cannabinoid chemicals present in the cannabis plant were discovered as affecting GPR3. This study will modify the chemical structure of these compounds to increase their potency and selectivity so that they may be used as pharmacological tools to investigate the role of GPR3 in modulating pain. In addition, this project focuses on identifying new compounds that show promise for development into therapeutics for the treatment of pain.

1UH2AR076741-01
Imaging Epigenetic Dysregulation in Patients with Low Back Pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS MASSACHUSETTS GENERAL HOSPITAL WEY, HSIAO-YING Boston, MA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

Inhibitors of the epigenetic enzymes histone deacetylases (HDACs) produce analgesic responses and are therefore therapeutic targets for pain. The research team recently resolved a PET imaging agent, [11C]Martinostat, that selectively binds to a subset of HDAC enzymes. A series of initial proof-of-concept clinical validation studies will be conducted to evaluate whether [11C]Martinostat PET is a sensitive biomarker to detect the typical (axial) chronic low back pain (cLBP). The research team will validate [11C]Martinostat PET’s ability to differentiate subtypes of pain by comparing axial cLBP and other cLBP patients with radiculopathy and longitudinally study subacute LBP patients (sLBP) to investigate whether there is a unique imaging signature that differentiates patients who develop cLBP and those who recover from low back pain. Using [11C]Martinostat to understand HDAC expression changes in chronic pain patients will validate an epigenetic drug target, refine patient selection based on HDAC expression, and facilitate proof of mechanism in developing novel analgesics.

1UG3NS123958-01
Development of a CCKBR-targeting scFv as Therapy for Chronic Pain Patients Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS UNIVERSITY OF NEW MEXICO HEALTH SCIS CTR WESTLUND-HIGH, KARIN N (contact); ALLES, SASCHA R Albuquerque, NM 2021
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Cholecystokinin B receptor (CCKBR) is a molecule found in the brain that helps regulate anxiety and depression but also influences the development of tolerance to opioids. CCKBR levels are also increased in models of nerve injury-induced (neuropathic) pain. Therefore, targeting CCKBR may offer a new approach to treating neuropathic pain and the associated anxiety and depression. Researchers have developed mouse antibodies that can inactivate CCKBR. However, to be usable in humans without causing an immune response, these antibodies need to be modified to include more human sequences. This project will use a fragment of the CCKBR antibody, modify it with the addition of human antibody sequences, and then select the clones that bind most strongly and specifically to human CCKBR. These will then be tested in cell and animal models of neuropathic pain to identify the most promising candidates for further evaluation in humans.

3UG3NS123958-01S1
Neuroimmune Mechanisms of a Humanized CCK-B Receptor scFv as Therapy for Chronic Pain Patients Cross-Cutting Research Training the Next Generation of Researchers in HEAL NINDS University of New Mexico WESTLUND-HIGH, KARIN N Albuquerque, NM 2022
NOFO Title: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp Clinical Trial Not Allowed)
NOFO Number: PA21-071
Summary:

There are currently few effective therapies available for chronic nerve injury-induced pain, associated anxiety, and depression. This project aims to extend previous research aiming to uncover the mechanism of action of artificially modified immune molecules (humanized cholecystokinin-2 receptor [CCKBR] single-chain variable fragments [scFv]) on human neurons and how it reverses chronic pain and anxiety-like behaviors in mouse models. This potential treatment approach offers important advantages over existing therapies, including extreme specificity, higher affinity, brain/nerve penetrance, safety, and reduced self-immunogenicity.

1R61AT012282-01
Development and Validation of a Multimodal Ultrasound-Based Biomarker for Myofascial Pain Clinical Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NCCIH UNIVERSITY OF PITTSBURGH AT PITTSBURGH WASAN, AJAY D (contact); KIM, KANG ; PU, JIANTAO Pittsburgh, PA 2022
NOFO Title: HEAL Initiative: Developing Quantitative Imaging and Other Relevant Biomarkers of Myofascial Tissues for Clinical Pain Management
NOFO Number: RFA-AT-22-003
Summary:

Pain in the muscles and surrounding connective tissues (myofascial pain) can affect many regions of the body and is a key component of chronic low back pain. Patients with chronic low back pain have a range of musculoskeletal problems perpetuating their pain. There is a significant clinical need to identify the components of myofascial pain in people with chronic low back pain. Advances in ultrasound technology have allowed researchers to identify several differences in muscle and connective tissues related to myofascial pain. This project will develop and validate an ultrasound-based biomarker signature for myofascial pain in the low back. This research will also refine the biomarker signature using advanced machine learning approaches, toward future testing in in a randomized controlled clinical trial.

1U24NS115708-01
University of Pittsburgh Hub and Spoke Pain Clinical Trial Network Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS UNIVERSITY OF PITTSBURGH AT PITTSBURGH WASAN, AJAY D (contact); ALTER, BENEDICT J Pittsburgh, PA 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-036
Summary:

For many years in the field of pain medicine it has been noted that many promising treatments emerging from animal studies fail to demonstrate efficacy in human trials. There are many reasons for these phenomena, and one of the key steps to improve this situation and establish more effective nonopioid treatments for pain is more rigorous conduct of multisite pain clinical trials from an experienced multidisciplinary team of investigators. The University of Pittsburgh Hub and Spoke Clinical Trials Network will establish an organizational structure to capitalize on institutional expertise at our Spokes to lead specific phase 2 clinical trials through EPPIC-Net.

1UG3AR076568-01
Proof of concept study to treat negative affect in chronic low back pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF PITTSBURGH AT PITTSBURGH WASAN, AJAY D Pittsburgh, PA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program: Phase 2 Clinical Trials (UG3/UH3 Clinical Trial Required)
NOFO Number: RFA-AR-19-029
Summary:

The chronic low back pain (cLBP) subgroup with comorbid depression or anxiety disorders, known as high negative affect (NA), needs better non-opioid, comprehensive pain treatment options. Data shows that the combination of antidepressants (AD) and fear avoidance physical therapy is more efficacious at improving pain, function, depression, and anxiety in cLBP patients with high NA than each treatment alone or a control condition. Research also finds that an enhanced fear avoidance rehabilitation protocol (EFAR; fear avoidance-based physical therapy, pain education, and motivational messaging) further improves outcomes. To address the unmet needs of cLBP patients with high NA, this study will test in a randomized trial whether the combination of AD and EFAR is more effective than each treatment alone at relieving pain, improving function, combating depression, and preventing opioid misuse. This multimodal combination approach of pharmacotherapy and behavioral therapy is novel to the field and has the potential to shift current treatment paradigms.

3UH3AR076568-02S1
Examining the effect of intersectional stigma on the treatment of negative affect in chronic low back pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF PITTSBURGH AT PITTSBURGH WASAN, AJAY D Pittsburgh, PA 2020
NOFO Title: HEAL Initiative: Notice of Special Interest (NOSI) regarding the Availability of Administrative Supplements to Support Strategies to Reduce Stigma in Pain Management and Opioid Use Disorder (OUD) and Treatment
NOFO Number: NOT-OD-20-101
Summary:

Patients with chronic low back pain, often have depressive and anxiety symptoms and use opioids all of which are associated with stigma. In turn stigma leads to decreased treatment seeking and adherence, increased depression and pain, and poor treatment outcomes. Intersection of these health-related stigmas may have synergistic effects. This study aims to enhance the findings of a clinical trial to test antidepressant medication and Enhanced Fear Avoidance Rehabilitation in patients with chronic low back pain and high levels of depression and anxiety. The effects of these intersecting types of stigma on the efficacy of the interventions will be evaluated to better understand the needs of the patient population and to inform development of a stigma reducing intervention that can be implemented care providers.

3UH3CA261067-03S1
Optimizing the use of ketamine to reduce chronic postsurgical pain Cross-Cutting Research Training the Next Generation of Researchers in HEAL NCI NEW YORK UNIVERSITY SCHOOL OF MEDICINE WANG, JING (contact); DOAN, LISA New York, NY 2022
NOFO Title: HEAL Initiative: Pain Management Effectiveness Research Network: Clinical Trial Planning and Implementation Cooperative Agreement (UG3/UH3 Clinical Trial Required)
NOFO Number: RFA-NS-20-028
Summary:

Approximately 20% of patients who undergo surgery develop chronic Postsurgical Pain, which is linked with slow recovery, persistent opioid use and dependence. This project supports a scientist from a group underrepresented in biomedicine to expand ongoing research testing ketamine during and/or after surgery to prevent post-mastectomy pain syndrome. Ketamine is a low-risk treatment option that is easy to implement in a wide range of clinical settings.

3UH3CA261067-02S1
Optimizing the use of ketamine to reduce chronic postsurgical pain Clinical Research in Pain Management Pain Management Effectiveness Research Network (ERN) NCI NEW YORK UNIVERSITY SCHOOL OF MEDICINE WANG, JING (contact); DOAN, LISA New York, NY 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

Social determinants of heath may affect breast cancer diagnosis and disease staging at time of mastectomy. It is unclear if socioeconomic factors such as annual income, marital status/single parent household, number of children, distance from the hospital, and other life stressors facing individuals from under-resourced populations affect development of postmastectomy pain syndrome or response to the drug ketamine. This research will analyze these factors toward mitigating post-mastectomy pain. This analysis will also serve as the basis for further research to define pathways that minimize health disparities plays in the development of chronic, post-surgical pain. The ultimate goal of this research is to normalize risk for chronic pain after breast surgery.

 

1UG3CA261067-01
Optimizing the Use of Ketamine to Reduce Chronic Postsurgical Pain Clinical Research in Pain Management Pain Management Effectiveness Research Network (ERN) NINDS NEW YORK UNIVERSITY SCHOOL OF MEDICINE WANG, JING (contact); DOAN, LISA New York, NY 2020
NOFO Title: HEAL Initiative: Pain Management Effectiveness Research Network: Clinical Trial Planning and Implementation Cooperative Agreement (UG3/UH3 Clinical Trial Required)
NOFO Number: RFA-NS-20-028
Summary:

Approximately 20% of patients who undergo surgery develop chronic pain, or Chronic Postsurgical Pain (CPSP). CPSP is highly associated with impaired functional recovery and persistent opioid use and dependence, and current standard postoperative multimodal analgesia is only moderately effective for its prevention. This study aims to determine whether the use of ketamine during and/or after surgery prevents Post-Mastectomy Pain Syndrome (PMPS), one of the most common CPSP conditions. Ketamine is a low-risk treatment option that is easy to implement in a wide range of clinical settings. If successful, this treatment could improve postoperative pain management in individuals undergoing mastectomy and help combat the opioid epidemic.

1R01DE029342-01
Identification and Validation of a Novel Central Analgesia Circuit Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDCR DUKE UNIVERSITY WANG, FAN Durham, NC 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

This project focuses on identifying and validating a new central analgesic circuit in the brain, based on a highly innovative hypothesis that the strong analgesic effects of general anesthesia (GA) are in part carried out by GA-mediated activation of the endogenous analgesic circuits. Preliminary discovery studies found that a subset of GABAergic neurons located in the central amygdala (CeA) become strongly activated and express high levels of the immediate early gene Fos under GA (hereafter referred to as CeAGA neurons). Furthermore, activation of these neurons exert profound pain-suppressing effects in an acute pain model and a chronic orofacial neuropathic pain model in mice. Based on these exciting preliminary findings, this project will identify and validate CeAGA neurons’ analgesic functions utilizing multiple mouse pain models. Identification of these shared common pathways that need to be suppressed by specific subtypes of CeAGA analgesic neurons will be highly critical for developing precise CeAGA-targeted therapies to treat chronic pain.

3UH3DA050173-02S1
Optimized Interventions to Prevent Opioid Use Disorder among Adolescents and Young Adults in the Emergency Department New Strategies to Prevent and Treat Opioid Addiction Preventing Opioid Use Disorder NIDA UNIVERSITY OF MICHIGAN AT ANN ARBOR WALTON, MAUREEN A Ann Arbor, MI 2021
NOFO Title: HEAL Initiative: Notice of Special Interest (NOSI) regarding the Availability of Administrative Supplements to Support Strategies to Increase Participant Diversity, Inclusion and Engagement in Clinical Studies
NOFO Number: NOT-NS-21-025
Summary:

The emergency department is an ideal venue to reach and intervene with adolescents and young adults at risk for opioid misuse, particularly as young adults may disconnect from primary care when transitioning out of care in pediatric settings. This study will evaluate the efficacy of interventions of varying type and intensity to prevent or reduce opioid misuse or opioid use disorder. The research leverages technology that is appealing to youth to facilitate intervention delivery by health coaches. In this study, adolescents and young adults in the emergency department screening positive for opioid use or misuse will be randomly assigned to one of four intervention conditions with outcomes measured at 4, 8, and 12 months. Technology-driven, scalable interventions delivered via health coaches allow for real-time tailoring to the rapidly changing opioid epidemic, with the potential to prevent an increase in opioid misuse among adolescents and young adults.  Black/African American youth are at increased risk for opioid and other substance use, but they often do not participate in research studies. As a result, it is not known how well prevention interventions work with Black/African American people. This supplement will focus on increasing participant diversity and inclusion by recruiting additional Black/African American participants for this ongoing randomized controlled study of technology-driven prevention interventions.

1UH2AR076731-01
Development, Evaluation and Translation of Robotic Apparel for Alleviating Low Back Pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS HARVARD UNIVERSITY WALSH, CONOR Cambridge, MA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

A primary factor contributing to acute or recurrent back injury is overexertion via excessive peak and cumulative forces on the back and the primary factors involved in the progression of acute low back injury to chronic low back pain (cLBP) include maladaptive motor control strategies, muscle hyperactivity, reduced movement variability, and the development of fear cognitions. This project will focus on the development of robotic apparel with integrated biofeedback components that can reduce exertion; encourage safe, varied movement strategies; and promote recovery. Robotic apparel will be capable of providing supportive forces to the back and hip joints through adaptive control algorithms that respond to dynamic movements and becoming fully transparent when assistance is no longer needed. This technology can be used to prevent cLBP caused by overexertion and provide a new tool to physical therapists and the clinical community to enhance rehabilitation programs.

1U24NS115714-01
California Clinical and Translational Pain Research Consortium Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS UNIVERSITY OF CALIFORNIA, SAN DIEGO WALLACE, MARK S San Diego, CA 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-036
Summary:

The California Clinical and Translational Pain Research Consortium (CCTPRC) consists of four University of California academic medical centers with considerable experience in pain management clinical trials, phenotyping, and biomarker validation. The network will leverage solid existing Clinical and Translational Science Award (CTSA) resources to make clinical trial execution efficient and rapid. The hub will be located at the University of California, San Diego, with spokes located on the other three campuses to provide maximum flexibility, ready to accommodate studies in a variety of pain conditions and provide successful recruitment and high-quality data collection.

1RM1NS128741-01
From Nerve to Brain: Toward a Mechanistic Understanding of Spinal Cord Stimulation in Human Subjects Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS Massachusetts General Hospital WAINGER, BRIAN JASON (contact); FREEMAN, ROY ; LOGGIA, MARCO LUCIANO Boston, MA 2022
NOFO Title: HEAL Initiative: Interdisciplinary Teams to Elucidate the Mechanisms of Device-Based Pain Relief (RM1 Clinical Trial Optional)
NOFO Number: NS22-016
Summary:

Spinal cord stimulators (SCS) and related devices are commonly used for hard-to-treat pain conditions, but how they work remains unclear. This knowledge is important for improving device design and stimulation patterns, as well as for determining which patients will benefit. Through a series of clinical studies in patients with SCS devices, this project will explore the hypothesis that SCS devices reduce pain by changing the excitability of peripheral sensory nerve fibers in the spinal cord. The results should guide development of biomarkers to advance research further.

1R44AR076885-01
Enhancing Physical Therapy: Noninvasive Brain Stimulation System for Treating Carpal Tunnel Syndrome Cross-Cutting Research Small Business Programs NIAMS HIGHLAND INSTRUMENTS, INC. WAGNER, TIMOTHY ANDREW; DIPIETRO, LAURA Cambridge, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Required)
NOFO Number: PA-18-573
Summary:

 Non-Invasive Brain Stimulation (NIBS) has been successfully applied for the treatment of chronic pain (CP) in some disease states, where treatment induced changes in brain activity revert maladaptive plasticity associated with the perception/sensation of CP [25-28]. However, the most common NIBS methods, e.g., transcranial direct current stimulation, have shown limited, if any, efficacy in treating neuropathic pain. It has been postulated that limitations in conventional NIBS techniques’ focality, penetration, and targeting control limit their therapeutic efficacy . Electrosonic Stimulation (ESStim™) is an improved NIBS modality that overcomes the limitations of other technologies by combining independently controlled electromagnetic and ultrasonic fields to focus and boost stimulation currents via tuned electromechanical coupling in neural tissue . This proposal is focused on evaluating whether our noninvasive ESStim system can effectively treat CP in carpal tunnel syndrome (CTS), both as a lone treatment and in conjunction with physical therapy (PT). Investigators hypothesize ESStim can be provided synergistically with PT, as both can encourage plasticity-dependent changes which could maximally improve a CTS patient’s pain free mobility. In parallel with the CTS treatments, the team will build multivariate linear and generalized linear regression models to predict the CTS patient outcomes related to pain, physical function, and psychosocial assessments as a function of baseline disease characteristics. The computational work will be used to develop an optimized CTS ESStim dosing model.