Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Sort descending Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded
1OT2NS122680-01
A 24-week Week Study to Evaluate the Safety and Efficacy of CNTX-6970 in Subjects with Moderate to Severe Knee Osteoarthritis Pain. Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS Massachussetts General Hospital FAVA, MAURIZIO Boston, MA 2021
NOFO Title: HEAL Initiative: EPPIC-Net Pain Research Asset Application (OT2)
NOFO Number: OTA-20-008
Summary:

This award funds EPPIC-NET’s first phase 2 clinical trial, testing the novel oral drug CNTX-6970 in patients with moderate to severe knee osteoarthritis pain. It will include 150 participants at EPPIC-Net sites across the United States. Preclinical studies of CNTX-6970, which binds effectively and dose-proportionally to C-C chemokine type 2 (CCR2) receptors, have demonstrated potent analgesia in multiple pain models, with no emergent safety issues. CNTX-6970 has effects both at an affected joint, as well as on neural signaling. Participants will be randomized to receive CNTX-6970, placebo, or a third pain medication and will be followed for 24 weeks.

1UH3NS115647-01A1
A Double-Blind, Randomized, Controlled Trial of Epidural Conus Medullaris Stimulation to Alleviate Pain and Augment Rehabilitation in Patients with Subacute Thoracic Spinal Cord Injury (SCI) Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS DUKE UNIVERSITY LAD, SHIVANAND P Durham, NC 2020
NOFO Title: HEAL Initiative: Clinical Devices to Treat Pain (UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-19-018
Summary:

Pain is a major problem for spinal cord injury (SCI) patients that tends to persist and even worsen with time. No treatments are currently available to consistently relieve pain in SCI patients. This study will investigate the feasibility of Epidural Electrical Stimulation (EES) using the Abbott Proclaim? SCS system with two electrodes to treat neuropathic pain in patients with thoracic spinal cord injury. In this double-blind, prospective, randomized clinical trial, patients with subacute, traumatic, complete thoracic SCIs with American Spinal Injury Association (ASIA) Impairment Scale A will be randomized to receive either ?EES on? (treatment intervention) or ?EES off? (control intervention) of the target regions for pain control (lead overlying the spinal cord anatomy corresponding with their pain distribution) and neurorestoration (lead overlying the conus medullaris) as an adjunct to physical therapy. This study will help determine whether EES can help patients with SCI neuropathic pain and have more widespread clinical applicability.

1UG3NS127258-01A1
A First-in-Class, Mechanism-Guided, Cell-Based Therapy for Complex Regional Pain Syndrome Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS CLEVELAND CLINIC LERNER COM-CWRU CHENG, JIANGUO Cleveland, OH 2022
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Complex regional pain syndrome is one of the most disabling and difficult-to-treat chronic pain conditions. This project seeks to develop a novel, biological treatment for the condition using injected human bone marrow cells. that can form and repair skeletal tissues and control nervous and immune system activity. The research will determine the dose and source of clinical-grade bone marrow cells needed, toward the goal of submitting an Investigational New Drug Application to the U.S. Food and Drug Administration that will enable further clinical study.

1OT2NS122680-01
A Multicenter, Randomized, Double-Blind, Placebo-Controlled Study to Assess the Safety and Efficacy of 80 mg o.d. of NRD135S.El Versus Placebo in Adult and Elderly Subjects with Painful Diabetic Peripheral Neuropathy (SERENDIPITY-I) Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI ROBINSON-PAPP, JESSICA New York, NY 2021
NOFO Title: HEAL Initiative: EPPIC-Net Pain Research Asset Application (OT2)
NOFO Number: OTA-20-008
Summary:

People with diabetes are at risk for painful diabetic peripheral neuropathy. This pain may be experienced as burning, aching, hypersensitivity to touch, or simply as pain, and there are no currently FDA-approved medications that reduce its symptoms. This phase 2 clinical trial, through the EPPIC-NET program, will test a potential new treatment for painful diabetic peripheral neuropathy. The molecule, NRD135S.E1, is a lab-made version of a natural substance traditionally used to brew tea to treat a variety of indications, including pain, in a village in Siberia. In clinical studies, NRD135S.E1 was well tolerated by patients and showed clinically relevant pain relief. Testing within EPPIC-Net will use a master protocol, an innovative study design in which multiple treatments can be tested at the same time with fewer research participants.

1R44HD107822-01
A Novel Medical System for Quantitative Diagnosis and Personalized Precision Botulinum Neurotoxin Injection in Chronic Pelvic Pain Management Cross-Cutting Research Small Business Programs NICHD HILLMED, INC. DIAS, NICHOLAS Katy, TX 2021
NOFO Title: HEAL INITIATIVE: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 - Clinical Trial Required)
NOFO Number: RFA-NS-20-010
Summary:

Chronic pelvic pain affects social and sexual quality of life in up to 20% of women in the United States. It is often managed with physical therapy approaches, but when these measures fail, injection therapies may be indicated. These include injection of botulinum neurotoxin, which leads to muscle relaxation in the pelvic floor and thus pain relief. However, botulinum neurotoxin has dose-dependent side effects and is expensive. Therefore, a precision injection technique to administer botulinum neurotoxin so that it remains effective while minimizing adverse effects and costs is needed. Hillmed Inc. has developed a technique to assess the pelvic floor and choose the optimal injection site, which has improved treatment outcome in initial analyses. They are now aiming to develop a commercializable, personalized precision injection medical device for botulinum toxin and software package that will enable clinicians to optimize botulinum neurotoxin injection. They will then assess the system’s efficacy in a clinical trial of women with chronic pelvic pain and healthy women.

1R43DE029369-01
A Novel Opioid-Free Targeted Pain Control Method for Acute Post-Operative Localized Pain Related to Oral Surgical Procedures Cross-Cutting Research Small Business Programs NIDCR LAUNCHPAD MEDICAL, LLC JADIA, RAHUL; KAY, GEORGE Boston, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

There is a compelling need to develop a front line, non-opioid-based acute pain management strategy for outpatient oral surgical procedures. LaunchPad Medical has developed Tetranite® (TN), a novel bone regenerative mineral-organic self-setting adhesive biomaterial. TN has been extensively studied in vivo in a canine jaw model and shown to be effective and well-tolerated. In this project, researchers will demonstrate that drug-loaded TN can be a novel route to providing localized and time release pain medication following wisdom tooth extraction by determining the release profile of various pain medications from TN at different concentrations. The ability to release pain therapeutics in a controlled fashion and directly at the site of injury offers improved pain control following oral surgical procedures without exposing the patient to opioids. This novel approach to pain management can be extended to more invasive orthopedic procedures such as joint replacement, spinal fusions or reconstructive trauma surgery. In Phase II the team will conduct an in vivo study to assess efficacy of medicated TN to address post-operative pain following wisdom tooth odontectomy, optimize incorporation and release of medications in TN formulations, develop cGMP manufacturing process for the compounded product, and ultimately conduct clinical trials for bone void filler using medicated TN.

1R44AR074820-01A1
A phenotypic screen for osteoarthritic pain therapeutics using all-optical electrophysiology Cross-Cutting Research Small Business Programs NIAMS QUELL TX, INC. LIU, PIN; MCMANUS, OWEN B Cambridge, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

 Quell Therapeutics uses the Optopatch platform for making all-optical electrophysiology measurements in neurons at a throughput sufficient for phenotypic screening. Using engineered optogenetic proteins, blue and red light can be used to stimulate and record neuronal activity, respectively. Custom microscopes enable electrophysiology recordings from 100’s of individual neurons in parallel with high sensitivity and temporal resolution, a capability currently not available with any other platform screening technology. Here, researchers combine the Optopatch platform with an in vitro model of chronic pain, where dorsal root ganglion (DRG) sensory neurons are bathed in a mixture of inflammatory mediators found in the joints of osteoarthritis patients. The neurons treated with the inflammatory mixture become hyperexcitable, mimicking the anticipated cellular pain response. Investigators calculate the functional phenotype of arthritis pain, which captures the difference in action potential shape and firing rate in response to diverse stimuli. The team will screen for small molecule compounds that reverse the pain phenotype while minimizing perturbation of neuronal behavior orthogonal to the pain phenotype, the in vitro “side effects.” The highest ranking compounds will be chemically optimized and their pharmacokinetic, drug metabolism, and in vivo efficacy will be characterized. The goal is to advance therapeutic discovery for pain, which may ultimately help relieve the US opioid crisis.

1OT2NS122680-01
A Randomized, Double-blind, Placebo-controlled, Parallel, 20-week, Phase 2b Study of Topical Pirenzepine (WST-057) or Placebo in Type 2 Diabetes Mellitus Patients with Painful Diabetic Peripheral Neuropathy Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI ROBINSON-PAPP, JESSICA New York, NY 2021
NOFO Title: HEAL Initiative: EPPIC-Net Pain Research - Application for Clinical Trial and Related Activities (OT2)
NOFO Number: OTA-20-008
Summary:

People with diabetes are at risk for painful diabetic peripheral neuropathy. This pain may be experienced as burning, aching, hypersensitivity to touch, or simply as pain, and there are no currently FDA-approved medications that reduce its symptoms. This phase 2 clinical trial, through the EPPIC-NET program, will test a potential new treatment for painful diabetic peripheral neuropathy. The treatment, WST-057 (topical pirenzepine 4%), is a molecule that was developed in the 1980s and marketed throughout Europe and Asia in an oral form to treat gastric ulcers. Studies show that this type of molecule can increase the density of certain nerve fibers, which has been linked with improve patient-reported outcome measures for painful diabetic peripheral neuropathy.

3UH3AR077360-04S1
A sequenced-strategy for improving outcomes in patients with knee osteoarthritis pain Cross-Cutting Research Training the Next Generation of Researchers in HEAL NIAMS JOHNS HOPKINS UNIVERSITY CAMPBELL, CLAUDIA MICHELLE (contact); CASTILLO, RENAN C; COHEN, STEVEN P Baltimore, MD 2022
NOFO Title: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: PA-21-071
Summary:

Knee osteoarthritis is one of the leading causes of chronic pain and disability worldwide, affecting more than 30% of older adults. Rates of this condition have more than doubled in the past 70 years and continue to grow sharply, given increases in life expectancy and body mass index among the U.S. population. This project supports a scientist from a group underrepresented in biomedicine to expand ongoing clinical research comparing various non-medication-based treatments for knee osteoarthritis.

1UG3AR077360-01
A sequenced-strategy for improving outcomes in patients with knee osteoarthritis pain Clinical Research in Pain Management Pain Management Effectiveness Research Network (ERN) NIAMS JOHNS HOPKINS UNIVERSITY COHEN, STEVEN P (contact); CAMPBELL, CLAUDIA MICHELLE; CASTILLO, RENAN C Baltimore, MD 2019
NOFO Title: HEAL Initiative: Pain Management Effectiveness Research Network: Clinical Trial Planning and Implementation Cooperative Agreement (UG3/UH3 Clinical Trial Required)
NOFO Number: RFA-NS-19-021
Summary:

The goal of this proposal is to conduct a randomized controlled trial to evaluate the comparative effectiveness of conservative behavioral and nonopioid pharmacological treatments (Phase I) and, among nonresponders, the benefits of nonsurgical procedural interventions (Phase II). Aim 1 will evaluate the effectiveness of individual and combined online cognitive behavioral therapy (painTRAINER) and pharmacologic treatment (duloxetine) in improving pain and function for knee osteoarthritis (KOA) patients compared with standard of care. Aim 2 will determine if genicular nerve radiofrequency ablation or intra-articular injection of hyaluronic acid and steroid is more effective in improving outcomes than local anesthetic nerve block or standard of care and help establish the role of these interventional treatments in the overall management of pain in KOA patients. Aim 3 will test whether clinical and psychosocial phenotypes predict short- and long-term treatment response.

3UH3AR077360-03S1
A sequenced-strategy for improving outcomes in patients with knee osteoarthritis pain Clinical Research in Pain Management Pain Management Effectiveness Research Network (ERN) NIAMS JOHNS HOPKINS UNIVERSITY CAMPBELL, CLAUDIA MICHELLE (contact); CASTILLO, RENAN C; COHEN, STEVEN P Baltimore, MD 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

Knee osteoarthritis is one of the leading causes of disability worldwide, particularly among older adults. Despite multiple guidelines for care, most patients do not receive adequate treatment, and about 30% are prescribed long-term opioids. This award will be used to recruit and support an early career faculty member from a group underrepresented in biomedicine. This research, part of the Pain Management Effectiveness Research Network will evaluate conservative and more aggressive treatments for knee osteoarthritis and determine which individual-level factors contribute to treatment outcomes.

1R44NS115196-01
A single dose long-acting non-addictive polymer conjugate formulation of buprenorphine that provides immediate and prolonged analgesia for post-operative pain Cross-Cutting Research Small Business Programs NINDS SERINA THERAPEUTICS, INC. VIEGAS, TACEY XAVIER; MOREADITH, RANDALL W Huntsville, AL 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

SER-227 is a long-acting polymer pro-drug of buprenorphine that is being developed to treat post- operative pain following major surgeries such as bunionectomy, abdominoplasty, thoracotomy and knee and hip surgery. The ultimate goal is to demonstrate that SER-227 can be manufactured and tested preclinically to show that it is safe for use in a Phase I clinical study. Aims include 1.SER-227 chemistry and process optimization to generate a technical package, 2. SER-227 manufactured under current Good Manufacturing Practices, 3. Evaluated in formal toxicology studies in rodent and non-rodent animals so that justifications can be made to support a ‘first-in-man’ study, and 4. Submission of an Investigational New Drug application (IND) along with a Phase I clinical  protocol in normal volunteers to measure the safety, tolerability and pharmacokinetics of  buprenorphine that is released from SER-227. 

1R61CA278594-01
Achieving Equity through SocioCulturally-Informed, Digitally-Enabled Cancer Pain managemeNT" (ASCENT) Clinical Trial Clinical Research in Pain Management Advancing Health Equity in Pain Management NCI Mayo Clinic CHEVILLE, ANDREA LYNNE (contact); DOUBENI, CHYKE ABADAMA Rochester, MN 2022
NOFO Title: HEAL Initiative: Advancing Health Equity in Pain Management (R61/R33 Clinical Trial Required)
NOFO Number: NS22-002
Summary:

Cancer pain treatment disparities are associated with a decreased ability to tolerate treatment, as well as increased rates of disability, unemployment, institutionalization, and early death. The Achieving Equity through SocioCulturally-informed, Digitally-Enabled Cancer Pain managemeNT (ASCENT) clinical trial will test whether a novel digitally enabled, collaborative approach to team-based pain management can improve clinical outcomes and reduce long-standing and devastating disparities among rural dwelling and Hispanic/Latinx cancer survivors. A major focus of the randomized, effectiveness clinical trial is to test the hypothesis that the ASCENT intervention will reduce pain and unplanned healthcare use, while improving function, mood, sleep, and quality of life.

1R61AG081034-01
Addressing the Chronic Pain Epidemic among Older Adults in Underserved Community Center; The GetActive+ Study Clinical Research in Pain Management Advancing Health Equity in Pain Management NIA Massachusetts General Hospital VRANCEANU, ANA-MARIA (contact); RITCHIE, CHRISTINE S Boston, MA 2022
NOFO Title: HEAL Initiative: Advancing Health Equity in Pain Management (R61/R33 Clinical Trial Required)
NOFO Number: NS22-002
Summary:

This research project will include focus group interviews with clinicians, patients, medical interpreters, and healthcare administrators to identify barriers and facilitators to administering the GetActive+ intervention in a group visit at a clinic for older adults with chronic pain, to inform development of a therapy manual. The project will then test the GetActive+ intervention for changes in physical function immediately post-intervention and after 6 months, as well as for changes in pain, sleep, depression, and anxiety at both time points. This research will also assess feasibility, acceptability, fidelity, and adoption of the intervention with patients, providers, and healthcare staff. 

3U24NS114416-01S1
Administrative Supplement to Support Strategies to Increase Participant Diversity, Inclusion and Engagement in EPPIC NET Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS DUKE UNIVERSITY LIMKAKENG, ALEXANDER TAN Durham, NC 2021
NOFO Title: HEAL Initiative: Notice of Special Interest (NOSI) regarding the Availability of Administrative Supplements to Support Strategies to Increase Participant Diversity, Inclusion and Engagement in Clinical Studies
NOFO Number: NOT-NS-21-025
Summary:

A main goal of the NIH HEAL Initiative and the Early Phase Pain Intervention Clinical Network (EPPIC-Net) is to improve non-opioid pain management. This award will leverage the resources at one of EPPIC-Net’s Specialized Clinical Centers by implementing and evaluating strategies to improve the engagement, recruitment, and retention of individuals from underserved racial/ethnic minority populations to participate in EPPIC-Net clinical trials. Since environmental, cultural, and genetic factors may account for observed differences in pain responses between racial and ethnic groups, enrollment of a diverse sample in pain research is crucial to obtain a complete understanding of the effectiveness of any proposed pain therapeutic intervention. The success of these activities will be evaluated, and a toolkit will be created to define best practices that can be by other EPPIC-Net sites and additional trials.

5R01NS102432-02
AIBP and regulation of neuropathic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS Univ. of Calif., U.C. San Diego Miller, Yury La Jolla, CA 2018
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Persistent pain states arising from inflammatory conditions, such as in arthritis, diabetes, HIV, and chemotherapy, exhibit a common feature in the release of damage-associated molecular pattern molecules, which can activate toll-like receptor-4 (TLR4). Previous studies suggest that TLR4 is critical in mediating the transition from acute to persistent pain. TLR4 as well as other inflammatory receptors localize to lipid raft microdomains on the plasma membrane. We have found that the secreted apoA-I binding protein (AIBP) accelerates cholesterol removal, disrupts lipid rafts, prevents TLR4 dimerization, and inhibits microglia inflammatory responses. We propose that AIBP targets cholesterol removal to lipid rafts harboring activated TLR4. The aims of this proposal are to: 1) determine whether AIBP targets lipid rafts harboring activated TLR4; 2) test whether AIBP reduces glial activation and neuroinflammation in mouse models of neuropathic pain; and 3) identify the origin and function of endogenous AIBP in the spinal cord.

3R01NS102432-02S1
AIBP AND REGULATION OF NEUROPATHIC PAIN Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF CALIFORNIA, SAN DIEGO MILLER, YURY; YAKSH, TONY L. LA JOLLA, CA 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Persistent pain states arising from inflammatory conditions, such as in arthritis, diabetes, HIV, and chemotherapy, exhibit a common feature in the release of damage-associated molecular pattern molecules, which can activate toll-like receptor-4 (TLR4). Previous studies suggest that TLR4 is critical in mediating the transition from acute to persistent pain. TLR4 as well as other inflammatory receptors localize to lipid raft microdomains on the plasma membrane. We have found that the secreted apoA-I binding protein (AIBP) accelerates cholesterol removal, disrupts lipid rafts, prevents TLR4 dimerization, and inhibits microglia inflammatory responses. We propose that AIBP targets cholesterol removal to lipid rafts harboring activated TLR4. The aims of this proposal are to: 1) determine whether AIBP targets lipid rafts harboring activated TLR4; 2) test whether AIBP reduces glial activation and neuroinflammation in mouse models of neuropathic pain; and 3) identify the origin and function of endogenous AIBP in the spinal cord.

1UG3NS128439-01
Allosteric Targeting of Cannabinoid CB1 Receptor to Develop Non-Addictive Small Molecule Analgesics Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS Texas A&M Health Science Center LU, DAI (contact); SELLEY, DANA E; TAO, FENG College Station, TX 2022
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Overreliance on opioids to treat chronic pain has been a contributor to the increase in individuals experiencing opioid addiction. This project aims to develop an innovative treatment approach for chronic pain that targets the cannabinoid receptor 1 (CB1R) to block the sensation of pain. The approach seeks to identify molecules that interact with a different part of the CBR1 receptor than do endocannabinoids and the primary active component of cannabis, tetrahydrocannabinol. Molecules that bind to and activate CBR1 in this different way (at an “allosteric” site) may produce nerve signaling that might differ from the effects of cannabis and endocannabinoids. This redirection of signaling pathways could help eliminate the risk of adverse effects observed with natural cannabinoids and other CBR1-binding molecules. The goal of this project is to identify a CB1R allosteric molecule, conduct studies toward obtaining federal permission to develop it as a medication, and to test it in a Phase I clinical study.

1R44NS113740-01
An Instrument to Assess the Functional Impact of Chronic Pain Cross-Cutting Research Small Business Programs NINDS BARRON ASSOCIATES, INC. CLARK, BRIAN R Charlottesville, VA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

The proposed Fast Track SBIR effort will develop and validate the reliable, low-cost KnowPain instrument. KnowPain will objectively and quantitatively assess the functional impact of chronic pain using measures derived from six degrees-of-freedom motion, heart rate, skin surface temperature, and skin conductivity collected via a specially designed, ergonomic wrist-worn biometric sensing instrument. The new assessment instrument will apply advanced psychometric methods to both physiologic and kinematic data to provide precise scores for functional impairment due to chronic pain. The assessment results will be presented to the clinician in an easy-to-understand report and will include longitudinal results, confidence estimates, and normative data to enable comparisons both within and between patients. The system will include provision to interface with electronic medical records. Accurate functional assessment is a crucial component in the effective treatment of chronic pain. The proposed approach will supplement existing methods for assessing patient function by providing novel and highly complementary information for a more complete (and often unobserved) picture of the impact of chronic pain on patient function. KnowPain measures will provide important data on the practical consequences of pain and on treatment efficacy. 

3R01NS111929-01A1S1
Anatomic, Physiologic and Transcriptomic Mechanisms of Neuropathic Pain in Human DRG Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TX MD ANDERSON CAN CTR DOUGHERTY, PATRICK M Houston, TX 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

Using neural tissues from pain patients, this project will investigate mechanisms of neuronal and/or immune dysfunction driving chronic pain. The researchers will use spatial transcriptomics on human dorsal root ganglion (DRG) and spinal cord tissues to examine the cellular expression profile for these targets using the 10X Genomics Visium technology. The use of tissues from control surgical patients and organ donors as well as surgical patients with neuropathic pain will enable validation of expression of these targets in human tissue as well as indication of their potential involvement in neuropathic pain. This collaborative effort will use DRGs removed from pain-phenotyped patients during neurological surgery, as well as lumbar DRGs and spinal cord from organ donors. This study will map the spatial transcriptomes at approximately single cell resolution in the human DRG and spinal cord.

1R61NS126026-01A1
Antagonists of CRMP2 Phosphorylation for Chemotherapy-Induced Peripheral Neuropathy Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS UNIVERSITY OF ARIZONA KHANNA, RAJESH Tucson, Arizona 2022
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: NS21-029
Summary:

A more thorough understanding of neuropathic pain is critical for developing new target-specific medications. Researchers know that peripheral nerve injury changes various cell processes that affect two ion channels linked with chronic pain. Preliminary studies indicate that molecular changes known as phosphorylation to the collapsin response mediator protein 2 (CRMP2), one of five intracellular phosphoproteins, promotes abnormal excitability in the brain region that contributes to neuropathic pain. This project aims to develop small molecule inhibitors of CRMP2 phosphorylation as potential therapeutics for pain.

3R44TR001326-03S1
Automation and validation of human on a chip systems for drug discovery Cross-Cutting Research Small Business Programs NCATS HESPEROS, LLC SHULER, MICHAEL L; HICKMAN, JAMES J Orlando, FL 2019
NOFO Title: PHS 2017-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44])
NOFO Number: PA-17-302
Summary:

Hesperos uses microphysiological systems in combination with functional readouts to establish systems capable of analysis of chemicals and drug candidates for toxicity and efficacy during pre-clinical testing, with initial emphasis on predictive toxicity. The team constructed physiological systems that represent cardiac, muscle and liver function, and demonstrated a multi-organ functional cardiac/liver module for toxicity studies as well as metabolic activity evaluations. In addition, the team demonstrated multi-organ toxicity in a 4-organ system composed of neuronal, cardiac, liver and muscle components. While much is known about the cells and neural circuitry regulating pain modulation there is limited knowledge regarding the precise mechanism by which peripheral and spinal level antinociceptive drugs function, and no available human-based model reproducing this part of the pain pathway. The ascending pain modulatory pathways provide a well characterized neural architecture for investigating pain regulatory physiology. In this project, the research team propose a human-on-a-chip neuron tri-culture system composed of nociceptive neurons, GABAergic interneurons and glutamatergic dorsal projection neurons (DPN) integrated with a MEMS construct. Using this model, investigators will interrogate pain signaling physiology at three levels, 1) at the site of origin by targeting nociceptive neurons with pain modulating compounds including noxious stimuli and inflammatory mediators, 2) at the inhibitory GABAergic interneuron, and 3) at the ascending spinal level by targeting glutamatergic DPNs. These circuits will be integrated utilizing expertise in patterning neurons as well as integration with BioMEMs devices. This system provides scientists with a better understanding of ascending pain pathway physiology and enable clinicians to consider alternative indications for treating pain at peripheral and spinal levels. 

1R01NS117340-01
B Lymphocyte-Mediated Autoimmunity in Pain After Trauma Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS PALO ALTO VETERANS INSTIT FOR RESEARCH CLARK, DAVID J Palo Alto, CA 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

A major recent advancement for the field of pain research is the recognition of immune system dysregulation as a contributor to the most serious adverse consequences of pain from injury. Accumulating data from clinical and laboratory studies place the activation of B lymphocytes at the center of much of this work, particularly with respect to chronic pain and disability-related outcomes. Validation of this B cell hypothesis could lead directly to trials testing the efficacy of novel or existing immunomodulating agents on posttraumatic pain. To achieve these goals a well-validated core mouse model of limb fracture will be employed with additional studies to be conducted in incisional and nerve injury models to broaden the assessment of B cell mediated effects on pain. Age and sex will be included as variables to enhance rigor.

1U24AR076730-01
Back Pain Consortium (BACPAC) Research Program Data Integration, Algorithm Development and Operations Management Center Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIV OF NORTH CAROLINA CHAPEL HILL ANSTROM, KEVIN J (contact); IVANOVA, ANASTASIA ; LAVANGE, LISA Chapel Hill, NC 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Data Integration, Algorithm Development and Operations Management Center (U24 Clinical Trial Not Allowed)
NOFO Number: RFA-AR-19-027
Summary:

The BACPAC Research Program’s Data Integration, Algorithm Development, and Operations Management Center (DAC) will bring cohesion to research performed by the participating Mechanistic Research Centers, Technology Research Sites, and Phase 2 Clinical Trials Centers. DAC Investigators will share their vision and provide scientific leadership and organizational support to the BACPAC Consortium. The research plan consists of supporting design and conduct of clinical trials with precision interventions that focus on identifying the best treatments for individual patients. The DAC will enhance collaboration and research progress with experienced leadership, innovative design and analysis methodologies, comprehensive research operations support, a state-of-the-art data management and integration system, and superior administrative support. This integrated structure will set the stage for technology assessments, solicitation of patient input and utilities, and the evaluation of high-impact interventions through the innovative design and sound execution of clinical trials, leading to effective personalized treatment approaches for patients with chronic lower back pain.

3U24AR076730-01S1
Back Pain Consortium (BACPAC) Research Program Data Integration, Algorithm Development and Operations Management Center Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIV OF NORTH CAROLINA CHAPEL HILL LAVANGE, LISA Chapel Hill, NC 2021
NOFO Title: HEAL Initiative: Notice of Special Interest (NOSI) regarding the Availability of Administrative Supplements to Support Strategies to Increase Participant Diversity, Inclusion and Engagement in Clinical Studies
NOFO Number: NOT-NS-21-025
Summary:

The NIH Back Pain Consortium (BACPAC) Research Program brings together leading centers with expertise in studying and treating chronic low back pain to advance understanding of the mechanisms that underlie the condition and to identify novel treatment strategies. BACPAC is undertaking a multisite precision medicine clinical trial taking into account patient-specific information to understand which patients with chronic low back pain respond best to various nonopioid, evidence-based treatments. The trial seeks to enroll a racially, ethnically, and socioeconomically diverse patient population to ensure that the results are applicable to all Americans with chronic low back pain. This project aims to develop comprehensive recruitment and retention plans for study sites that can recruit from historically underrepresented populations in clinical research (e.g., Black and Hispanic populations) and to provide dedicated financial resources to engage patients from these populations using tailored, culturally appropriate strategies.