Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Sort descending Investigator(s) Location(s) Year Awarded
1R61CA280979-01
Cancer Pain Management: A Technology-Based Intervention for Asian American Breast Cancer Survivors Clinical Research in Pain Management Advancing Health Equity in Pain Management NCI EMORY UNIVERSITY IM, EUN-OK (contact); CHEE, WONSHIK Atlanta, GA 2022
NOFO Title: HEAL Initiative: Advancing Health Equity in Pain and Comorbidities (R61/R33 Clinical Trial Required)
NOFO Number: RFA-NS-22-037
Summary:

Asian American women who have survived breast cancer and who also have depression are less likely to receive adequate pain treatment due to cultural stigma attached to breast cancer, cultural attitudes about living with pain and symptoms, and language barriers. This project will use a personalizable, technology-based approach to treat cancer pain and depression in Japanese American, Chinese American, and Korean American women who have survived breast cancer. The intervention will accommodate flexibility, accessibility, and anonymity: three factors that have historically hindered effective pain management for this population of breast cancer survivors.

1R43DE029379-01
Therapeutic in Situ Analgesic Implant for improved Oral-Facial Post-Operative Pain Outcomes Cross-Cutting Research Small Business Programs NIDCR EPIGEN BIOSCIENCES, INC. FRIEDMAN, CRAIG; CAUDLE, ROBERT M San Diego, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

Analgesia for post-operative populations remains a significant health need that calls for innovative therapies which improve both safety and outcome measures. Recent FDA drug safety warnings and studies focusing on post-operative analgesia have highlighted the imperative need for new approaches that can be utilized for common clinical scenarios. Accordingly, novel treatment options that are safe and afford additional benefit in relief of pain are needed. In this proposal, the development of an innovative surgical sealant technology is proposed that functions at the level of the surgical wound bed and actively delivers local pharmacologic agents to therapeutically address post-operative pain. New formulations of several analgesic regimens will be assessed for their ability to seal wounds and provide appropriate pain management.

1R44NS125745-01A1
Development and Evaluation of Computerized Chemosensory-Based Orbitofrontal Networks Training for Treatment of Pain (CBOT-P) Cross-Cutting Research Small Business Programs NINDS EVON MEDICS, LLC NWAOKOBIA, CHARLES CHIEDU (contact); NWULIA, EVARISTUS A Elkridge, MD 2022
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 - Clinical Trial Required)
NOFO Number: RFA-NS-20-010
Summary:

Research shows that individuals with chronic pain may experience brain changes that contribute to anxiety, depression, and cognitive impairment. This project will test a user-friendly, home-based device to treat chronic pain. The device stimulates the brain through olfactory training: repetitive daily stimulation with specific smells. The research will optimize a treatment approach and test the device in a clinical study.

1R43NS115294-01
Developing EXP-1801 as an imaging agent to quantify pain and analgesia Cross-Cutting Research Small Business Programs NINDS EXPESICOR, INC. NORWOOD, BRAXTON Kalispell, MT 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

The use of a pain imaging technology would allow for objective efficacy data (both pre-clinically and in clinical trials), and reduce costs by enabling smaller sample sizes due to more homogeneous populations; i.e. with a particular “pain signal,” and more accurate measurement of analgesic effects. This research team recently invented a novel positron emission tomography (PET) imaging agent as a tool to address these issues in pain care and therapy development. Although the ability of PET to detect pathological changes for (early) disease detection is widely used in cancer and neurological diseases, it has not yet been used for pain indications. The goals of this project are: 1) to change the evaluation of (experimental) pain therapies, and 2) the standard of care in pain assessment through molecular imaging. The proposed study is designed to determine the feasibility of our imaging agent to objectively measure pain in rodents. This will set the stage for a Phase II study that further develops this agent into a tool for quantifying pain/analgesia.

1R43NS115312-01
Long-acting ghrelin for neuropathy Cross-Cutting Research Small Business Programs NINDS EXTEND BIOSCIENCES, INC. SOLIMAN, TARIK Newton, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

There is a need for safe, effective, well- tolerated drugs to treat painful neuropathy by halting or reversing the underlying pathology of the disease. One promising approach to treating painful neuropathy without opioids is the use of ghrelin, a 28-amino acid acylated peptide hormone. However, it has a short half-life and must be delivered via a constant intravenous infusion to have a therapeutic effect. Extend Biosciences' D-VITylation platform technology is truly enabling for small peptide-based therapeutics that are rapidly cleared from the bloodstream by renal filtration. The platform harnesses the naturally long half-life of vitamin D and its dedicated binding protein, VDBP. When the vitamin D molecule is conjugated to a biological therapeutic, it dramatically improves the half-life and bioavailability of the drug. Use of the technology should also allow the drug to be self-administered by subcutaneous injection. This would be of significant benefit to patients. In this project, the team will test the efficacy of EXT405 in a cell-based model of neuropathy as well as in animal models of CIPN and diabetes- induced neuropathy.

1R43NS119087-01A1
Evaluating the Blood-Brain Barrier Bioavailability and in vivo Efficacy Potential of a Novel TAK1 Inhibitor Targeting Chronic Pain Cross-Cutting Research Small Business Programs NINDS EYDIS BIO, INC. SCARNEO, SCOTT (contact); HAYSTEAD, TIMOTHY A Durham, NC 2021
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: NS-20-011
Summary:

Over-the-counter medicines such as non-steroidal anti-inflammatory drugs are ineffective for treating severe chronic pain and may have serious side effects from continued use, which limits treatment options. A kinase (an enzyme whose activity targets a specific molecule) called TAK1 is involved in the chronic pain process. This research will develop a molecule previously shown to be effective in a model of inflammatory pain that also inhibits TAK1. A main goal will be to determine if this inhibitor (takinib analog HS-276) can cross the blood-brain barrier and, if successful, pursue FDA  Investigative New Drug-enabling safety studies leading to a Phase I clinical trial and a potential new chronic pain treatment.

1R61AT012286-01
Multimodal Imaging Biomarkers for Investigating Fascia, Muscle, and Vasculature in Myofascial Pain Clinical Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NCCIH GEORGE MASON UNIVERSITY SIKDAR, SIDDHARTHA Fairfax, VA 2022
NOFO Title: HEAL Initiative: Developing Quantitative Imaging and Other Relevant Biomarkers of Myofascial Tissues for Clinical Pain Management
NOFO Number: RFA-AT-22-003
Summary:

Pain in the muscles and surrounding connective tissue (myofascial pain) is a significant health concern affecting hundreds of millions of Americans.  Myofascial pain is primarily diagnosed by asking people about their amount of pain as well as through a physical examination. Both approaches are imprecise ways to diagnose the specific type of pain a patient is experiencing and what is causing it. This project aims to improve myofascial pain management and treatment by developing ways to measure changes to soft tissues (e.g., muscle, connective tissues, nerves, blood vessels) in people with myofascial pain compared with soft tissues in people who are not in pain. The project will develop an imaging biomarker that can distinguish healthy and diseased soft tissues that may contribute to myofascial pain syndrome. The project will then test the ability of these biomarkers to predict patient outcomes in a randomized controlled clinical trial.

3U10HD036801-21S1
MFMU HEAL Initiative Opportunity: Opioid Prescription Protocols at Discharge after cesarean delivery Clinical Research in Pain Management Pain Management Effectiveness Research Network (ERN) NICHD George Washington University Clifton, Rebecca Washington, DC 2019
NOFO Title: Data Coordinating Center for the NICHD Cooperative Multicenter Maternal Fetal Medicine Units Research Network (U10)
NOFO Number: RFA-HD-13-014
Summary:

Cesarean deliveries are the most commonly performed surgical procedure in the United States. Opioids are almost universally used for post-cesarean analgesia management. Studies suggest that most women are prescribed more tablets at discharge than needed. These often go unused, providing an important reservoir contributing to the opioid crisis. Physicians struggle to prescribe and dose postoperative opioids appropriately while tackling the real needs of acute pain from surgery. Without literature to guide obstetric providers on appropriate amounts of opioids to prescribe upon discharge, actual prescription amounts nationally vary widely by up to 65 tablets. To improve post-cesarean opioid prescribing practices without compromising pain management, the study will test an individualized, patient-empowered approach for pain management and opioid prescription quantity. This is a noninferiority randomized trial of 5,500 women with a cesarean delivery who will be randomized prior to discharge.

3U19TW007401-14S1
EXPLORATION, CONSERVATION, & DEVELOPMENT OF MARINE BIODIVERSITY IN FIJI AND THE SOLOMON ISLANDS Preclinical and Translational Research in Pain Management FIC GEORGIA INSTITUTE OF TECHNOLOGY HAY, MARK E ATLANTA, GA 2018
NOFO Title: Limited Competition: International Cooperative Biodiversity Groups (U19)
NOFO Number: RFA-TW-13-001
Summary:

This International Cooperative Biodiversity Group application aims to discover and develop small molecule drug leads from cultured marine microbes and diverse coral reef organisms collected from Fiji and the Solomon Islands. Drug discovery efforts will focus on four major disease areas of relevance to the United States and low- and middle-income countries: infectious disease, including tuberculosis and drug-resistant pathogens; neglected tropical diseases, including hookworms and roundworms; cancer; and neurodegenerative and central nervous system disorders. Screening in these therapeutic areas will be performed in collaboration with two major pharmaceutical companies, two highly respected academic groups, and various testing centers and government resources that are available to facilitate drug discovery and development. The acquisition of source material for this program will be linked to biotic surveys, informed by ecological investigations addressing the chemical mediation of biotic interactions, and enriched using ecology-based strategies designed to maximize secondary metabolite production and detection.

3U19TW009872-05S1
NOVEL THERAPEUTIC AGENTS FROM THE BACTERIAL SYMBIONTS OF BRAZILIAN INVERTEBRATES Preclinical and Translational Research in Pain Management FIC HARVARD MEDICAL SCHOOL CLARDY, JON; PUPO, MONICA T Boston, MA 2018
NOFO Title: Limited Competition: International Cooperative Biodiversity Groups (U19)
NOFO Number: RFA-TW-13-001
Summary:

An International Cooperative Biodiversity Group with an interdisciplinary leadership team of physicians, pharmacologists, evolutionary biologists, and chemists will discover and develop therapeutic agents produced by Brazilian symbiotic bacteria. The team will target three therapeutic areas: 1) infectious fungal pathogens, 2) Chagas disease and leishmaniasis, and 3) cancers of the blood. All three areas represent major threats to human health that need to be addressed with new therapeutic agents. Internationally, invasive fungal diseases kill more people than malaria or TB, while Chagas disease imposes a special burden on Brazil, killing as many Brazilians as TB. Leishmaniasis has now passed Chagas disease in the Brazilian population. Despite major improvements in cancer chemotherapy, cancer is projected to result in 8 million deaths internationally this year (13% of all deaths, WHO) and an estimated 13 million per year by 2030.

1UH2AR076731-01
Development, Evaluation and Translation of Robotic Apparel for Alleviating Low Back Pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS HARVARD UNIVERSITY WALSH, CONOR Cambridge, MA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

A primary factor contributing to acute or recurrent back injury is overexertion via excessive peak and cumulative forces on the back and the primary factors involved in the progression of acute low back injury to chronic low back pain (cLBP) include maladaptive motor control strategies, muscle hyperactivity, reduced movement variability, and the development of fear cognitions. This project will focus on the development of robotic apparel with integrated biofeedback components that can reduce exertion; encourage safe, varied movement strategies; and promote recovery. Robotic apparel will be capable of providing supportive forces to the back and hip joints through adaptive control algorithms that respond to dynamic movements and becoming fully transparent when assistance is no longer needed. This technology can be used to prevent cLBP caused by overexertion and provide a new tool to physical therapists and the clinical community to enhance rehabilitation programs.

3U01DE027441-02S1
DE-IMPLEMENTING OPIOID USE AND IMPLEMENTING OPTIMAL PAIN MANAGEMENT FOLLOWING DENTAL EXTRACTIONS Clinical Research in Pain Management NIDCR HealthPartners Institute RINDAL, D. BRAD MINNEAPOLIS, MN 2018
NOFO Title: Implementation Science Research to Improve Dental, Oral and Craniofacial Health (U01)
NOFO Number: RFA-DE-18-001
Summary:

The primary objective of this project is to de-implement the use of opioid analgesics for the management of postoperative pain following dental extractions and to implement effective alternative pain management. We propose a cluster-randomized trial designin which dental practitioners are randomly assigned to one of three conditions: 1) standard practice as a control condition; 2) a clinical decision support (CDS) tool that will extract patient history and interface with the state prescription drug monitoring program to provide personalized recommendations for analgesic prescribing and offer language for discussing non-opioid pain management; 3) an enhanced version of the CDS (CDS-E) that will also include information regarding optimal, evidence-based non-opioid pain management delivered to the patient both before and following the dental extraction visit. We will examine opioid and non-opioid prescribing data from the electronic health record across study arms as well as other provider- and patient-focused outcomes using mixed methods.

1U01DK123816-01
The Hemodialysis Opioid Prescription Effort Consortium Clinical Research in Pain Management Integrated Approach to Pain and Opioid Use in Hemodialysis Patients NIDDK HENNEPIN HEALTHCARE RESEARCH INSTITUTE JOHANSEN, KIRSTEN L (contact); BART, GAVIN ; KREBS, ERIN ELIZABETH; LIU, JIANNONG Minneapolis, MN 2019
NOFO Title: HEAL Initiative: Integrated Approach to Pain and Opioid Use in Hemodialysis Patients: The Hemodialysis Opioid Prescription Effort (HOPE) Consortium - Clinical Centers (U01 Clinical Trial Required)
NOFO Number: RFA-DK-18-030
Summary:

Despite the pervasive use of opioid analgesics in the dialysis population and the substantial risks they engender, their efficacy is limited in treating common chronic pain conditions. Most patients receiving long-term opioid therapy continue to experience severe pain and functional limitations. To simultaneously address problems related to chronic pain and opioid use in the U.S. hemodialysis population, this study will evaluate tailored patient-centered interventions to manage pain and reduce opioid use. Patients will be assigned randomly to one of three groups over a 12-month study period: 1) pain care management (PCM) versus 2) PCM plus an online pain self-management program (PSM) that incorporates cognitive behavioral training and is delivered during dialysis sessions, versus 3) control with medication review and education. The study will also evaluate the effectiveness of offering buprenorphine by randomly assigning participants in both active treatment arms to being offered buprenorphine rotation versus continued standard opioid taper support without the option of buprenorphine.

3R44TR001326-03S1
Automation and validation of human on a chip systems for drug discovery Cross-Cutting Research Small Business Programs NCATS HESPEROS, LLC SHULER, MICHAEL L; HICKMAN, JAMES J Orlando, FL 2019
NOFO Title: PHS 2017-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-17-302
Summary:

Hesperos uses microphysiological systems in combination with functional readouts to establish systems capable of analysis of chemicals and drug candidates for toxicity and efficacy during pre-clinical testing, with initial emphasis on predictive toxicity. The team constructed physiological systems that represent cardiac, muscle and liver function, and demonstrated a multi-organ functional cardiac/liver module for toxicity studies as well as metabolic activity evaluations. In addition, the team demonstrated multi-organ toxicity in a 4-organ system composed of neuronal, cardiac, liver and muscle components. While much is known about the cells and neural circuitry regulating pain modulation there is limited knowledge regarding the precise mechanism by which peripheral and spinal level antinociceptive drugs function, and no available human-based model reproducing this part of the pain pathway. The ascending pain modulatory pathways provide a well characterized neural architecture for investigating pain regulatory physiology. In this project, the research team propose a human-on-a-chip neuron tri-culture system composed of nociceptive neurons, GABAergic interneurons and glutamatergic dorsal projection neurons (DPN) integrated with a MEMS construct. Using this model, investigators will interrogate pain signaling physiology at three levels, 1) at the site of origin by targeting nociceptive neurons with pain modulating compounds including noxious stimuli and inflammatory mediators, 2) at the inhibitory GABAergic interneuron, and 3) at the ascending spinal level by targeting glutamatergic DPNs. These circuits will be integrated utilizing expertise in patterning neurons as well as integration with BioMEMs devices. This system provides scientists with a better understanding of ascending pain pathway physiology and enable clinicians to consider alternative indications for treating pain at peripheral and spinal levels. 

1R44AR076885-01
Enhancing Physical Therapy: Noninvasive Brain Stimulation System for Treating Carpal Tunnel Syndrome Cross-Cutting Research Small Business Programs NIAMS HIGHLAND INSTRUMENTS, INC. WAGNER, TIMOTHY ANDREW; DIPIETRO, LAURA Cambridge, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Required)
NOFO Number: PA-18-573
Summary:

 Non-Invasive Brain Stimulation (NIBS) has been successfully applied for the treatment of chronic pain (CP) in some disease states, where treatment induced changes in brain activity revert maladaptive plasticity associated with the perception/sensation of CP [25-28]. However, the most common NIBS methods, e.g., transcranial direct current stimulation, have shown limited, if any, efficacy in treating neuropathic pain. It has been postulated that limitations in conventional NIBS techniques’ focality, penetration, and targeting control limit their therapeutic efficacy . Electrosonic Stimulation (ESStim™) is an improved NIBS modality that overcomes the limitations of other technologies by combining independently controlled electromagnetic and ultrasonic fields to focus and boost stimulation currents via tuned electromechanical coupling in neural tissue . This proposal is focused on evaluating whether our noninvasive ESStim system can effectively treat CP in carpal tunnel syndrome (CTS), both as a lone treatment and in conjunction with physical therapy (PT). Investigators hypothesize ESStim can be provided synergistically with PT, as both can encourage plasticity-dependent changes which could maximally improve a CTS patient’s pain free mobility. In parallel with the CTS treatments, the team will build multivariate linear and generalized linear regression models to predict the CTS patient outcomes related to pain, physical function, and psychosocial assessments as a function of baseline disease characteristics. The computational work will be used to develop an optimized CTS ESStim dosing model. 

1UG3NS127943-01
Oral N2O Therapy in Treating Acute Vaso-Occlusive Pain in Sickle Cell Disease Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS Hillhurst Biopharmaceuticals, Inc. GOMPERTS, EDWARD (contact); BELCHER, JOHN D; SIMONE, DONALD Montrose, CA 2022
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Inhaled nitrous oxide, N2O, is used in emergency departments in Europe to treat pain associated with sickle cell disease as well as for labor, painful fractures, and to manage serious gynecological pain. It is not a viable therapeutic option for home use for reasons such as poor dosing control, potential inhalation equipment issues, and variability in patient ventilation and lung absorption. This project seeks to optimize, characterize, and develop an oral formulation of N2O that could be used by patients at home for unpredictable and severe episodes of pain associated sickle cell disease. Once developed, the new oral formulation of N2O will be evaluated to determine whether it or an optimized version is ready for more clinical testing.

1R44HD107822-01
A Novel Medical System for Quantitative Diagnosis and Personalized Precision Botulinum Neurotoxin Injection in Chronic Pelvic Pain Management Cross-Cutting Research Small Business Programs NICHD HILLMED, INC. DIAS, NICHOLAS Katy, TX 2021
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 - Clinical Trial Required)
NOFO Number: RFA-NS-20-010
Summary:

Chronic pelvic pain affects social and sexual quality of life in up to 20% of women in the United States. It is often managed with physical therapy approaches, but when these measures fail, injection therapies may be indicated. These include injection of botulinum neurotoxin, which leads to muscle relaxation in the pelvic floor and thus pain relief. However, botulinum neurotoxin has dose-dependent side effects and is expensive. Therefore, a precision injection technique to administer botulinum neurotoxin so that it remains effective while minimizing adverse effects and costs is needed. Hillmed Inc. has developed a technique to assess the pelvic floor and choose the optimal injection site, which has improved treatment outcome in initial analyses. They are now aiming to develop a commercializable, personalized precision injection medical device for botulinum toxin and software package that will enable clinicians to optimize botulinum neurotoxin injection. They will then assess the system’s efficacy in a clinical trial of women with chronic pelvic pain and healthy women.

1R43HD107727-01A1
Novel Approach to Personalize and Monitor Therapeutic Training At Home in Chronic Pelvic Pain Management Cross-Cutting Research Small Business Programs NICHD Hillmed, Inc. DIAS, NICHOLAS Katy, TX 2022
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

Chronic pelvic pain is a debilitating condition that negatively affects the social and sexual quality of life for up to 20% of American women. Pelvic floor muscle (PFM) pain is caused by many factors, as well as by incorrect posture and excessive sensitization of the peripheral nervous system. This project will introduce a prototype of the Chronic Pelvic Pain (CPP) HomeTrainer that monitors, quantitatively and in real time, both PFM activation capacity and muscle interactions between the PFM and hip/trunk muscles and adapts the PFM training to the user’s needs in their own home. The proposed CPP HomeTrainer offers biofeedback to aid myofascial physical therapy and movement pattern training by tailoring the protocol to specifically correct interactions between the PFM and problematic hip/trunk muscles.

1R34NS126030-01
Profiling the human gut microbiome for potential analgesic bacterial therapies Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS HOLOBIOME, INC. STRANDWITZ, PHILIP PETER (contact); GILBERT, JACK ANTHONY Cambridge, MA 2021
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development Initial Translational Efforts [Small Molecules and Biologics] (R34 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-21-016
Summary:

Disruptions in make-up of the microbiome are associated with disorders characterized by chronic pain and inflammation, such as rheumatoid arthritis and fibromyalgia. The gut microbiome has immune and metabolic effects, and human gut-derived bacteria may be a source of novel, safe, and non-addictive pain treatments. However, connections between gut and pain signals, known as the “gut–pain axis,” are still poorly understood. This study aims to identify human-gut-native bacteria that i) interact with known pain targets in lab studies, ii) test their activity and analgesic/anti-inflammatory potential in an animal model, and iii) develop a computational approach to predict microbial-genetic effects on pain signals.

1OT2NS122680-01
A Multicenter, Randomized, Double-Blind, Placebo-Controlled Study to Assess the Safety and Efficacy of 80 mg o.d. of NRD135S.El Versus Placebo in Adult and Elderly Subjects with Painful Diabetic Peripheral Neuropathy (SERENDIPITY-I) Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI ROBINSON-PAPP, JESSICA New York, NY 2021
NOFO Title: HEAL Initiative: EPPIC-Net Pain Research Asset Application (OT2)
NOFO Number: OTA-20-008
Summary:

People with diabetes are at risk for painful diabetic peripheral neuropathy. This pain may be experienced as burning, aching, hypersensitivity to touch, or simply as pain, and there are no currently FDA-approved medications that reduce its symptoms. This phase 2 clinical trial, through the EPPIC-NET program, will test a potential new treatment for painful diabetic peripheral neuropathy. The molecule, NRD135S.E1, is a lab-made version of a natural substance traditionally used to brew tea to treat a variety of indications, including pain, in a village in Siberia. In clinical studies, NRD135S.E1 was well tolerated by patients and showed clinically relevant pain relief. Testing within EPPIC-Net will use a master protocol, an innovative study design in which multiple treatments can be tested at the same time with fewer research participants.

3R37DA020686-13S1
Role for Tas2Rs in opioid addiction Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDA ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI KENNY, PAUL J. New York, NY 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

Opioids and other addictive substances have powerful rewarding properties that drive the development of addiction. They also have aversive properties that motivate their avoidance and protect against addiction. This project will explore the role of Type 2 Taste Receptor proteins (Tas2Rs or T2Rs) in regulating the aversive properties of opioids, potentially establishing an entirely new class of receptors that can be targeted for the development of novel addiction therapeutics.

1OT2NS122680-01
A Randomized, Double-blind, Placebo-controlled, Parallel, 20-week, Phase 2b Study of Topical Pirenzepine (WST-057) or Placebo in Type 2 Diabetes Mellitus Patients with Painful Diabetic Peripheral Neuropathy Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI ROBINSON-PAPP, JESSICA New York, NY 2021
NOFO Title: HEAL Initiative: EPPIC-Net Pain Research - Application for Clinical Trial and Related Activities (OT2)
NOFO Number: OTA-20-008
Summary:

People with diabetes are at risk for painful diabetic peripheral neuropathy. This pain may be experienced as burning, aching, hypersensitivity to touch, or simply as pain, and there are no currently FDA-approved medications that reduce its symptoms. This phase 2 clinical trial, through the EPPIC-NET program, will test a potential new treatment for painful diabetic peripheral neuropathy. The treatment, WST-057 (topical pirenzepine 4%), is a molecule that was developed in the 1980s and marketed throughout Europe and Asia in an oral form to treat gastric ulcers. Studies show that this type of molecule can increase the density of certain nerve fibers, which has been linked with improve patient-reported outcome measures for painful diabetic peripheral neuropathy.

1U24NS113849-01
The Icahn School of Medicine at Mount Sinai (ISMMS) EPPIC-Net Specialized Clinical Center Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI ROBINSON-PAPP, JESSICA New York, NY 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trials Not Allowed)
NOFO Number: RFA-NS-19-025
Summary:

The Icahn School of Medicine at Mount Sinai (ISMMS) will support the mission of the Early Phase Pain Investigation Clinical Network (EPPIC-Net), through the ISMMS Department of Neurology as the core of a hub and spokes structure. The study contains four specific aims: (1) to streamline and optimize rapid implementation of EPPIC-Net studies, exceeding the required minimum of 100 subjects recruited per year to EPPIC-Net studies; (2) to ensure access to patient populations with a wide range of pain disorders, including CLBP, using a hub and spokes model to ensure effective recruitment; (3) to provide the highest-quality protocol implementation, deep clinical phenotyping of pain disorders, and accurate and complete data collection; and (4) to work collaboratively with the EPPIC-Net Coordinating Centers and investigators from the NIH HEAL Partnership to assist with development/design of clinical trials. The study team will also increase training opportunities through EPPIC-Net within ISMMS and the larger pain research community, training junior investigators to become future pain clinical trials leaders and increase and disseminate knowledge about pain research throughout the network.

3U24NS113849-01S1
The Icahn School of Medicine at Mount Sinai (ISMMS) EPPIC-Net Specialized Clinical Center Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI ROBINSON-PAPP, JESSICA New York, NY 2020
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for Administrative Supplements to Promote Training in Clinical Research on Pain (Admin Supp ? Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-044
Summary:

Exacerbation of health disparities has emerged during the COVID 19 pandemic and highlighted the recognition that minority underrepresentation in clinical research may contribute to racial disparities in health outcomes. In clinical trials related to pain, disparities in trial patient inclusion are documented by white patients often being overrepresented. Mitigating these disparities is an area in which an early-career pain investigator training and contributions may have lasting benefits. The pandemic also drove rapid expansion of telehealth for pain management without knowledge of how social and demographic factors affect utilization patterns of this care delivery model. This supplement supports research to examine the extent to which disparities exist in access to and outcomes of telehealth in socially marginalized pain patients. Findings will be applied to enrich the diversity in clinical trial populations for phase 2 safety trials performed in the HEAL EPPIC Network.

1R61NR020845-01
Equity Using Interventions for Pain and Depression (EQUIPD) Clinical Research in Pain Management Advancing Health Equity in Pain Management NINR INDIANA UNIV-PURDUE UNIV AT INDIANAPOLIS MATTHIAS, MARIANNE Indianapolis, IN 2022
NOFO Title: HEAL Initiative: Advancing Health Equity in Pain and Comorbidities (R61/R33 Clinical Trial Required)
NOFO Number: RFA-NS-22-037
Summary:

Opioid overdose deaths disproportionately affect Black individuals in the United States. While the use of complementary and integrative pain treatments is effective and widely recommended, Black pain patients (especially those who also have depression) face barriers to the use of these approaches. This project will refine, test, and prepare to implement a novel approach to overcoming these treatment barriers. The research will partner with and empower Black patients to find safe, effective pain treatments that best match their values, preferences, and lifestyles.