Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Sort descending Investigator(s) Location(s) Year Awarded
1U01DK123818-01
Reducing Chronic Pain and Opioid Use in Hemodialysis Patients Clinical Research in Pain Management Integrated Approach to Pain and Opioid Use in Hemodialysis Patients NIDDK MASSACHUSETTS GENERAL HOSPITAL KALIM, SAHIR (contact); NIGWEKAR, SAGAR Boston, MA 2019
NOFO Title: HEAL Initiative: Integrated Approach to Pain and Opioid Use in Hemodialysis Patients: The Hemodialysis Opioid Prescription Effort (HOPE) Consortium - Clinical Centers (U01 Clinical Trial Required)
NOFO Number: RFA-DK-18-030
Summary:

Because pain is a multidimensional phenomenon with physical and psychosocial components, a pain management approach relying solely on analgesics is unlikely to be efficacious. Nonpharmacologic therapies for co-occurring chronic pain and opioid use in hemodialysis patients should target and alter cognitive-affective circuits that govern responses elicited by pain, stress, mood disorders, and opioid-related cues. These domains are directly addressed through the behavioral therapy program known as MORE (Mindfulness-Oriented Recovery Enhancement)—a multipronged mindfulness-oriented individualized group therapy that integrates mindfulness training, cognitive reappraisal, and enhancement of natural reward processing. The specific aims are 1) to determine the impact of MORE on chronic pain and opioid use in hemodialysis patients and 2) to determine predictors of chronic pain, opioid use, and response to MORE.

1RM1NS128741-01
From Nerve to Brain: Toward a Mechanistic Understanding of Spinal Cord Stimulation in Human Subjects Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS Massachusetts General Hospital WAINGER, BRIAN JASON (contact); FREEMAN, ROY ; LOGGIA, MARCO LUCIANO Boston, MA 2022
NOFO Title: HEAL Initiative: Interdisciplinary Teams to Elucidate the Mechanisms of Device-Based Pain Relief (RM1 Clinical Trial Optional)
NOFO Number: NS22-016
Summary:

Spinal cord stimulators (SCS) and related devices are commonly used for hard-to-treat pain conditions, but how they work remains unclear. This knowledge is important for improving device design and stimulation patterns, as well as for determining which patients will benefit. Through a series of clinical studies in patients with SCS devices, this project will explore the hypothesis that SCS devices reduce pain by changing the excitability of peripheral sensory nerve fibers in the spinal cord. The results should guide development of biomarkers to advance research further.

1U24NS113850-01
Clinical Coordinating Center for the Health Initiative in Early Phase Pain Investigation Clinical Network Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS MASSACHUSETTS GENERAL HOSPITAL FAVA, MAURIZIO (contact); EDWARDS, ROBERT R; RATHMELL, JAMES P Boston, MA 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Clinical Coordinating Center (U24 Clinical Trials Not Allowed)
NOFO Number: RFA-NS-19-023
Summary:

The objective of the Early Phase Pain Investigation Clinical Network (EPPIC-Net) and EPPIC- Net initiatives is to rapidly and efficiently translate advances in the neurobiology of pain into treatments for people with chronic and acute pain, conditions associated with a significant burden to both patients and society. The Clinical Coordinating Center (CCC) for EPPIC-Net will promote and facilitate, from initial conception through final analysis, clinical trials in adult and pediatric populations with acute or chronic pain by providing efficient methodological, organizational, and logistical support. The EPPIC-Net-CCC will adopt and establish processes aimed at dramatically increasing the efficiency of multicenter clinical trials, improving the overall quality of clinical trials, promoting patient recruitment and retention as well as increasing the number of clinical investigators and research staff well trained and passionate about leading and conducting multicenter clinical trials.

1R61AG081034-01
Addressing the Chronic Pain Epidemic among Older Adults in Underserved Community Center; The GetActive+ Study Clinical Research in Pain Management Advancing Health Equity in Pain Management NIA Massachusetts General Hospital VRANCEANU, ANA-MARIA (contact); RITCHIE, CHRISTINE S Boston, MA 2022
NOFO Title: HEAL Initiative: Advancing Health Equity in Pain Management (R61/R33 Clinical Trial Required)
NOFO Number: NS22-002
Summary:

This research project will include focus group interviews with clinicians, patients, medical interpreters, and healthcare administrators to identify barriers and facilitators to administering the GetActive+ intervention in a group visit at a clinic for older adults with chronic pain, to inform development of a therapy manual. The project will then test the GetActive+ intervention for changes in physical function immediately post-intervention and after 6 months, as well as for changes in pain, sleep, depression, and anxiety at both time points. This research will also assess feasibility, acceptability, fidelity, and adoption of the intervention with patients, providers, and healthcare staff. 

3U24NS113850-03S1
Clinical Coordinating Center for the Health Initiative in Early Phase Pain Investigation Clinical Network - Murray Supplement Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS MASSACHUSETTS GENERAL HOSPITAL FAVA, MAURIZIO (contact); EDWARDS, ROBERT R; RATHMELL, JAMES P Boston, MA 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for Administrative Supplements to Support Career Enhancement Related to Clinical Research on Pain (Admin Supp – Clinical Trial Not Allowed)
NOFO Number: NOT-NS-21-048
Summary:

Key goals of the NIH HEAL Initiative are improving non-opioid pain management and expanding the workforce of clinical researchers working on individualized pain treatments know as pain precision medicine. This award enables an exceptional early career clinician with the opportunity to obtain expertise with high-quality pain-related biomarker assessment methods and biomarker-informed clinical trial design. This research centers on eating-related gastrointestinal functional/motility pain disorders – an understudied area of clinical pain science – and will prepare the clinician to be a future leader in the clinical pain research community.

1UH2AR076741-01
Imaging Epigenetic Dysregulation in Patients with Low Back Pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS MASSACHUSETTS GENERAL HOSPITAL WEY, HSIAO-YING Boston, MA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

Inhibitors of the epigenetic enzymes histone deacetylases (HDACs) produce analgesic responses and are therefore therapeutic targets for pain. The research team recently resolved a PET imaging agent, [11C]Martinostat, that selectively binds to a subset of HDAC enzymes. A series of initial proof-of-concept clinical validation studies will be conducted to evaluate whether [11C]Martinostat PET is a sensitive biomarker to detect the typical (axial) chronic low back pain (cLBP). The research team will validate [11C]Martinostat PET’s ability to differentiate subtypes of pain by comparing axial cLBP and other cLBP patients with radiculopathy and longitudinally study subacute LBP patients (sLBP) to investigate whether there is a unique imaging signature that differentiates patients who develop cLBP and those who recover from low back pain. Using [11C]Martinostat to understand HDAC expression changes in chronic pain patients will validate an epigenetic drug target, refine patient selection based on HDAC expression, and facilitate proof of mechanism in developing novel analgesics.

1R61NS126029-01A1
Inhibiting RIPK1 with Necrostatin-1 for Safe and Effective Pain Treatment Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS Massachusetts General Hospital SHEN, SHIQIAN (contact); HOULE, TIMOTHY T; WANG, CHANGNING ; ZHANG, CAN MARTIN Boston, MA 2022
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: NS21-029
Summary:

Recent studies have reported that neuropathic pain involves changes in the central nervous system that are linked to necroptosis (programmed necrotic cell death) and release of cellular components that create neuroinflammation. Necroptosis is a type of necrotic cell death affected by the protein receptor-interacting serine/threonine-protein kinase 1 (RIPK1 or RIP1). Preliminary studies also indicate that pain increases levels of RIPK1 in key brain regions implicated in pain processing. This project aims to further validate RIPK1 as a target for neuropathic pain using a newly developed positron emission tomography imaging approach. The work will pave the way for new brain-penetrant RIPK1 inhibitors as a safe, effective, and nonaddictive treatment approach for neuropathic pain.

1U24NS115689-01
Specialized Clinical Center at MGH for the Early Phase Pain Investigation Clinical Network Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS MASSACHUSETTS GENERAL HOSPITAL MAO, JIANREN Boston, MA 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trial Not Allowed)
NOFO Number: NS115689-01
Summary:

The MGH EPPIC-Net hub will utilize two well-established collaborative entities in both patient care and clinical research at the Massachusetts General Hospital (MGH): 1) MGH Division of Pain Medicine and 2) MGH Center for Translational Pain Research. This hub-spoke network at MGH will include four core spokes consisting of both academic centers and community health care organizations, as well as over a dozen spokes that can be recruited as needed based on special requirements of phase II trials and research studies. The responsibilities of this hub-spoke network at MGH include a) coordinating phase II trials/clinical biomarker validation studies; b) recruiting well-phenotyped subjects in a timely manner; c) collecting clinical data and targeted outcome data tailored to meet the needs of each clinical trial/study; and d) maintaining communications within and outside the hub, including the NIH EPPIC-Net.

1OT2NS122680-01
A 24-week Week Study to Evaluate the Safety and Efficacy of CNTX-6970 in Subjects with Moderate to Severe Knee Osteoarthritis Pain. Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS Massachussetts General Hospital FAVA, MAURIZIO Boston, MA 2021
NOFO Title: HEAL Initiative: EPPIC-Net Pain Research Asset Application (OT2)
NOFO Number: OTA-20-008
Summary:

This award funds EPPIC-NET’s first phase 2 clinical trial, testing the novel oral drug CNTX-6970 in patients with moderate to severe knee osteoarthritis pain. It will include 150 participants at EPPIC-Net sites across the United States. Preclinical studies of CNTX-6970, which binds effectively and dose-proportionally to C-C chemokine type 2 (CCR2) receptors, have demonstrated potent analgesia in multiple pain models, with no emergent safety issues. CNTX-6970 has effects both at an affected joint, as well as on neural signaling. Participants will be randomized to receive CNTX-6970, placebo, or a third pain medication and will be followed for 24 weeks.

1R61CA278594-01
Achieving Equity through SocioCulturally-Informed, Digitally-Enabled Cancer Pain managemeNT" (ASCENT) Clinical Trial Clinical Research in Pain Management Advancing Health Equity in Pain Management NCI Mayo Clinic CHEVILLE, ANDREA LYNNE (contact); DOUBENI, CHYKE ABADAMA Rochester, MN 2022
NOFO Title: HEAL Initiative: Advancing Health Equity in Pain Management (R61/R33 Clinical Trial Required)
NOFO Number: NS22-002
Summary:

Cancer pain treatment disparities are associated with a decreased ability to tolerate treatment, as well as increased rates of disability, unemployment, institutionalization, and early death. The Achieving Equity through SocioCulturally-informed, Digitally-Enabled Cancer Pain managemeNT (ASCENT) clinical trial will test whether a novel digitally enabled, collaborative approach to team-based pain management can improve clinical outcomes and reduce long-standing and devastating disparities among rural dwelling and Hispanic/Latinx cancer survivors. A major focus of the randomized, effectiveness clinical trial is to test the hypothesis that the ASCENT intervention will reduce pain and unplanned healthcare use, while improving function, mood, sleep, and quality of life.

1R61NS113315-01
Biomarker Signature to Predict the Persistence of Post-Traumatic Headache Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS MAYO CLINIC ARIZONA CHONG, CATHERINE DANIELA Scottsdale, AZ 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

There is currently no recognized way of accurately predicting who will recover from post-traumatic headache (PTH) during the acute phase following concussion and who will go on to develop persistent post-traumatic headache (PPTH), a condition that is difficult to treat effectively. Clinical experience suggests that early treatment is most effective, before headache patterns become persistent, but treating all patients with PTH would expose some patients to unnecessary treatment. Clinicians lack the information needed to make informed treatment decisions. Therefore, the study goals are to develop a prognostic biomarker signature for PPTH using clinical data and structural and functional brain neuroimaging and to assess the predictive accuracy of an ensemble biomarker signature for the early identification of patients at high risk for PPTH. This study can be translated into clinical practice and integrated into PTH clinical trials for early identification of those individuals who are at high risk for PPTH.

1UG3AG067593-01
Non-pharmacological Options in postoperative Hospital-based And Rehabilitation pain Management (NOHARM) pragmatic clinical trial Clinical Research in Pain Management Pragmatic and Implementation Studies for the Management of Pain to Reduce Opioid Prescribing (PRISM) NIA MAYO CLINIC ROCHESTER CHEVILLE, ANDREA LYNNE (contact); TILBURT, JON C Rochester, MN 2019
NOFO Title: HEAL Initiative: Pragmatic and Implementation Studies for the Management of Pain to Reduce Opioid Prescribing (PRISM)(UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-AT-19-004
Summary:

Prescriptions for narcotic pain relief after surgery result in unintended prolonged opioid use for hundreds of thousands of Americans. Nonpharmacological pain care is effective and recommended by guidelines for perioperative pain while offering a more favorable risk-benefit ratio. However, nonpharmacological pain care is rarely used as first or second-line therapy after surgery. Patient and clinician decision support interventions are effective in encouraging patient-centered and guideline-concordant care, but these strategies have not been tested pragmatically as a bundle in everyday postoperative pain care. The NOHARM trial will first confirm the feasibility of patient-facing and clinician-facing decision support components of an EHR-embedded evidence-based bundle. The investigators will test the bundle in a stepped-wedge cluster randomized trial. They will test a sustainable system strategy that could change the paradigm of perioperative pain management toward nonpharmacological options in a manner that preserves patient function, honors patient values, and maintains availability of opioids as a last resort.

1R61AT012185-01
MRI-Based Quantitative Characterization of Impaired Myofascial Interface Properties in Myofascial Pain Syndrome Clinical Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NCCIH MAYO CLINIC ROCHESTER YIN, ZIYING (contact); BAUER, BRENT A Rochester, MN 2022
NOFO Title: HEAL Initiative: Developing Quantitative Imaging and Other Relevant Biomarkers of Myofascial Tissues for Clinical Pain Management
NOFO Number: RFA-AT-22-003
Summary:

Pain in the muscles and surrounding connective tissue (myofascial pain) is a significant health concern affecting hundreds of millions of Americans. Understanding and managing myofascial pain has been limited due to a lack of tools to help clinicians diagnose and treat this disorder. While past efforts to understand myofascial pain have focused on impairments in how connective tissues connect to other tissues in the body, this project will use a new imaging technique to study myofascial tissue physical properties, including how they move in the body and their structural stiffness. This research will identify an imaging biomarker to be used in a randomized controlled clinical trial to predict patient responses to a myofascial pain treatment.

1R61NS114954-01
The Inflammatory Index as a Biomarker for Pain in Patients with Sickle Cell Disease Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS MEDICAL COLLEGE OF WISCONSIN BRANDOW, AMANDA M Milwaukee, WI 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Debilitating pain is the most common complication of sickle cell disease (SCD), but there is significant variability in pain expression in these patients. Currently, there is no plasma biomarker that can prognosticate which patients are likely to experience pain. The overall goal of this proposed research is to develop a biomarker that prognosticates the clinical expression of pain in SCD. Project aims are to (1) derive the inflammatory index for pain by identifying inflammatory and immune regulatory gene probe sets that will distinguish healthy controls, patients with SCD in baseline health, and patients with SCD in acute pain and (2) determine whether co-expressed genes from patients with SCD correlate with clinical pain data. Subsequent aims are to (1) determine the clinically meaningful changes of the index in patients with SCD and (2) investigate the preliminary clinical validity of the index as a prognostic biomarker for pain in patients with SCD.

1U24NS115679-01
MACC/EPICC-Net as a Hub for the HEAL Initiative EPICC-Net Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS MEDICAL COLLEGE OF WISCONSIN HERNANDEZ-MEIER, JENNIFER LYNN (contact); AUFDERHEIDE, TOM PAUL Madison, WI 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-036
1U24NS113846-01
Medical University of South Carolina Specialized Clinical Center of EPPIC-Net Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS MEDICAL UNIVERSITY OF SOUTH CAROLINA BORCKARDT, JEFFREY J (contact); BRADY, KATHLEEN T Charleston, SC 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trials Not Allowed)
NOFO Number: RFA-NS-19-025
Summary:

The Medical University of South Carolina (MUSC) Specialized Clinical Center (Hub) of the Early Phase Pain Investigation Clinical Network (EPPIC-Net) will provide a robust and readily accessible infrastructure for rapid implementation and performance of high-quality comprehensive studies of novel treatments for patients with a wide variety of pain conditions. The MUSC-Hub will harness multidisciplinary clinical, research, statistical, and data management expertise to provide the scientific leadership and infrastructure required to design and conduct multisite Phase II clinical trials, biomarker validation studies, and deep phenotyping of patient populations as part of the EPPIC-Net with the overall goal of accelerating the development of new therapies for patients with acute and/or chronic pain.

1U44NS115111-01
High-Resolution, Spinal Cord Stimulation for Non-Opioid Treatment of Neuropathic Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS MICRO-LEADS, INC. MCLAUGHLIN, BRYAN L Somerville, MA 2019
NOFO Title: HEAL Initiative: Translational Devices to Treat Pain (U44 Clinical Trial Optional)
NOFO Number: RFA-NS-19-017
Summary:

The research team will develop HD64—a high-resolution, 64-channel spinal cord stimulation therapy to provide more pain relief for those suffering from chronic neuropathic pain and opioid dependence. HD64 provides an ultra-thin conformal blanket of stimulation contacts across the width of the spinal cord and enables more precise targeting of the lateral structures of the spinal cord to enhance pain relief. A cadaveric pilot run followed by a non-significant risk intraoperative study will be performed to inform the design parameters of HD64 arrays. The study will evaluate activation of medial and lateral spinal targets. At the end of Phase 1, the clinical feasibility of HD64 surgical leads will be established. In Phase 2, researchers will develop an external active lead pulse generator and charger. They will perform an early feasibility study human trial using active HD64 and mechanical and electrical design verification testing and chronic safety studies in large animals.

3U44NS115111-02S1
High-Resolution, Spinal Cord Stimulation for Non-Opioid Treatment of Neuropathic Pain Preclinical and Translational Research in Pain Management NINDS MICRO-LEADS, INC. MCLAUGHLIN, BRYAN L Somerville, MA 2020
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA18-591
Summary:

This project aims to develop and clinically validate a 64-channel spinal cord stimulation therapy for treating chronic neuropathic pain of the lower extremities, groin, and lower back. With an increased channel count and the ability to precisely target medial and lateral structures of the spinal cord, the system will treat chronic pain with greater efficacy and reduced side effects. This project will pursue a safe, effective, and non-addictive treatment for neuropathic pain through the testing of enhanced HD64 active leads to be manufactured under GMP regulations. The leads will then undergo electrical, mechanical, biocompatibility, and sterilization testing before being tested in a 10-subject early feasibility study.

3U44NS115111-03S1
High-Resolution, Spinal Cord Stimulation for Non-Opioid Treatment of Neuropathic Pain Preclinical and Translational Research in Pain Management NINDS MICRO-LEADS, INC. MCLAUGHLIN, BRYAN L Somerville, MA 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

This research seeks to develop a high-resolution spinal cord stimulation therapy for treating chronic neuropathic pain of the lower extremities, groin, and lower back. Systems that use wireless communication methods require robust strategies to prevent various forms of cyberattacks on implantable devices. The focus of this project's research will be to develop a new cybersecurity risk-reduced architecture for Bluetooth low-energy implant communication.

1R43NS112088-01A1
Repression of Sodium Channels via a Gene Therapy for Treatment of Chronic Neuropathic Pain Cross-Cutting Research Small Business Programs NINDS NAVEGA THERAPEUTICS, INC. MORENO, ANA MARIA; ALEMAN GUILLEN, FERNANDO San Diego, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

Voltage-gated sodium channels are responsible for the transmission of pain signals. Nine genes have been identified, each having unique properties and tissue distribution patterns. Genetic studies have correlated a hereditary loss-of-function mutation in one human Na+ channel isoform – ?Na?V?1.7 – with a rare genetic disorder known as Congenital Insensitivity to Pain (CIP). Individuals with CIP are not able to feel pain without any significant secondary alteration. Thus, selective inhibition of ?Na?V?1.7 in normal humans could recapitulate the phenotype of CIP. This research team developed a non-permanent gene therapy to target pain that is non-addictive (because it targets a non-opioid pathway), highly specific (only targeting the gene of interest), and long-term lasting (around 3 weeks in preliminary assays in mice). During this Phase I , the team will 1) test additional pain targets ?in vitro?, and 2) evaluate the new targets ?in vivo ?in mice models of inflammatory and neuropathic pain. 

1R43NS120410-01A1
Optimization of a Gene Therapy for Chronic Pain in Human DRGs Cross-Cutting Research Small Business Programs NINDS NAVEGA THERAPEUTICS, INC. MORENO, ANA MARIA (contact); ALEMAN GUILLEN, FERNANDO La Jolla, CA 2021
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 - Clinical Trial Not Allowed)
NOFO Number: NS-20-011
Summary:

To avoid the reliance on opioids for treatment of pain, researchers are investigating alternative approaches to disrupt the transmission of pain signals by specialized neurons in the body, such as dorsal root ganglion neurons in the spinal cord. Molecules called voltage-gated sodium channels that are located in the membranes of dorsal root ganglion neurons are essential for transmission of the pain signals. People carrying a specific variant of these channels, NaV1.7, are insensitive to pain; therefore, strategies to block this particular channel might help in the development of non-addictive pain treatment approaches. Navega Therapeutics is developing an innovative gene therapy that specifically targets NaV1.7. Using studies in human cell lines, they will identify the best designs to then test this gene therapy approach in human dorsal root ganglion neurons.

1R43AR074369-01
Development of a fixed-dose combination therapy for the treatment of chronic musculoskeletal pain Cross-Cutting Research Small Business Programs NIAMS NEUROCYCLE THERAPEUTICS, INC. TOCZKO, MATTHEW ALEXANDER Sheridan, WY 2019
NOFO Title: PHS 2017-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-17-302
Summary:

Non-steroidal anti-inflammatory drugs (NSAIDs) are a first line pharmacologic pain therapy for chronic musculoskeletal pain, and rheumatoid arthritis (RA) and moderate to severe osteoarthritis (OA) specifically. However, insufficient pain relief by NSAID monotherapy has encouraged the use of combination therapy. Combinations of NSAIDs plus weak opioids are widely used although objective evidence for efficacy is limited and they have many adverse events.  A growing body of evidence suggests that ?2/?3 subtype-selective positive allosteric modulators (PAM) of the ?- aminobutyric acid A receptor (GABAAR) may effectively restore central pain regulatory mechanisms thus providing effective relief of chronic pain with reduced prevalence and severity of side-effects.  Based on these promising preliminary studies and considerable supporting literature data, the research team will test the hypothesis that combination dosing of TPA-023B with an NSAID will work synergistically to suppress the acute and chronic pain components of chronic musculoskeletal pain. 

3R01DE029951-01S1
Targeting Endosomal Receptors for Treatment of Chronic Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDCR NEW YORK UNIVERSITY BUNNETT, NIGEL W New York, NY 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

G protein-coupled receptors (GPCRs) are the largest family of transmembrane signaling proteins and play important roles in inflammation and pain. GPCR signaling is fast and temporary, making it hard to measure in clinical studies of potential drugs to interfere with the signaling. This research is using selectively designed nanoparticles to stimulate or block GPCRs toward identifying new treatments for oral cancer pain. This award will use a new nanoformulation approach to understand how nanoparticles affect nerve function by i) testing the effects of continuous release of a GPCR inhibitor in an oral cancer microenvironment and ii) investigating the influence of various physicochemical characteristics of nanoparticles on nerve function in an oral cancer microenvironment.

1R01DE032501-01
Targeting HB-EGF and Trigeminal EGFR for Oral Cancer Pain and Opioid Tolerance Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDCR NEW YORK UNIVERSITY YE, YI New York, NY 2022
NOFO Title: HEAL Initiative: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: NS22-034
Summary:

Oral cancers are painful and often require use of opioid medications to manage pain. However, the effectiveness of opioids often wanes quickly, and many patients require higher doses because they develop tolerance to these medications. This project will study the potential value of blocking epidermal growth-factor receptors interacting with peripheral nerves to treat oral cancer pain. The findings will advance understanding of the molecular mechanisms underlying oral cancer pain and provide a rationale for repurposing epidermal growth-factor receptor blockers, which is already approved for head and neck cancer treatment for treating oral cancer and associated pain.

1U24NS113844-01
EPPIC-NET DCC Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS NEW YORK UNIVERSITY SCHOOL OF MEDICINE PETKOVA, EVA (contact); TROXEL, ANDREA B New York, NY 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Data Coordinating Center (U24 Clinical Trials Not Allowed)
NOFO Number: RFA-NS-19-024
Summary:

The Data Coordinating Center (DCC) of the Early Phase Pain Investigation Clinical Network (EPPIC-Net) will be the data and biospecimen manager for pain research within the HEAL Partnership. As such, it will host, manage, standardize, curate, and provide a sharing platform for data and biospecimens for HEAL initiatives, such as the Acute to Chronic Pain Signatures initiative and the BACPAC, in addition to EPPIC-Net studies. The DCC will develop and maintain a databank for depositing data, will link these data with a repository for biological samples, and will create a platform for teams to work together to analyze and interpret data. Further, the DCC will provide leadership in the statistical design and analysis of EPPIC-Net studies and will deploy advanced systems and processes for data collection, management, quality assurance, and reporting. The DCC will create, sustain, and continually advance a robust organization for the rapid design, implementation, and performance of high-quality rigorous Phase II clinical trials to test promising therapeutics for pain.