Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Sort descending Investigator(s) Location(s) Year Awarded
1UG3NS123965-01
Novel, non-opioid, non-addictive intrathecal therapy for the treatment of chronic pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS CENTREXION THERAPEUTICS CORPORATION CAMPBELL, JAMES N Boston, MA 2021
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Patients with severe, intractable chronic pain primarily receive treatment with opioids, and non-opioid treatment options are urgently needed. These patients may be candidates for treatment using other types of pain medications administered via intrathecal injection—that is, injection directly into the fluid-filled space between the membranes surrounding the brain and spinal cord. Intrathecal injection requires much lower medication doses than systemic administration. Centrexion Therapeutics Corporation seeks to develop CNTX-3100, a highly selective and highly potent novel small molecule that activates the nociception receptor (NOPr), for intrathecal administration using a pump approved by the U.S. Food and Drug Administration. In animal studies, such NOPr agonists had powerful analgesic effects when delivered directly to the spinal cord by intrathecal administration. CNTX-3100 has ideal properties for intrathecal delivery and in animal studies provided pain relief and a safety profile that was superior to intrathecally administered morphine. This project will scale up the drug, develop a formulation that ensures a stable product for intrathecal delivery, and conduct preclinical toxicity studies to prepare for a Phase 1 clinical trial.

1R61DK135406-01
PAINED: Project Addressing Inequities in the Emergency Department Clinical Research in Pain Management Advancing Health Equity in Pain Management NIDDK Children's Research Institute GOYAL, MONIKA KUMARI Washington, DC 2022
NOFO Title: HEAL Initiative: Advancing Health Equity in Pain Management (R61/R33 Clinical Trial Required)
NOFO Number: NS22-002
Summary:

Clinician bias causes inequities in healthcare, and interventions are needed to mitigate and eradicate this bias. This project aims to develop and test the impact of two interventions on overcoming clinician implicit bias in the management of pain for children from ethnic minorities treated in the emergency department. The study will include pediatric patients from under-represented minority groups with pain from long-bone fractures or acute appendicitis who are cared for by racially and ethnically diverse caregivers. Researchers will use stakeholder-informed approaches to establish quality of care metrics and then use clinician audit and feedback as well as data from electronic health records to quantify evidence of bias.      

1R61NS113258-01A1
Multi-Omic Biomarkers for Neuropathic Pain Secondary to Chemotherapy Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS CLEVELAND CLINIC LERNER COM-CWRU ROTROFF, DANIEL; FOSS, JOSEPH F; JOHNSON, KENWARD B; Cleveland, OH 2020
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Taxanes are among the most effective chemotherapeutic agents and are frequently used in the treatment of early stage and metastatic breast cancer. However, they are known to produce a pain condition known as Chemotherapy-Induced Peripheral Neuropathic Pain (CIPNP). CIPNP is one of the primary reasons a patient receives a limited dose of taxane. No diagnostic tool exists to identify patients that will develop CIPNP in response to taxane therapy. Biomarker signatures associated with taxane-induced neuropathic pain will be developed to: 1) identify patients at risk for developing debilitating taxane neuropathic pain before chemotherapy is initiated; and 2) to identify patients already on treatment who are at risk of developing neuropathic pain and need dosing adjustments to prevent CIPNP symptoms. This biomarker signature will be used to detect CIPNP-susceptible patients early and personalize their taxane therapy to minimize CIPNP while optimizing the therapeutic taxane dosing.

1UG3NS127258-01A1
A First-in-Class, Mechanism-Guided, Cell-Based Therapy for Complex Regional Pain Syndrome Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS CLEVELAND CLINIC LERNER COM-CWRU CHENG, JIANGUO Cleveland, OH 2022
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Complex regional pain syndrome is one of the most disabling and difficult-to-treat chronic pain conditions. This project seeks to develop a novel, biological treatment for the condition using injected human bone marrow cells. that can form and repair skeletal tissues and control nervous and immune system activity. The research will determine the dose and source of clinical-grade bone marrow cells needed, toward the goal of submitting an Investigational New Drug Application to the U.S. Food and Drug Administration that will enable further clinical study.

1R43NR017575-01A1
Using Virtual Reality Psychological Therapy to Develop a Non-Opioid Chronic Pain Therapy Cross-Cutting Research Small Business Programs NINR COGNIFISENSE, INC. BAEUERLE, TASSILO; CEKO, MARTA ; WEBSTER, LYNN Sunnyvale, CA 2019
NOFO Title: PHS 2017-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-17-302
Summary:

Chronic pain affects over 100 million Americans, costing society about $600 billion annually. Despite numerous pharmacological and non-pharmacological therapies, over 50% of chronic pain sufferers feel little control over their pain. CognifiSense has developed a patent-pending Virtual Reality Psychological Therapy (VRPT), which is designed to create lasting reduction of chronic pain by addressing the maladaptive learning processes driving pain chronification. VRPT is an experiential learning system, which provides the brain a new set of signals that teaches it that the pain is not as bad as it perceived and that it has greater control over the pain than it perceived. VRPT combines the immersive power and the ability to individualize the therapy of Virtual Reality with well-researched principles of self-distancing, self-efficacy, and extinction to retrain the brain. The goal of this study is to determine the clinical feasibility of VRPT in achieving a lasting reduction of chronic pain, establish brain mechanisms associated with treatment response, and collect comprehensive user feedback to enable further refinement of the current product prototype. CognifiSense's VRPT has the potential to be a significant clinical and business opportunity in the treatment of chronic pain.

1R01DE029951-01
Targeting Endosomal Receptors for Treatment of Chronic Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS COLUMBIA UNIVERSITY HEALTH SCIENCES BUNNETT, NIGEL W; SCHMIDT, BRIAN L New York, NY 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Many non-opioid drugs target G Protein-Coupled Receptors (GPCRs), a family of proteins involved in many pathophysiological processes including pain, fail during clinical trials for unknown reasons. A recent study found GPCRs not only function at the surface of nerve cells but also within a cell compartment called the endosome, where their sustained activity drives pain. This study will build upon this finding and test whether the clinical failure of drugs targeting plasma membrane GPCRs is related to their inability to target and engage endomsomal GPCRs (eGPCRs). This study will use stimulus-responsive nanoparticles (NP) to encapsulate non-opioid drugs and selectively target eGPCR dyads to investigate how eGCPRs generate and regulate sustained pain signals in neuronal subcellular compartments. This study will also validate eGCPRs as therapeutic targets for treatment of chronic inflammatory, neuropathic and cancer pain. Using NPs to deliver non-opioid drugs, individually or in combinations, directly into specific compartments in nerve cells could be a potential strategy for new pain therapies.

1R21NS130409-01
Novel Genetically Encoded Inhibitors to Probe Functional Logic of Cav-Beta Molecular Diversity Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS COLUMBIA UNIVERSITY HEALTH SCIENCES COLECRAFT, HENRY M New York, NY 2022
NOFO Title: Emergency Awards: HEAL Initiative-Early-Stage Discovery of New Pain and Opioid Use Disorder Targets Within the Understudied Druggable Proteome (R21 Clinical Trial Not Allowed)
NOFO Number: TR22-011
Summary:

High-voltage-gated calcium channels convert electrical signals into physiological responses. After a nerve injury, levels of these channels go down in some neurons in the dorsal root ganglia that communicates pain signals to and from the brain. This decline results in reduced flow of calcium that may underlie pain. This project will develop novel approaches to block these calcium channels p to further study their roles in controlling pain.

3UG3TR002151-01S1
INTEGRATED MICROPHYSIOLOGICAL SYSTEM OF CEREBRAL ORGANOID AND BLOOD VESSEL FOR DISEASE MODELING AND NEUROPSYCHIATRIC DRUG SCREENING Preclinical and Translational Research in Pain Management NCATS COLUMBIA UNIVERSITY HEALTH SCIENCES LEONG, KAM W NEW YORK, NY 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

The clinical utility of opioids for pain treatment is limited by its risk for developing opioid usage disorders (OUD). These untoward effects impose a severe burden on society and present difficult therapeutic challenges for clinicians. We propose to extend our cerebral organoid MPS to facilitate the investigation of neuronal response to opioids and identify cellular and molecular signatures in patients vulnerable to OUD. We have assembled a team with complementary expertise in clinical characterization of OUD, cerebral organoid MPS modeling, single cell RNA-seq technology, and functional characterization of neurons in a mesolimbic reward system to test the hypothesis that midbrain MPS is a clinically relevant pre-clinical model for study of opioid usage disorder.

1R41NS113717-01
Pre-clinical evaluation of DT-001, a small molecule antagonist of MD2-TLR4 for utility in the treatment of pain Cross-Cutting Research Small Business Programs NINDS DOULEUR THERAPEUTICS, INC. YAKSH, TONY L; CHAKRAVARTHY, KRISHNAN San Diego, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Technology Transfer Grant Applications (Parent STTR [R41/R42] Clinical Trial Not Allowed)
NOFO Number: PA-18-575
Summary:

 Chronic persistent post-operative pain (CPOP) is a devastating outcome from any type of surgical procedure. Its incidence is anywhere between 20-85% depending on the type of surgery, with thoracotomies showing one of the highest annual incidences of 30-60%. Given that millions of patients (approximately 23 million yearly based on incidence) are affected by CPOP, the results are increased direct medical costs, increased indirect medical costs due to decreased productivity, and associated negative effects on an individual’s physical functioning, psychological state, and quality of life. Given these extensive public health and economic consequences there is a resurgence of research in the area of preventative analgesia.  The goal of this project is to evaluate a novel small molecule antagonist of MD2-TLR4, DT-001 in preclinical models of surgical pain representative of persistent post-operative pain. In collaboration with University of California, San Diego, DT-001 will be evaluated for its ability to block the development of neuropathic pain states. These studies will evaluate dose escalating efficacy of DT001 in rats in formalin and spinal nerve injury (SNI) models using both intrathecal and intravenous routes of administration. Tissues will be preserved to assess functional effects on relevant pain centers for analysis by Raft. With demonstration of efficacy, these studies will determine the optimal dose and route of administration of DT001 and guide a development path to IND and eventually clinical trials.

3R01NR016681-02S1
MECHANISMS OF MUSIC THERAPY TO PALLIATE PAIN IN PATIENTS WITH ADVANCED CANCER Clinical Research in Pain Management NINR DREXEL UNIVERSITY BRADT, JOKE Philadelphia, PA 2018
NOFO Title: Arts-Based Approaches in Palliative Care for Symptom Management (R01)
NOFO Number: PAR-14-294
Summary:

This study addresses the public health problem of chronic pain as one of the most feared symptoms in people with cancer. Insufficient relief from pharmacological treatments and the fear of side effects are important reasons for the growing use of complementary pain management approaches in people with cancer. One such approach is music therapy. Although efficacy of music therapy for pain has been established, there are no mechanistic studies clarifying how it works in clinical populations. The overarching goals of this study are to 1) examine mediators and moderators hypothesized to account for the pain-reducing effects of interactive music therapy (IMT) in people with advanced cancer and chronic pain and 2) validate IMT’s theory of action. The results of this study will provide estimated effects sizes of IMT on the mediators and preliminary effect size estimates for the pain outcomes. This information will be instrumental in the development of a subsequent large-scale efficacy trial.

1RF1NS130481-01
Immune Modulating Therapies to Treat Complex Regional Pain Syndrome Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS DREXEL UNIVERSITY AJIT, SEENA Philadelphia, PA 2022
NOFO Title: HEAL Initiative: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: NS22-034
Summary:

Complex regional pain syndrome is a difficult-to-treat chronic condition that causes excess and prolonged pain and inflammation after injury to an arm or leg and includes damage to skin of affected limbs. Although it is known that aberrant immune system function plays a role in this condition, the details remain unclear about how this occurs – in particular, through the adaptive immune system that relies on specialized immune cells and antibodies to protect the body from harm.  This project will study the role of certain immune cells (T cells) that circulate throughout the body or reside in bone using both rat or human bone samples from patients with complex regional pain syndrome.

5R01NS097880-02
Regulation of neuropathic pain by exercise: effects on nociceptor plasticity and inflammation Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS DREXEL UNIVERSITY DETLOFF, MEGAN R Philadelphia, PA 2018
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Spinal cord injury (SCI) impairs sensory transmission leading to chronic, debilitating neuropathic pain. While our understanding of the molecular basis underlying the development of chronic pain has improved, the available therapeutics provide limited relief. In the lab, we have shown the timing of exercise is critical to meaningful sensory recovery. Early administration of a sustained locomotor exercise program in spinal cord–injured rats prevents the development of neuropathic pain, while delaying similar locomotor training until pain was established was ineffective at ameliorating it. The time elapsed since the injury occurred also indicates the degree of inflammation in the dorsal horn. We have previously shown that chronic SCI and the development of neuropathic pain correspond with robust increases in microglial activation and the levels of pro-inflammatory cytokines. This proposal seeks to lengthen the therapeutic window where rehabilitative exercise can successfully suppress neuropathic pain by pharmacologically reducing inflammation in dorsal root ganglia.

3R01NS097880-02S1
VALIDATION OF TARGETING MACROPHAGE-MEDIATED EVENTS IN THE DRG TO ALLEVIATE CHRONIC SPINAL CORD INJURY PAIN Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS DREXEL UNIVERSITY DETLOFF, MEGAN R PHILADELPHIA, PA 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Spinal cord injury (SCI) impairs sensory transmission and leads to chronic, debilitating neuropathic pain. While our understanding of the development of chronic pain has improved, the available therapeutics provide limited relief. We will examine the peripheral immune and inflammatory response. Secondary inflammation in response to SCI is a series of temporally ordered events: an acute, transient upregulation of chemokines, followed by the recruitment of monocytes/macrophages and generation of an inflammatory environment at the lesion site in the spinal cord, but also surrounding primary nociceptors in the dorsal root ganglia (DRG). These events precede neuropathic pain development. Previous work indicates that after SCI, macrophage presence in the DRG correlates with neuropathic pain. We propose to study: 1) whether the phenotype of macrophages that infiltrate the DRG is different than those that persist chronically after SCI and 2) how manipulation of macrophage phenotype affects nociceptor activity and pain development.

1R01DE029342-01
Identification and Validation of a Novel Central Analgesia Circuit Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDCR DUKE UNIVERSITY WANG, FAN Durham, NC 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

This project focuses on identifying and validating a new central analgesic circuit in the brain, based on a highly innovative hypothesis that the strong analgesic effects of general anesthesia (GA) are in part carried out by GA-mediated activation of the endogenous analgesic circuits. Preliminary discovery studies found that a subset of GABAergic neurons located in the central amygdala (CeA) become strongly activated and express high levels of the immediate early gene Fos under GA (hereafter referred to as CeAGA neurons). Furthermore, activation of these neurons exert profound pain-suppressing effects in an acute pain model and a chronic orofacial neuropathic pain model in mice. Based on these exciting preliminary findings, this project will identify and validate CeAGA neurons’ analgesic functions utilizing multiple mouse pain models. Identification of these shared common pathways that need to be suppressed by specific subtypes of CeAGA analgesic neurons will be highly critical for developing precise CeAGA-targeted therapies to treat chronic pain.

1U24NS114416-01
Duke Pain Early-phase Research Clinical Center (PERC) Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS DUKE UNIVERSITY LIMKAKENG, ALEXANDER TAN (contact); PORTER, LAURA S Durham, NC 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trials Not Allowed)
NOFO Number: RFA-NS-19-025
Summary:

Managing persistent pain has long been a difficult challenge, one that is heightened by the recent opioid crisis. Although many potential solutions may exist, demonstrating their efficacy in a multicenter trial is a considerable obstacle. There is broad consensus that a nationwide clinical research network is necessary to promote innovation. A hub-spoke complex of academic medical centers with considerable experience in pain management clinical trials and biomarker validation will leverage existing resources to make clinical trial execution efficient and rapid. Together, spokes will provide maximum flexibility, ready to accommodate studies in any well-characterized pain condition.

3U24NS114416-01S1
Administrative Supplement to Support Strategies to Increase Participant Diversity, Inclusion and Engagement in EPPIC NET Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS DUKE UNIVERSITY LIMKAKENG, ALEXANDER TAN Durham, NC 2021
NOFO Title: HEAL Initiative: Notice of Special Interest (NOSI) regarding the Availability of Administrative Supplements to Support Strategies to Increase Participant Diversity, Inclusion and Engagement in Clinical Studies
NOFO Number: NOT-NS-21-025
Summary:

A main goal of the NIH HEAL Initiative and the Early Phase Pain Intervention Clinical Network (EPPIC-Net) is to improve non-opioid pain management. This award will leverage the resources at one of EPPIC-Net’s Specialized Clinical Centers by implementing and evaluating strategies to improve the engagement, recruitment, and retention of individuals from underserved racial/ethnic minority populations to participate in EPPIC-Net clinical trials. Since environmental, cultural, and genetic factors may account for observed differences in pain responses between racial and ethnic groups, enrollment of a diverse sample in pain research is crucial to obtain a complete understanding of the effectiveness of any proposed pain therapeutic intervention. The success of these activities will be evaluated, and a toolkit will be created to define best practices that can be by other EPPIC-Net sites and additional trials.

1U24AT010961-01
HEAL Collaboratory Resource Coordinating Center (PRISM) Clinical Research in Pain Management Pragmatic and Implementation Studies for the Management of Pain to Reduce Opioid Prescribing (PRISM) NCCIH DUKE UNIVERSITY HERNANDEZ, ADRIAN (contact); CURTIS, LESLEY H; WEINFURT, KEVIN P Durham, NC 2019
NOFO Title: HEAL Initiative: Limited Competition: Resource Coordinating Center for Pragmatic and Implementation Studies for the Management of Pain (PRISM) to Reduce Opioid Prescribing (U24 Clinical Trial Not Allowed)
NOFO Number: RFA-AT-19-011
Summary:

Improved pain management and reduction of opioid use could greatly benefit from improved pragmatic clinical trials (PCTs). The PRISM Resource Coordinating Center (CC), as part of the NIH Health Care Systems Research Collaboratory, will support up to nine more embedded PCTs that address pain management and the opioid crisis. Since 2012, the CC has nurtured 15 Demonstration Projects by providing leadership, resources, tools, training, and coordination of diverse elements. The CC will work collaboratively with each PRISM Demonstration Project team supported through the HEAL Initiative, including their partnering health care systems, to develop, test, and implement the projects while providing technical, design, and coordination support. The CC will also develop and refine technical and policy guidelines and best practices for the effective conduct of pain-related research studies in partnership with health care systems and disseminate best strategies for successful embedded PCTs.

1UH3NS115647-01A1
A Double-Blind, Randomized, Controlled Trial of Epidural Conus Medullaris Stimulation to Alleviate Pain and Augment Rehabilitation in Patients with Subacute Thoracic Spinal Cord Injury (SCI) Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS DUKE UNIVERSITY LAD, SHIVANAND P Durham, NC 2020
NOFO Title: HEAL Initiative: Clinical Devices to Treat Pain (UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-19-018
Summary:

Pain is a major problem for spinal cord injury (SCI) patients that tends to persist and even worsen with time. No treatments are currently available to consistently relieve pain in SCI patients. This study will investigate the feasibility of Epidural Electrical Stimulation (EES) using the Abbott Proclaim? SCS system with two electrodes to treat neuropathic pain in patients with thoracic spinal cord injury. In this double-blind, prospective, randomized clinical trial, patients with subacute, traumatic, complete thoracic SCIs with American Spinal Injury Association (ASIA) Impairment Scale A will be randomized to receive either ?EES on? (treatment intervention) or ?EES off? (control intervention) of the target regions for pain control (lead overlying the spinal cord anatomy corresponding with their pain distribution) and neurorestoration (lead overlying the conus medullaris) as an adjunct to physical therapy. This study will help determine whether EES can help patients with SCI neuropathic pain and have more widespread clinical applicability.

1U18EB029257-01
Temporal Patterns of Spinal Cord Stimulation Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB DUKE UNIVERSITY GRILL, WARREN M Durham, NC 2019
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

This project will design and test optimized temporal patterns of stimulation to improve the efficacy of commercially available spinal cord stimulation (SCS) systems to treat chronic neuropathic pain. Researchers will build upon a validated biophysical model of the effects of SCS on sensory signal processing in neurons within the dorsal horn of the spinal cord to better understand how to improve the electrical stimulus patterns applied to the spinal cord. They will use sensitivity analyses to determine the robustness of stimulation patterns to variations in electrode positioning, selectivity of stimulation, and biophysical properties of the dorsal horn neural network. Researchers will demonstrate improvements from these new stimulus patterns by 1) measuring their effects on pain-related behavioral outcomes in a rat model of chronic neuropathic pain and by 2) quantifying the effects of optimized temporal patterns on spinal cord neuron activity. The outcome will be mechanistically derived and validated stimulus patterns that are significantly more efficacious than the phenomenologically derived standard of care patterns; these patterns could be implemented with either a software update or minor hardware modifications to existing SCS products.

5R01DE027454-02
Modeling temporomandibular joint disorders pain: role of transient receptor potential ion channels Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDCR Duke University Chen, Yong Durham, NC 2019
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Masticatory and spontaneous pain associated with temporomandibular joint disorders (TMJD) is a significant contributor to orofacial pain, and current treatments for TMJD pain are unsatisfactory. Pain-related transient receptor potential (TRP) channels, expressed by trigeminal ganglion (TG) sensory neurons, have been implicated in both acute and chronic pain and represent possible targets for anti-pain strategies. Using bite force metrics, we found TMJ inflammation-induced masticatory pain to be significantly, but not fully, reversed in Trpv4 knockout mice, suggesting the residual pain might be mediated by other pain-TRPs. Our gene expression studies demonstrated that TRPV1 and TRPA1 were up-regulated in the TG in response to TMJ inflammation in a Trpv4-dependent manner. We hypothesize that TRPV1 and TRPA1, like TRPV4, contribute to TMJ pain. Our specific aims will examine the contribution of TRPV1, TRPV4, and TRPA1 to pathogenesis of TMJD pathologic pain including assessment of the role of neurogenic inflammation.

3U24TR001608-04S1
TIN Supplement Clinical Research in Pain Management Pain Management Effectiveness Research Network (ERN) NCATS Duke University Benjamin, Daniel K. Durham, NC 2019
NOFO Title: CTSA Network - Trial Innovation Centers (TICs) (U24)
NOFO Number: RFA-TR-15-002
3U24NS114416-01S2
Pre-Trial Implementation Study for Ketamine in Sickle Cell Disease Cross-Cutting Research Training the Next Generation of Researchers in HEAL NINDS Duke University LIMKAKENG, ALEXANDER TAN Durham, NC 2022
NOFO Title: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp Clinical Trial Not Allowed)
NOFO Number: PA21-071
Summary:

There are significant and persistent gaps in knowledge about effective pain management for acute and chronic sickle cell pain. This is an area of relevant interest for the NIH HEAL Initiative's Early Phase Pain Investigation Clinical Network (EPPIC-Net). In order to provide guidance for hospital-based administration of the medication ketamine, this project will conduct a cross-sectional survey study of healthcare professionals within EPPIC-Net who provide care for people with sickle cell disease. This information can be used to design a clinical protocol for a multisite, randomized clinical trial of sub-anesthetic (low) doses of ketamine for challenging vaso-occlusive episodes (“pain crises”) in people with sickle cell disease.

1UC2AR082197-01
Neural Architecture of the Murine and Human Temporomandibular Joint Preclinical and Translational Research in Pain Management Restoring Joint Health and Function to Reduce Pain (RE-JOIN) NIAMS DUKE UNIVERSITY DONNELLY, CHRISTOPHER RYAN; CAI, DAWEN; EMRICK, JOSHUA JAMES Durham, NC 2022
NOFO Title: HEAL Initiative: Restoring Joint Health and Function to Reduce Pain Consortium (RE-JOIN) (UC2 Clinical Trial Not Allowed)
NOFO Number: RFA-AR-22-009
Summary:

Temporomandibular joint (TMJ) disorders are the most common form of chronic pain in the face and mouth area (orofacial pain), but relatively little is known about the biological causes of these conditions. This project will define the properties of sensory neurons that connect to tissues that make up the TMJ which connects the lower jaw and skull. This research aims to lay groundwork for development of new therapeutic approaches to treat these painful conditions.

1R43CA233371-01A1
Inhibiting soluble epoxide hydrolase as a treatment for chemotherapy inducedperipheral neuropathic pain Cross-Cutting Research Small Business Programs NCI EICOSIS, LLC BUCKPITT, ALAN R Davis, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

 Investigating the broader efficacy of sEH inhibition and specifically our IND candidate, EC5026, has indicated that it is efficacious against chemotherapy induced peripheral neuropathy (CIPN). This painful neuropathy develops from chemotherapy treatment, is notoriously difficult to treat, and can lead to discontinuation of life-prolonging cancer treatments. Thus, new therapeutic approaches are urgently needed. The research team will investigate if EC5026 has potential drug-drug interaction with approved chemotherapeutics or alters immune cells function, and assess the effects of sEHI on the lipid metabolome and probe for changes in endoplasmic reticulum stress and axonal outgrowth in neurons. The team proposes to more fully characterize the analgesic potential of our compound and investigate on and off target actions in CIPN models and model systems relevant to cancer therapy.

1R61AT012421-01
Integrative Training Program for Pediatric Sickle Cell Pain Clinical Research in Pain Management Advancing Health Equity in Pain Management NCCIH EMORY UNIVERSITY SIL, SOUMITRI Atlanta, GA 2022
NOFO Title: HEAL Initiative: Advancing Health Equity in Pain and Comorbidities (R61/R33 Clinical Trial Required)
NOFO Number: RFA-NS-22-037
Summary:

Sickle cell disease is an inherited blood disorder affecting about 100,000 Americans and more than 20 million people worldwide. It is caused by a mutation in the gene for beta-globin that results in the characteristic sickled shape of red blood cells, life-long severe pain, and shortened lifespan. Optimal treatment of  chronic pain from the condition targets psychological factors contributing to pain, such as pain-related anxiety, fear of movement, and depression. This project will interact with patients and their families to revise and test an existing mind–body and behavioral health treatment tool to target the unique needs and preferences of people managing chronic sickle cell disease pain.