Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Sort descending Year Awarded
1UG3AR077360-01
A sequenced-strategy for improving outcomes in patients with knee osteoarthritis pain Clinical Research in Pain Management Pain Management Effectiveness Research Network (ERN) NIAMS JOHNS HOPKINS UNIVERSITY COHEN, STEVEN P (contact); CAMPBELL, CLAUDIA MICHELLE; CASTILLO, RENAN C Baltimore, MD 2019
NOFO Title: HEAL Initiative: Pain Management Effectiveness Research Network: Clinical Trial Planning and Implementation Cooperative Agreement (UG3/UH3 Clinical Trial Required)
NOFO Number: RFA-NS-19-021
Summary:

The goal of this proposal is to conduct a randomized controlled trial to evaluate the comparative effectiveness of conservative behavioral and nonopioid pharmacological treatments (Phase I) and, among nonresponders, the benefits of nonsurgical procedural interventions (Phase II). Aim 1 will evaluate the effectiveness of individual and combined online cognitive behavioral therapy (painTRAINER) and pharmacologic treatment (duloxetine) in improving pain and function for knee osteoarthritis (KOA) patients compared with standard of care. Aim 2 will determine if genicular nerve radiofrequency ablation or intra-articular injection of hyaluronic acid and steroid is more effective in improving outcomes than local anesthetic nerve block or standard of care and help establish the role of these interventional treatments in the overall management of pain in KOA patients. Aim 3 will test whether clinical and psychosocial phenotypes predict short- and long-term treatment response.

1RF1AG068997-01
Subchondral Bone Cavities in Osteoarthritis Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS JOHNS HOPKINS UNIVERSITY CAO, XU; GUAN, YUN Baltimore, MD 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

A key marker of inflammation in Osteoarthritis (OA) is accompanied by significantly increased sensory innervation within the diseased joint. This study aims to validate the hypothesis that defective bone resorbing cells are responsible for the enlarged bone cavity, giving rise to the inflammatory marker causing further increases in levels sensory innervation and resulting in increased OA pain perception.

1R61AT012279-01
Quantifying and Treating Myofascial Dysfunction in Post Stroke Shoulder Pain Clinical Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NCCIH JOHNS HOPKINS UNIVERSITY RAGHAVAN, PREETI Baltimore, MD 2022
NOFO Title: HEAL Initiative: Developing Quantitative Imaging and Other Relevant Biomarkers of Myofascial Tissues for Clinical Pain Management
NOFO Number: RFA-AT-22-003
Summary:

Shoulder pain occurs in many patients who are recovering from a stroke. In addition to impairments in the ability to move, persistent shoulder pain contributes to depression, and often reduces quality of life. Although the cause of post-stroke shoulder pain is complex and not completely understood, it is thought to arise in part to damage of muscles and surrounding connective tissues (myofascial tissues) in the shoulder. This project will use advanced medical imaging techniques to create biomarkers of that can reliably identify myofascial tissues. The research will then test the ability of these biomarkers to monitor, and ultimately predict treatment responses in patients with post-stroke shoulder pain in the context of a randomized controlled clinical trial.

1K24AR081143-01
Mentorship of Junior Investigators on HEAL-SKOAP Clinical Research in Pain Management NIAMS JOHNS HOPKINS UNIVERSITY Campbell, Claudia Michelle Baltimore, MD 2021
NOFO Title: Midcareer Investigator Award in Patient-Oriented Research (Parent K24 Independent Clinical Trial Required)
NOFO Number: PA-20-193
Summary:

The HEAL-funded Sequenced-strategy for Improving Outcomes in People with Knee Osteoarthritis Pain (SKOAP) clinical trial evaluates behavioral, pharmacologic, and procedural interventions for patients with knee osteoarthritis pain. It is designed to mimic clinical care for these patients by first testing the effectiveness of conservative and nonsurgical interventions before considering surgical interventions. It is a large-scale clinical trial with a novel design that evaluates multidisciplinary treatments. Therefore, it offers a unique training opportunity for junior investigators from various disciplines who are interested in pain research and management. This mentoring award will allow a selected investigator to train junior investigators by providing protected, mentorship-focused time.

3R01MD009063-05S1
ETHNIC DIFFERENCES IN ENDOGENOUS PAIN REGULATION: PET IMAGING OF OPIOID RECEPTORS Clinical Research in Pain Management NIMHD Johns Hopkins University CAMPBELL, CLAUDIA MICHELLE Baltimore, MD 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Ethnic groups show substantial variability in the experience of acute and clinical pain, with African Americans (AAs) having more clinical pain conditions and higher levels of pain severity and pain-related disability compared to non-Hispanic whites (NHW). Ethnic differences in opioid neurotransmitters suggest that these systems function less efficiently among AAs and may account for differences in pain and analgesic responses. The overwhelming majority of clinically used opioids elicit their effects through activation of the mu-opioid receptor, making it a relevant target for investigation. We propose to examine ethnic differences in the supraspinal endogenous opioid system using positron emission tomography (PET) imaging of mu-opioid receptors employing the mu-selective agonist [11C]carfentanil. Healthy AAs and sex-, age-, SES-matched NHW participants will undergo one baseline (non-pain) and one capsaicin-induced pain PET session using [11C]carfentanil. The current proposal will measure µ-opioid binding potential and examine its role in ethnic group differences in pain sensitivity.

1R01DE029074-01A1
Novel Target Identification for Treatment of Chronic Overlapping Pain Using Multimodal Brain Imaging Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF MARYLAND BALTIMORE TRAUB, RICHARD J; MELEMEDJIAN, OHANNES KEVORK Baltimore, MD 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

As many as 64% of patients with Temporomandibular Joint Disorders (TMJDs) report symptoms consistent with Irritable Bowel Syndrome (IBS). However the underlying connection between these comorbid conditions is unclear and treatment options are poor. As such, pain management for these Chronic Overlapping Pain Conditions (COPCs) is a challenge for physicians and patients. This project will determine whether the convergence of pain from different peripheral tissues and perceived stress occurs in the brain and elicits a change in central neural processing of painful stimuli. This project will identify and validate specific lipids, enzymes and metabolic pathways that change expression in the brain during the transition from acute to chronic overlapping pain that can be therapeutically targeted to treat COPCs. Multi-disciplinary approaches will be used to combine brain imaging, visualization of spatial distribution of molecules, genetics, pharmacological and behavioral research techniques.

1UG3NS115718-01
Development of MRGPRX1 positive allosteric modulators as non-addictive therapies for neuropathic pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS JOHNS HOPKINS UNIVERSITY TSUKAMOTO, TAKASHI Baltimore, NC 2019
NOFO Title: Optimization of Non-addictive Therapies [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-010
Summary:

Although opioid-based analgesics have been proven effective in reducing the intensity of pain for many neuropathic pain conditions, their clinical utility is grossly limited due to the substantial risks involved in such therapy, including nausea, constipation, physical dependence, tolerance, and respiratory depression. Cumulative evidence suggests that human Mas-related G protein-coupled receptor X1 (MRGPRX1) is a promising target for pain with limited side effects due to its restricted expression in nociceptors within the peripheral nervous system; however, direct activation of MRGPRX1 at peripheral terminals is expected to induce itch side effects, limiting the therapeutic utility of orthosteric MRGPRX1 agonists. This finding led to the exploration of positive allosteric modulators (PAMs) of MRGPRX1 to potentiate the effects of the endogenous agonists at the central terminals of sensory neurons without activating peripheral MRGPRX1. An intrathecal injection of a prototype MRGPRX1 PAM, ML382, effectively attenuated evoked, persistent, and spontaneous pain without causing itch side effects. The goal of this study is to develop a CNS-penetrant small-molecule MRGPRX1 PAM that can be given orally to treat neuropathic pain conditions.

1U19NS130617-01
Harvard PRECISION Human Pain Center Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS BRIGHAM AND WOMEN'S HOSPITAL RENTHAL, WILLIAM RUSSELL (contact); WOOLF, CLIFFORD J Boston, MA 2022
NOFO Title: HEAL Initiative: Discovery and Functional Evaluation of Human Pain-associated Genes and Cells (U19 Clinical Trial Not Allowed)
NOFO Number: NS22-018
Summary:

This project will use state-of-the-art technologies to analyze individual cells to characterize how human pain receptors communicate pain between the human dorsal root ganglia and the brain – including how the signals vary across diverse populations. This research will generate useful, high-quality human data about pain for further analysis and re-use by other scientific teams, toward identifying and prioritizing novel therapeutic targets for pain.

1R61AT012284-01
Electrophysiological and Ultrasound Quantitative Biomarkers for Myofascial Pain Clinical Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NCCIH BETH ISRAEL DEACONESS MEDICAL CENTER RUTKOVE, SEWARD B (contact); WAINGER, BRIAN JASON Boston, MA 2022
NOFO Title: HEAL Initiative: Developing Quantitative Imaging and Other Relevant Biomarkers of Myofascial Tissues for Clinical Pain Management
NOFO Number: RFA-AT-22-003
Summary:

Pain in the muscles and surrounding connective tissue (myofascial pain) is a significant and poorly understood health concern affecting hundreds of millions of Americans. There is a great need for tools to assess changes to myofascial tissues in individuals with chronic pain as well as to measure the effect of commonly used therapies. This project will use three imaging tools to look at differences between shoulder tissue in people with myofascial pain compared to those without pain. Using a machine learning approach, this research aims to develop a biomarker signature for myofascial pain, which will be evaluated in a randomized controlled clinical trial based on its ability to predict patient responses to myofascial pain treatments.

1UG3AT010621-01
Group-based mindfulness for patients with chronic low back pain in the primary care setting Clinical Research in Pain Management Pragmatic and Implementation Studies for the Management of Pain to Reduce Opioid Prescribing (PRISM) NCCIH BOSTON MEDICAL CENTER MORONE, NATALIA E Boston, MA 2019
NOFO Title: HEAL Initiative: Pragmatic and Implementation Studies for the Management of Pain to Reduce Opioid Prescribing (PRISM)(UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-AT-19-004
Summary:

The opioid crisis has underscored the urgency of alleviating patients’ chronic low back pain (cLBP) with effective therapies, including evidence-based nonpharmacologic approaches. Mindfulness-based stress reduction (MBSR) is now recommended by the American College of Physicians for initial treatment of cLBP. A pragmatic clinical trial (PCT) will inform health care decision makers about whether this program can be implemented in a real-life clinical setting and measure its impact on outcomes. The OPTIMUM (Optimizing Pain Treatment In Medical settings Using Mindfulness) program will integrate and test an evidence-based mindfulness clinical pain program for patients with cLBP in the primary care provider (PCP) setting. It will be conducted with three health care system sites. Four hundred and fifty persons ? 18 years of age with cLBP will be randomized to OPTIMUM + PCP Usual Care or PCP Usual Care.

1R43DE029369-01
A Novel Opioid-Free Targeted Pain Control Method for Acute Post-Operative Localized Pain Related to Oral Surgical Procedures Cross-Cutting Research Small Business Programs NIDCR LAUNCHPAD MEDICAL, LLC JADIA, RAHUL; KAY, GEORGE Boston, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

There is a compelling need to develop a front line, non-opioid-based acute pain management strategy for outpatient oral surgical procedures. LaunchPad Medical has developed Tetranite® (TN), a novel bone regenerative mineral-organic self-setting adhesive biomaterial. TN has been extensively studied in vivo in a canine jaw model and shown to be effective and well-tolerated. In this project, researchers will demonstrate that drug-loaded TN can be a novel route to providing localized and time release pain medication following wisdom tooth extraction by determining the release profile of various pain medications from TN at different concentrations. The ability to release pain therapeutics in a controlled fashion and directly at the site of injury offers improved pain control following oral surgical procedures without exposing the patient to opioids. This novel approach to pain management can be extended to more invasive orthopedic procedures such as joint replacement, spinal fusions or reconstructive trauma surgery. In Phase II the team will conduct an in vivo study to assess efficacy of medicated TN to address post-operative pain following wisdom tooth odontectomy, optimize incorporation and release of medications in TN formulations, develop cGMP manufacturing process for the compounded product, and ultimately conduct clinical trials for bone void filler using medicated TN.

1R01HD110922-01
CMG2 as a Target for Safe and Effective Treatment of Endometriosis-Associated Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NICHD BOSTON CHILDREN'S HOSPITAL ROGERS, MICHAEL SEAN Boston, MA 2022
NOFO Title: HEAL Initiative: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: NS22-034
Summary:

Endometriosis is an often-painful disorder in which uterine tissue grows outside the uterus. Treatment of endometriosis-associated pain involves use of opioids in many women. This project aims to study a culprit gene thought to be involved with the disorder (capillary morphogenesis gene or CMG2) as a target for new, nonopioid pain medications. The research will also clarify how CMG2 s affects endometriosis-associated pain to test the effects of new medications for endometriosis pain.

1R61NS126029-01A1
Inhibiting RIPK1 with Necrostatin-1 for Safe and Effective Pain Treatment Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS Massachusetts General Hospital SHEN, SHIQIAN (contact); HOULE, TIMOTHY T; WANG, CHANGNING ; ZHANG, CAN MARTIN Boston, MA 2022
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: NS21-029
Summary:

Recent studies have reported that neuropathic pain involves changes in the central nervous system that are linked to necroptosis (programmed necrotic cell death) and release of cellular components that create neuroinflammation. Necroptosis is a type of necrotic cell death affected by the protein receptor-interacting serine/threonine-protein kinase 1 (RIPK1 or RIP1). Preliminary studies also indicate that pain increases levels of RIPK1 in key brain regions implicated in pain processing. This project aims to further validate RIPK1 as a target for neuropathic pain using a newly developed positron emission tomography imaging approach. The work will pave the way for new brain-penetrant RIPK1 inhibitors as a safe, effective, and nonaddictive treatment approach for neuropathic pain.

1U24NS115689-01
Specialized Clinical Center at MGH for the Early Phase Pain Investigation Clinical Network Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS MASSACHUSETTS GENERAL HOSPITAL MAO, JIANREN Boston, MA 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trial Not Allowed)
NOFO Number: NS115689-01
Summary:

The MGH EPPIC-Net hub will utilize two well-established collaborative entities in both patient care and clinical research at the Massachusetts General Hospital (MGH): 1) MGH Division of Pain Medicine and 2) MGH Center for Translational Pain Research. This hub-spoke network at MGH will include four core spokes consisting of both academic centers and community health care organizations, as well as over a dozen spokes that can be recruited as needed based on special requirements of phase II trials and research studies. The responsibilities of this hub-spoke network at MGH include a) coordinating phase II trials/clinical biomarker validation studies; b) recruiting well-phenotyped subjects in a timely manner; c) collecting clinical data and targeted outcome data tailored to meet the needs of each clinical trial/study; and d) maintaining communications within and outside the hub, including the NIH EPPIC-Net.

1R61NS113341-01
Discovery of the Biomarker Signature for Neuropathic Corneal Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS Tufts Medical Center HAMRAH, PEDRAM Boston, MA 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Neuropathic corneal pain (NCP) causes patients to have severe discomfort and a compromised quality of life (QoL). The lack of signs observed by standard examination has resulted in misdiagnosis as dry eye disease (DED). An optical biopsy using laser in vivo confocal microscopy (IVCM) revealed that microneuromas (bulbs at the ends of severed nerves caused by buildup of molecular constituents) are present in NCP but not DED and may serve as a biomarker for NCP. The aims are to (1) use a database of more than 2,000 DED/NCP subjects and more than 500,000 IVCM images to confirm that the presence of microneuromas is an appropriate biomarker for NCP, (2) provide biological validation of microneuromas, (3) develop a validated artificial intelligence (AI) program for automated identification of microneuromas, and (4) establish the clinical utility of microneuromas observed by IVCM as a biomarker for NCP in a prospective, multicenter study.

1DP2TR004354-01
Scale Up Single-Cell Technologies to Map Pain-Associated Genes and Cells Across the Lifespan Cross-Cutting Research Training the Next Generation of Researchers in HEAL NCATS Massachusetts General Hospital SHU, JIAN Boston, MA 2022
NOFO Title: Emergency Awards: HEAL Initiative- New Innovator Award (DP2 Clinical Trial Not Allowed)
NOFO Number: RFA-tr-22-013
Summary:

Current treatments for chronic pain, including opioids, are not effective for many individuals. Much remains unknown about genes, circuits, and cells that contribute to chronic pain, including how chronic pain changes across the lifespan in certain populations, including infants, children, older people, and pregnant women. This project will develop technology to map the genes, circuits, and cells associated with pain across ages, sexes, and during pregnancy. The technologies will guide the search for new biomarkers for chronic pain diagnosis and treatments.

1U01DK123818-01
Reducing Chronic Pain and Opioid Use in Hemodialysis Patients Clinical Research in Pain Management Integrated Approach to Pain and Opioid Use in Hemodialysis Patients NIDDK MASSACHUSETTS GENERAL HOSPITAL KALIM, SAHIR (contact); NIGWEKAR, SAGAR Boston, MA 2019
NOFO Title: HEAL Initiative: Integrated Approach to Pain and Opioid Use in Hemodialysis Patients: The Hemodialysis Opioid Prescription Effort (HOPE) Consortium - Clinical Centers (U01 Clinical Trial Required)
NOFO Number: RFA-DK-18-030
Summary:

Because pain is a multidimensional phenomenon with physical and psychosocial components, a pain management approach relying solely on analgesics is unlikely to be efficacious. Nonpharmacologic therapies for co-occurring chronic pain and opioid use in hemodialysis patients should target and alter cognitive-affective circuits that govern responses elicited by pain, stress, mood disorders, and opioid-related cues. These domains are directly addressed through the behavioral therapy program known as MORE (Mindfulness-Oriented Recovery Enhancement)—a multipronged mindfulness-oriented individualized group therapy that integrates mindfulness training, cognitive reappraisal, and enhancement of natural reward processing. The specific aims are 1) to determine the impact of MORE on chronic pain and opioid use in hemodialysis patients and 2) to determine predictors of chronic pain, opioid use, and response to MORE.

1UG3NS123965-01
Novel, non-opioid, non-addictive intrathecal therapy for the treatment of chronic pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS CENTREXION THERAPEUTICS CORPORATION CAMPBELL, JAMES N Boston, MA 2021
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Patients with severe, intractable chronic pain primarily receive treatment with opioids, and non-opioid treatment options are urgently needed. These patients may be candidates for treatment using other types of pain medications administered via intrathecal injection—that is, injection directly into the fluid-filled space between the membranes surrounding the brain and spinal cord. Intrathecal injection requires much lower medication doses than systemic administration. Centrexion Therapeutics Corporation seeks to develop CNTX-3100, a highly selective and highly potent novel small molecule that activates the nociception receptor (NOPr), for intrathecal administration using a pump approved by the U.S. Food and Drug Administration. In animal studies, such NOPr agonists had powerful analgesic effects when delivered directly to the spinal cord by intrathecal administration. CNTX-3100 has ideal properties for intrathecal delivery and in animal studies provided pain relief and a safety profile that was superior to intrathecally administered morphine. This project will scale up the drug, develop a formulation that ensures a stable product for intrathecal delivery, and conduct preclinical toxicity studies to prepare for a Phase 1 clinical trial.

1RM1NS128741-01
From Nerve to Brain: Toward a Mechanistic Understanding of Spinal Cord Stimulation in Human Subjects Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS Massachusetts General Hospital WAINGER, BRIAN JASON (contact); FREEMAN, ROY ; LOGGIA, MARCO LUCIANO Boston, MA 2022
NOFO Title: HEAL Initiative: Interdisciplinary Teams to Elucidate the Mechanisms of Device-Based Pain Relief (RM1 Clinical Trial Optional)
NOFO Number: NS22-016
Summary:

Spinal cord stimulators (SCS) and related devices are commonly used for hard-to-treat pain conditions, but how they work remains unclear. This knowledge is important for improving device design and stimulation patterns, as well as for determining which patients will benefit. Through a series of clinical studies in patients with SCS devices, this project will explore the hypothesis that SCS devices reduce pain by changing the excitability of peripheral sensory nerve fibers in the spinal cord. The results should guide development of biomarkers to advance research further.

3U19TW009872-05S1
NOVEL THERAPEUTIC AGENTS FROM THE BACTERIAL SYMBIONTS OF BRAZILIAN INVERTEBRATES Preclinical and Translational Research in Pain Management FIC HARVARD MEDICAL SCHOOL CLARDY, JON; PUPO, MONICA T Boston, MA 2018
NOFO Title: Limited Competition: International Cooperative Biodiversity Groups (U19)
NOFO Number: RFA-TW-13-001
Summary:

An International Cooperative Biodiversity Group with an interdisciplinary leadership team of physicians, pharmacologists, evolutionary biologists, and chemists will discover and develop therapeutic agents produced by Brazilian symbiotic bacteria. The team will target three therapeutic areas: 1) infectious fungal pathogens, 2) Chagas disease and leishmaniasis, and 3) cancers of the blood. All three areas represent major threats to human health that need to be addressed with new therapeutic agents. Internationally, invasive fungal diseases kill more people than malaria or TB, while Chagas disease imposes a special burden on Brazil, killing as many Brazilians as TB. Leishmaniasis has now passed Chagas disease in the Brazilian population. Despite major improvements in cancer chemotherapy, cancer is projected to result in 8 million deaths internationally this year (13% of all deaths, WHO) and an estimated 13 million per year by 2030.

1OT2NS122680-01
A 24-week Week Study to Evaluate the Safety and Efficacy of CNTX-6970 in Subjects with Moderate to Severe Knee Osteoarthritis Pain. Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS Massachussetts General Hospital FAVA, MAURIZIO Boston, MA 2021
NOFO Title: HEAL Initiative: EPPIC-Net Pain Research Asset Application (OT2)
NOFO Number: OTA-20-008
Summary:

This award funds EPPIC-NET’s first phase 2 clinical trial, testing the novel oral drug CNTX-6970 in patients with moderate to severe knee osteoarthritis pain. It will include 150 participants at EPPIC-Net sites across the United States. Preclinical studies of CNTX-6970, which binds effectively and dose-proportionally to C-C chemokine type 2 (CCR2) receptors, have demonstrated potent analgesia in multiple pain models, with no emergent safety issues. CNTX-6970 has effects both at an affected joint, as well as on neural signaling. Participants will be randomized to receive CNTX-6970, placebo, or a third pain medication and will be followed for 24 weeks.

1U24NS113850-01
Clinical Coordinating Center for the Health Initiative in Early Phase Pain Investigation Clinical Network Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS MASSACHUSETTS GENERAL HOSPITAL FAVA, MAURIZIO (contact); EDWARDS, ROBERT R; RATHMELL, JAMES P Boston, MA 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Clinical Coordinating Center (U24 Clinical Trials Not Allowed)
NOFO Number: RFA-NS-19-023
Summary:

The objective of the Early Phase Pain Investigation Clinical Network (EPPIC-Net) and EPPIC- Net initiatives is to rapidly and efficiently translate advances in the neurobiology of pain into treatments for people with chronic and acute pain, conditions associated with a significant burden to both patients and society. The Clinical Coordinating Center (CCC) for EPPIC-Net will promote and facilitate, from initial conception through final analysis, clinical trials in adult and pediatric populations with acute or chronic pain by providing efficient methodological, organizational, and logistical support. The EPPIC-Net-CCC will adopt and establish processes aimed at dramatically increasing the efficiency of multicenter clinical trials, improving the overall quality of clinical trials, promoting patient recruitment and retention as well as increasing the number of clinical investigators and research staff well trained and passionate about leading and conducting multicenter clinical trials.

1K24NS126570-01
Mentorship in Precision Pain Medicine via the Early Phase Pain Investigation Clinical Network Clinical Research in Pain Management NINDS Brigham and Women's Hospital Edwards, Robert R Boston, MA 2021
NOFO Title: Midcareer Investigator Award in Patient-Oriented Research (Parent K24 Independent Clinical Trial Required)
NOFO Number: PA-20-193
Summary:

Throughout clinical pain research, there is a need to increase the workforce of researchers familiar with individualized treatment strategies known as precision pain medicine. This mentoring award will leverage EPPIC-Net’s Clinical Coordinating Center resources to encourage interest in clinical pain management, in particular through multidisciplinary pain research projects. A selected clinician-researcher  will mentor early career investigators and provide them with hands-on training activities and other skill-building experiences in clinical pain research, with a focus on precision pain medicine, biomarker development, and pain assessment. Mentoring activities will include formal educational coursework, inclusion in EPPIC-Net working groups, and collaborative writing experiences.

1R61AG081034-01
Addressing the Chronic Pain Epidemic among Older Adults in Underserved Community Center; The GetActive+ Study Clinical Research in Pain Management Advancing Health Equity in Pain Management NIA Massachusetts General Hospital VRANCEANU, ANA-MARIA (contact); RITCHIE, CHRISTINE S Boston, MA 2022
NOFO Title: HEAL Initiative: Advancing Health Equity in Pain Management (R61/R33 Clinical Trial Required)
NOFO Number: NS22-002
Summary:

This research project will include focus group interviews with clinicians, patients, medical interpreters, and healthcare administrators to identify barriers and facilitators to administering the GetActive+ intervention in a group visit at a clinic for older adults with chronic pain, to inform development of a therapy manual. The project will then test the GetActive+ intervention for changes in physical function immediately post-intervention and after 6 months, as well as for changes in pain, sleep, depression, and anxiety at both time points. This research will also assess feasibility, acceptability, fidelity, and adoption of the intervention with patients, providers, and healthcare staff. 

3U24NS113850-03S1
Clinical Coordinating Center for the Health Initiative in Early Phase Pain Investigation Clinical Network - Murray Supplement Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS MASSACHUSETTS GENERAL HOSPITAL FAVA, MAURIZIO (contact); EDWARDS, ROBERT R; RATHMELL, JAMES P Boston, MA 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for Administrative Supplements to Support Career Enhancement Related to Clinical Research on Pain (Admin Supp – Clinical Trial Not Allowed)
NOFO Number: NOT-NS-21-048
Summary:

Key goals of the NIH HEAL Initiative are improving non-opioid pain management and expanding the workforce of clinical researchers working on individualized pain treatments know as pain precision medicine. This award enables an exceptional early career clinician with the opportunity to obtain expertise with high-quality pain-related biomarker assessment methods and biomarker-informed clinical trial design. This research centers on eating-related gastrointestinal functional/motility pain disorders – an understudied area of clinical pain science – and will prepare the clinician to be a future leader in the clinical pain research community.